• Tidak ada hasil yang ditemukan

MINGGU KE V VI

N/A
N/A
Protected

Academic year: 2018

Membagikan "MINGGU KE V VI"

Copied!
15
0
0

Teks penuh

(1)

MINGGU KE- V:

UKURAN PENYEBARAN

Tujuan Instruksional Umum :

1. Mahasiswa mampu memahami apa yang dimaksud dengan ukuran penyebaran

2. Mahasiswa mampu memahami berbagai pengukuran untuk mencari nilai ukuran

penyebaran

3. Mahasiswa mampu memahami kegunaan atau fungsi dari nilai penyebaran

4. Mahasiswa mampu membedakan menghitung ukuran penyebaran untuk data yang

dikelompokkan dengan data yang tidak dikelompokkan

Tujuan Instruksional Umum :

1. Mahasiswa mampu menghitung range untuk data yang dikelompokkan dan untuk data

yang tidak dikelompokkan

2. Mahasiswa mampu untuk menghitung nilai deviasi kuartil untuk data yang

dikelompokkan dan untuk data yang tidak dikelompokkan

3. Mahasiswa mampu untuk menghitung nilai dari deviasi rata-rata untuk data yang

dikelompokkan dengan data yang tidak dikelompokkan

4. Mahasiswa mampu untuk menghitung nilai deviasi standar untuk data yang

dikelompokkan dengan data yang tidak dikelompokkan

5. Mahasiswa mampu menghitung kemencengan dan keruncingan untuk data yang

dikelompokkan dan data yang tidak dikelompokkan

6. Mahasiswa mampu untuk menghitung nilai koefisien range, koefisien standar deviasi dan

koefisien variasi.

7. mahasiswa mampu untuk menginterpretasikan arti nilai ukuran penyebaran

8. Mahasiswa mampu menggunakan aplikasi computer untuk mnghitung ukuran

(2)

PENGERTIAN

Yang dimaksud dengan ukuran penyebaran adalah persebaran data terhadap rata-ratanya.

Semakin kecil nilai penyebarannya maka akan semakin dekat nilai datanya dengan rata-ratanya.

Atau dikatakan datanya semakin homogen.

JENIS UKURAN PENYEBARAN

A. Range

Range adalah selisih dari nilai tertinggi dengan nilai terendah.

a. Untuk Data tidak berkelompok

Range = L – S

L : Nilai tertinggi

S : Nilai terendah

b. Untuk Data berkelompok

1. Batas Kelas tertinggi – Batas kelas terendah

2. Nilai tengah tertinggi – Nilai tengah terendah

B. Deviasi Kuartil

Deviasi Kuartil dalam suatu rangkaian data adalah jarak antara kuartil I dengan

kuartil III. Rumus Deviasi Kuartil untuk data yang tidak dikelompokkan dan data

yang dikelompokkan adalah sama, selama nilai Kuartil I dan nilai kuartil III sudah

diketahui.

2 1 3 K K QD 

C. Deviasi Rata-rata

Deviasi rta-rata adalah jumlah selisih mutlak setiap data terhadap rata-ratanya.

a. Untuk Data tidak berkelompok

N X X AD

Dimana ;

X: Data :

(3)

b. Untuk Data dikelompokkan

f : Frekuensi kelas X: Data

X :Rata-rata N : Jumlah data

Contoh :

Gaji karyawan

Jumlah Karyawan

Nilai Tengah

X

Diketahui dari perhitungan sebelumnya;

1

D. Deviasi Standard

Deviasi Standar adalah akar pangkat dua dari total selisih dengan nilai rata-

ratanya.

(4)

N X X

SD 

(  )

Dimana;

X: nilai data

X: Rata-rata

N : Jumlah Data

b. Untuk data yang dikelompokkan

2 karyawan

Jumlah Karyawan

1190,25

1980,25

2970,25

4160,25

5550,25

7140,25

8930,25

4761

11881,5

23762

49923

49952

49981,75

(5)

UKURAN PENYEBARAN RELATIF

A. Koefisien Range

S L

S L KR

  

L : Nilai tertinggi

S : Nilai Terendah

B. Koefisien Deviasi Kuartil

1 3

1 3

K K

K K QD

  

K3: Kuartil 3

K1: Kuartil 1

C. Koefisien Deviasi Rata-rata

X AD QR

AD : Deviasi rata-rata

X : Rata-rata

D. Koefisien Deviasi Variasi

Koefisien Deviasi Standar disebut juga Koefisien Variasi, yang mempunyai

peranan sangat penting guna membandingkan variasi dari sekelompok data

dengan sekelompok data yang lain. Semakin kecil koefisien variasinya, maka

datanya semakin homogen, semakin beesar koefisien variasinya maka data

semakin heterogen.

% 100

 

X V

Dimana;

(6)

X : Nilai rata-rata

Sedangkan koefisien variasi untuk sampel adalah :

% 100

 

X S kv

Dimana;

S : Deviasi stándar sampel

X : rata-rata sampel

E. Ukuran Kemencengan (Skewness) dan keruncingan (Kurtosis)

1. Skewness

Skewness menandakan kurva yang tidak simetris. Apabila kurva menceng ke kiri

maka XMedMod, apabila kurva menceng ke kanan maka

X Med Mod   .

Ukuran tingkat Kemencengan atau Skew adalah :

S Mod X

Tk  

Atau

S Med X

TK  3(  )

Dimana ;

X : rata-rata hitung

Mod: modus

S : Simpangan Baku

Med: median atau nilai tengah

2. Kurtosis

Dilihat dari tingkat keruncingannya, kurva distribusi normal di bagi menjadi tiga

bagian yaitu :

a. leptokurtic (kurva sangat runcing)

(7)

c. Mezokurtic (puncak tidak begitu runcing)

Untuk menghitung tingkat keruncingan suatu kurva dihitung :

Untuk data yang tidak dikelompokkan:

4

Untuk data yang dikelompokkan :

4

Dimana;

(8)

QUIZ I

1. Berikut ini adalah hasil nilai ujian 50 mahasiswa UIEU untuk mata kuliah statistika : 68 84 75 82 68 90 75 80 76 82

73 79 88 73 60 93 66 54 90 96 61 65 75 87 74 62 63 88 72 56 66 78 82 75 94 77 80 76 65 82 96 78 89 61 75 95 90 82 79 80

a. Susunlah distribusi frekuensi dari data tersebut b. Gambarkan grafik polygon dan histogramnya c. Gambarkan kurva ogive nya

2. Tabel di bawah ini adalah data yang menggambarkan harga sewa kos per bulan di daerah tanjung duren, dari 65 tempat kos yang ada

Harga Sewa Jumlah Tempat Kos

80 – 99 100 – 119 120 – 139 140 – 159 160 – 179 180 - 199

14 20 15 10 5 3

a. Hitunglah rata-rata dari harga sewa kos b. Hitunglah median dari harga sewa kos c. Hitunglah modus dari harga sewa kos

d. Berapa persentase dari rumah kos yang memiliki sewa kos lebih Rp. 119.500 per bulan

3. Data berikut ini adalah data gaji per minggu karyawan di PT Senang Selalu : Gaji Jumlah Karyawan

40 – 59 60 – 79 80 – 99 100 – 119 120 – 139 140 – 159 160 – 179

2 6 22 27 23 15 5

a. Hitunglah gaji tertinggi dari 25% yang memiliki gaji terendah

(9)

c. Hitunglah nilai dari Desil 7 dan Desil 3

4. Dengan data yang sama dengan data di no. 3, hitunglah : a. Skewness, dan aapa artinya

(10)

MINGGU KE- VI & VII:

DASAR – DASAR

PROBABILITA

Tujuan Instruksional Umum :

1. Mahasiswa mampu memahami apa yang dimaksud dengan probabilita

2. Mahasiswa mampu memahami apa yang dimaksud dengan sample space, event dan

peristiwa

3. Mahasiswa mampu memahami mengenai azas-azas probabilita

4. Mahasiswa mampu memahami apa yang dimaksud dengan theorema bayes

Tujuan Instruksional Khusus :

1. Mahasiswa mampu menghitung probabilita dari suatu kejadian

2. Mahasiswa mampu menghitung Joint Probabilita, conditional Probabita dan Maginal

Prbabilita

3. Mahasiswa mampu untuk menghitung menggunakan teorema bayes

4. Mahasiswa mampu untuk mengaplikasikan probabilita dengan bebbagai contoh kasus

yang ada

PENGERTIAN

Probabilita adalah rasio dari kejadian yang menguntungkan dengan seluruh kejadian atau

persitwa apabila setiap kejadian memiliki kesempatan yang sama.

Contoh:

a. Peristiwa dari pelemparan mata uang logam

Mata uang memiliki dua sisi, yaitu gambar dan angka. Apabila mata uang

dilemparkan, maka probabilita keluar sisi gambar adalah :

P (sisi gambar) atau P (G) = ½ = 0,5 = 50%

Selain sisi gambar, probabilita keluar sisi angka adalah :

(11)

b. Peristiwa dari pelemparan dadu yang memiliki 6 sisi

Setiap dadu yang berbentuk kubus memiliki enam sisi, yang masing-masing sisi

memiliki nilai yang berbeda, yaitu 1, 2, 3, 4, 5 dan 6. Apabila dadu tersebut

dilempar, maka probabilita keluar sisi dadu bernilai 2 adalah:

P (sisi 2) = 1/6

Sedangkan probabilita keluar mata dadu bernilai genap :

P (sisi 2, sisi 4 dan sisi 6) = 3/6 = ½

c. Perstiwa dari pengambilan kartu bridge

Kartu bridge terdiri dari 52 kartu yang terdiri dari 4 jenis gambar yaitu Jantung,

Diamond, Sekop, Cengkeh. Setiap satu jenis terdiri dari 13 kartu yang bernomor

As, 2 – 9, Jack, Queen, dan King. Apabila kartu bridge dikocok, maka probabilita

terpilihnya kartu As adalah ;

P (As) = 4/52 = 1/13

Probabilita terpilihnya kartu Jantung (Heart) adalah :

P (Jantung) = 13/52 = ¼

Probabilita terpilihnya kartu berwarna merah ;

P (merah) = 26/52 = 1/2

RUANG SAMPEL/SAMPLE SPACE

Ruang sample adalah himpunan yang mempunyai unsur seluruh peristiwa atau kejadian.

Contoh :

a. Pelemparan mata uang

i. Pelemparan satu mata uang

Apabila satu mata uang dilempar, maka ada dua kemungkinan hasilnya,

apakah akan keluar sisi gambar atau akan keluar sisi angka. Sehingga yang

masuk sebagai ruang sample ada dua, yaitu sisi gambar dan sisi angka

ii. Pelemparan dua mata uang secara bersama-sama

Apabila dua mata uang dilempar secara bersamaan, maka ada beberapa

kemungkinan hasil yang akan keluar, yaitu ;

(12)

 (Angka, Gambar)

 (gambar, Angka)

 (Gamba, Gambar)

Dengan demikian keempat kemungkinan tersebut adalah bagian dari ruang

sample.

b. Pelemparan dadu

Seluruh sisi yang mungkin keluar dalam pelemparan dadu akan masuk kedalam

ruang sample. Namun dapat dilakukan sub ruang sample, apabila ingin dibedakan

antara dadu bersisi ganjil dengan dadu yang bersisi genap.

EVENT ATAU PERISTIWA

Peristiwa atau event adalah kemungkinan terjadinya suatu kejadian dari suatu percobaan.

Misal:

Probabilita terjadi A atau disebut sebagai probabilita kejadian A, dituliskan :

P (A) =

m n

, dimana ;

A : Peristiwa A

n: banyaknya peristiwa A

m: Jumlah seluruh peristiwa

Kemudian probabilita kejadian bukan A, dirumuskan sebagai berikut :

m n A

P( )1

ASAS-ASAS MENGHITUNG PROBABILITA

1. Range Nilai Probabilita

2. Complements - Probability of not A – Probabilita kejadian bukan A 1

) (

0  P A

)

(

1

)

(

A

P

A

(13)

3. Intersection - Probability Kejadian A dan B ( Persitiwa saling meniadakan)

4. Union - Probability kejadian A atau B (Peristiwa mutually exlusive, tidak saling meniadakan)

Contoh Kasus :

a. Dari 52 kartu bridge, berapa probabilita terpilihnya kartu As atau Heart ?

Persitiwa terambilnya kartu As = P(A) = 4/52

Persitiwa terambilnya kartu Heart = P (H) = 13/52

Peristiwa terambilnya kartu As yang juga Heart = P (A dan H) = 1/52

Maka; P (A Atau H) = 4/52 + 13/52 -1/52 = 16/52 = 4/13

b. Berikut ini data sekelompok mahasiswa Jurusan Manajemen UIEU

Kelompok Jenis Kelamin Usia

I

Wanita

Wanita

25 tahun

19 tahun

20 tahun

21 tahun

18 tahun

Berapa probabilita terpilihnya mahasiswa yang memiliki usia lebih dari 20 tahun :

Probabilita terpilihnya karyawan wanita = P (W) = 2/5

Probabilita terpilihnya karyawan yang berusia lebih dari 20 tahun =

P( U) = 2/5

Probabilita terpilihnya karyawan wanita yang berusia lebih dari 20 tahun = 1/5

(14)

5. Marginal Probability

Marginal probability adalah persitiwa tanpa syarat, dimana peristiwa yang lain tidak ada

hubungannya dengan persitwa yang lainnya.

Probabilita terjadinya peristiwa A = P(A)

Probabilita terjadinya peristiwa B = P (B)

6. Joint Event

Joint event adalah terjadinya dua peristiwa secara bersama-sama atau secara berurutan.

Dimana P (AB) = P (BA) = P (A) P(B) tetapi aturan ini hanya dapat diterapkan apabila

peristiwa tersebut independen

Selain itu, apabila joint event mengikuti aturan yang diterapkan di Conditional

Probability maka akan menjadi atau apabila peristiwa tersebut tidak independent, maka:

)

2. Conditional Probability

Conditional Probability adalah dimana suatu peristiwa terjadinya didahului oleh peristiwa

lainnya sebagai syarat .

Aturan dari Conditional Probability :

)

Dalam satu kotak terdapat 10 buah bola, dimana 2 bola merah bergaris, 3 bola merah

kotak, 4 bola biru bergaris dan 1 bola biru kotak-kotak.

Pertanyaan:

a. Berapa probabilita terambilnya bola bergaris dengan syarat merah?

4

b. Berapa proabilita terambilnya bola kotak-kotak dengan syarat merah?

6

(15)

8

d. Berapa probabilita terambilnya bola kotak-kotak dengan syarat biru?

2

BAYES’ THEOREM

Theorema Bayes pada dasarnya hamper sama dengan Conditional Probability, dan aturan pada

Bayes juga diturunkan dari aturan yang ada pada Conditional Probability.

Pada aturan Conditional Probability :

)

Sehingga aturan bayes menjadi ;

Referensi

Garis besar

Dokumen terkait

NAMA PERUSAHAAN Jumlah Dividen Delta Ket.. Jumlah Dividen Delta

Promosi bertujuan agar sikap target audiens dapat berubah sesuai yang diinginkan, yang sebelumnya tidak ingin membeli menjadi ingin membeli produk Samsung Galaxy

 Pendidikan adalah usaha sadar dan terencana untuk mewujudkan suasana belajar dan proses pembelajaran agar peserta didik secara aktif mengembangkan potensi dirinya untuk

- Melakukan entry data rencana studi yang sudah diisikan pada FPRS ke dalam komputer sesuai dengan jadwal dan ruang yang tercantum padaa. KETENTUAN UMUM

26 Muhammad Agung Izzulhaq SMPN 1 Srengat Blitar 16. 27 Fatimatus Sholikah SMP

Ekonomi Regional, Teori dan Aplikasi, Edisi Revisi, Bumi Aksara, Jakarta. Perekonomian Indonesia Kajian

Materi yang disajikan sesuai dengan RPP yang ada. Guru menyampaikan materi dengan sangat komunikatif dan di sisipi dengan lelucon sehingga membuat siswa tidak terlalu kaku

[r]