• Tidak ada hasil yang ditemukan

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN

N/A
N/A
Protected

Academic year: 2021

Membagikan "TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN"

Copied!
10
0
0

Teks penuh

(1)

1

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN

Yon Hendri1*, Asmara Karma2, Musraini2

1

Mahasiswa Program S1 Matematika 2

Dosen JurusanMatematika

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia

*iyon_tbh@ymail.com ABSTRACT

This paper discusses a tecnique to solve a system of first order nonhomogeneous linear differential equations with constants-coefficient by writing it in a matrix form. Then order nonhomogeneous linear differential equations are formed which have coefficients involving matrix coefficient that have been formed and solved using variation of parameter method, hance the general solution is obtained from the differential equations discussed. This solution is focused only for and .

Keywords: general solutions, system of linear differential equations, variation of parameter method.

ABSTRAK

Artikel ini membahas teknik mendapatkan solusi sistem persamaan diferensial linear orde satu nonhomogen koefesien konstanta dengan terlebih dahulu menyatakan system tersebut dalam bentuk matriks. Selanjutnya dibentuk persamaan diferensial linear nonhomogen orde n yang koefisiennya melibatkan koefisien matriks yang sudah dibentuk dan diselesaikan dengan metode variasi parameter, sehingga diperoleh solusi umum dari persamaan diferensial yang didiskusikan. Pembahasan makalah ini difokuskan untuk kasus dan .

Kata kunci: metode variasi parameter, sistem persamaan diferensial linear, solusi umum.

1. PENDAHULUAN

Persamaan diferensial adalah salah satu bidang studi matematika yang banyak dikembangkan baik dalam matematika murni maupun matematika terapan. Dibidang matematika murni diteliti tentang ekstensi dan ketunggalan solusi persamaan diferensial, sedangkan di dalam matematika terapan dicarakan teknik mendapatkan solusinya, sehingga dapat menjawab persoalan yang dimodelkan oleh persamaan diferensial tersebut.

Pembahasan solusi persamaan diferensial linear yang berbentuk sistem persamaan tersebut yang banyak didiskusikan dalam buku teks diantaranya adalah metode matriks

(2)

2

eksponensial dan metode Fulmer [1, h. 307]. Pada artikel ini dibahas teknik lain dalam menyelesaikan sistem n persamaan diferensial linear koefisien konstanta nonhomogen yang merupakan pembahasan detail dari artikel Jwamer K. H. F dan Rashid A. M [2], dengan judul ’’ New Technique For Solving System of Order Linear Differential Equations’’. Dalam pembahasan artikel ini difokuskan untuk kasus dan .

2. SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN DAN METODE VARIASI PARAMETER

Pada bagian ini dibahas bentuk normal sistem persamaan diferensial linear orde satu nonhomogen, penyelesaian sistem persamaan diferensial linear orde satu nonhomogen dan metode variasi parameter.

2.1 Bentuk Normal Pada Sistem Persamaan Diferensial Linear Orde Satu.

Bentuk normal sistem persamaan diferensial linear orde satu nonhomogen dapat ditulis, diabawah ini. [3, h. 510].

,

)

(

)

(

)

(

2 2 1 1 2 2 2 22 1 21 2 1 1 2 12 1 11 1

t

f

x

a

x

a

x

a

dt

dx

t

f

x

a

x

a

x

a

dt

dx

t

f

x

a

x

a

x

a

dt

dx

n n nn n n n n n n n

untuk adalah fungsi terhadap . Juga

merupakan fungsi terhadap dengan , merupakan

konstanta. Sistem persamaan diferensial pada persamaan (1) dapat ditulis dalam bentuk sebuah matriks, ), (t f AX dt dX (2) dengan , , , , 2 1 T n dt dx dt dx dt dx dt dXnn n n n n a a a a a a a a a A        2 1 2 22 21 1 12 11 , dan untuk

)).

(

,

),

(

),

(

(

)

(

t

f

1

t

f

2

t

f

t

f

n

Bentuk sebuah persamaan diferensial linear orde-n dapat dibentuk menjadi sistem persamaan diferensial linear orde satu,ditulis

n n dt x d 1 1 n n dt x d dt dx (3) (1)

(3)

3

Persamaan (2) dan persamaan (3) berhubungan sebagai berikut. , dt dx 2 2 dt x d , 2 2 n n dt x d , dan , 1 1 n n dt x d (4) persamaan (4) diperoleh , 1 dt dx dt dx , 2 2 2 dt dx t d x d

,

1, 1 1 dt dx t d x d n n n (5) dan n n dt x d dt dxn (6)

Selanjutnya dengan menggunakan persamaan (4) dan (5) dapat di transformasikan persamaan (5) berikut :

dt

dx

n

(7)

Persamaan (7) adalah sistem persamaan diferensial linear orde satu nonhomogen. 2.2 Penyelesaian Sistem Persamaan Diferensial Linear Orde Satu Nonhomogen. Permasalahan yang muncul pada sistem persamaan diferensial linear orde satu nonhomogen pada persamaan (2).

dt dX

adalah menentukan fungsi-fungsi sehingga sistem persamaan diferensial linear tersebut terpenuhi. Langkah pertama untuk menyelesaikan persamaan (2), ditentukan penyelesaian sistem persamaan diferensial homogennya

dt dX

sehingga diperoleh sebagai himpunan fundamentalnya.

Teorema 1.[3, h. 532]. Jika adalah vektor penyelesaian persamaan diferensial

nonhomogen persamaan(2) dan himpunan fundamentalnya pada

penyelesaian homogen persamaan

, Ax dt

dX dengan c1,c2,cn adalah konstanta.

(4)

4 1. Maka fungsi vektor dari

n k k k c 1

adalah solusi persamaan diferensial nonhomogen pada persamaan (2) untuk sebarang

2. solusi persamaan diferensial linear nonhomogen pada persamaan (2) dari

n k k k c 1 0 untuk c1,c2,cnsebarang.

Teorema 2[3, h. 537].Jika adalah matriks fundamental sistem persamaan diferensial linear orde satu homogenya AX,

dt dx

pada maka didefinisikan dengan

Dimana adalah penyelesaian sistem persamaan diferensial

), (t F AX dt dx

2.3 Metode Variasi Parameter

Misalkan persamaan diferensial linear nonhomogen orde dua dibawah ini

(8) dengan fungsi , dan kontinu pada interval terbuka, maka penyelesaian secara homogennya adalah

(9) dan adalah solusi bebas linear persamaan homogennya, maka solusi umumnya

(10)

penggantian konstanta dan merupakan konstan dengan fungsi dan yang harus ditentukan, maka solusi partikular dari persamaan diferensial nonhomogen mempunyai bentuk :

(11) Untuk menentukan fungsi dan diperlukan dua syarat,yaitu :

1. Fungsi dan harus memenuhi persamaan (11) 2. Syarat sebarang, yang memenuhi

(12) persamaan (11) diturunkan terhadap , maka diperoleh

atau

(13) Jika persamaan (13) diturunkan terhadap , maka akan diperoleh

(14)

subtitusikan persamaan (11), (13) dan (14) ke persamaan (8), maka diperoleh , ,

karena , maka

(5)

5

Persamaan (12) dan (15) sistem persamaan linear untuk fungsi yang tidak diketahui dan , penyelesaian diperoleh dengan aturan Cramer, sehingga menjadi

dan

dengan , merupakan Wronskians. dan adalah solusi

bebas linear dari persamaan homogen yang terkait. Hasilnya disubtitusikan pada persamaan (11), diperoleh solusi partikular dari persamaan nonhomogen pada persamaan (8), yaitu

3. TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN

Pada bagian ini diperoleh teknik baru untuk menyelesaikan sistem persamaan diferensial linear orde satu nonhomogen.

Untuk kasus

Berdasarkan persamaan (1) bentuk sistem dua persamaan diferensial linear orde satu nonhomogen ini ditulis :

(16)

dengan dan adalah fungsi kontinu pada interval I. Persamaan (16) dapat disusun dalam bentuk matriks

(17)

Dari persamaan (17) dapat menentukan dan sehingga memenuhi persamaan (17) tersebut. Pada penyelesaian teknik ini persamaan (17) dibentuk menjadi sebuah persamaan diferensial linear orde dua nonhomogen, sebagai berikut :

(18)

dengan , cara membentuk persamaan (18) sebagai

berikut. Persamaan (17) dapat diperoleh,

, (19)

dengan menurunkan ruas kiri dan kanan persamaan (19) terhadap , diperoleh

(20) Persamaan (17) diperoleh juga

(21)

subtitusikan persamaan (21) kepersamaan (20), maka akan diperoleh

(22)

Persamaan (19) dapat dibentuk menjadi

(6)

6

dengan , sedangkan dan

. Maka terbukti bahwa bentuk persamaan (17) dapat dibentuk menjadi sebuah persamaan diferensial linear orde dua nonhomogen. Pada persamaan (18), yaitu.

Misalkan persamaan (18) ditulis konstanta maka

diperoleh.

(23)

Selanjutnya persamaan (23) dapat diselesaikan dengan metode variasi parameter. Misalkan dan adalah penyelesaian persamaan diferensial homogennya pada persamaan (23) maka diperoleh penyelesaian umumnya.

(24) dengan dan adalah konstanta, penyelesaian khususnya. Misalkan dan

adalah fungsi variabel , sehingga terbentuklah penyelesaiannya.

(25)

jika persamaan (25) diturunkan terhadap t, maka akan diperoleh

(26)

dengan menentukan syarat pada persamaan (26).

(27)

diperoleh

(28)

jika persamaan (28) diturunkan terhadap t, maka akan diperoleh

(29) subtitusikan persamaan (25), (28) dan (29) kepersamaan (23), maka akan diperoleh

atau

sehingga diperoleh

Dari persamaan (27) dan (30) diperoleh

dan

subtitusikan persamaan (31) kepersamaan (25), maka dapat dibentuk penyelesaian umumnya

(7)

7 atau

dengan

. Untuk kasus

Proposisi 1 [2]. Misalkan sistem persamaan diferensial linear orde satu nonhomogen, adalah

(32)

dengan dan adalah fungsi kontinu. Jika atau

maka sistem tiga persamaan diferensial linear orde satu nonhomogen pada persamaan (32) dapat dibentuk menjadi sebuah persamaan diferensial linear orde tiga nonhomogen

dengan nilai dari,

Bukti

Jika diasumsikan atau Persamaan (32)

dapat diperoleh bentuk sebuah matriks. Misalkan matriks

Persamaan (32), dapat diperoleh , maka diperoleh

turunan keduanya

(33) jika persamaan (33) diturunkan terhadap t, maka akan diperoleh

(34)

jika persamaan (32) diturunkan terhadap t, maka akan diperoleh

(35) dan

(36) subtitusikan persamaan (35) dan (36) ke persamaan (34), maka akan diperoleh

, oleh karena itu diperoleh

selain itu dari persamaan (32) didapatkan juga

, subtitusikan ke persamaan (36), maka akan diperoleh

(8)

8

dengan , akan diperoleh

dari persamaan (32) dapat diperoleh maka

dan untuk

dapat diperoleh

dengan

maka akan membentuk sebuah persamaan diferensial linear orde tiga nonhomogen atau

Terbukti bahwa persamaan (32) dapat dibentuk sebuah persamaan diferensial linear orde tiga nonhomogen.

3. CONTOH SOAL UNTUK KASUS Diberikan , 2 13 3 4 ' x y t x y' 2x y 2t,

(9)

9 (40) Penyelesaian . 2 2 13 1 2 3 4 ' ' t t y x y x (37) Dari persamaan (37) diperoleh

(38) jika persamaan (38) diturunkan terhadap t, maka akan diperoleh

(39)

Persamaan (37) juga diperoleh

jika persamaan (40) disubtitusikan ke persamaan (39), maka akan diperoleh

, untuk nilai dapat diperoleh dari persamaan (38)

(41) Persamaan (41) merupakan persamaan diferensial linear orde dua nonhomogen, dengan menggunakan metode variasi parameter untuk memperoleh solusi umumnya, persamaan (38) dapat diperoleh penyelesaian umum homogennya

dan ,

(42)

. (43)

Gunakan persamaan (31), maka akan diperoleh , ) , ( ) ( ) ( 2 1 2 1 dt y y W t g y t v dan , ) , ( ) ( ) ( 2 1 1 2 dt y y W t g y t v dengan Wrongskiannya dapat diperoleh

,

(10)

10

(44) Dari persamaan (42) dan (44) diperoleh penyelesaian umum sistem persamaan diferensial

jika diturunkan terhadap , maka akan diperoleh

untuk memperoleh nilai subtitusikan dan pada persamaan (38) dengan dan sebarang,

dapat diperoleh

DAFTAR PUSTAKA

[1] Cullen, C. G. 1990. Linear Algebra and Differential Equations, second Edition, University Of Pittsburgh. Springer: New York.

[2] Jwamer, K. H .F & Rashid, A. M. 2012. New Technique For Solving System Of First Order Linear Differential Equations. Journal Applied Mathematical Sciences, 64:

3177-3183.

[3] Ross, S. L. 1984. Differential Equations, Thirt Edition. University Of New Hamphirs: New York.

[4] Stewart, J. 2011. Kalkulus. Terj. dari Calculus, Edisi Lima Buku dua, oleh Sungkono, C. Penerbit Salemba Teknika: Jakarta.

Referensi

Dokumen terkait

Kultivar tanaman melon yang memiliki nilai skala berarti tidak tahan terhadap jamur tepung isolat Ngawi karena pada daun dijumpai adanya bercak warna putih

Dari hasil evaluasi percobaan identifikasi suara pembicara, dapat diketahui bahwa rata-rata prosentase identifikasi, transformasi suara laki-laki ke suara laki-laki

ini menunjukkan bahwa model integrasi random oversampling , AdaBoost, dan Naïve Bayes memiliki kinerja lebih baik dalam menemukan kecenderungan pelanggan yang

Adanya kontradiksi antara teori mengenai tanggungjawab sosial dengan berbagai penelitian mengenai faktor yang mempengaruhi pengungkapan tanggung jawab sosial perusahaan

Status Nilai Kapasitas

Penyakit ini biasanya dimanifestasikan dalam bentuk adanya demam, adanya obstruksi hidung dengan sekret yang encer sampai dengan membuntu saluran pernafasan, bayi

Fakta di lapangan menunjukkan bahwa penempatan perkuatan pada dinding dengan luasan yang kecil tidak terjadi lendutan karena jumlah perkuatannya (stiffner-nya) banyak

Pada dasarnya perhitungan kebutuhan untuk pelayanan IVA harus berasal dari unit puskesmas (battom up) dengan dasar besaran jumlah sasaran tiap jenis pelayanan IVA untuk