• Tidak ada hasil yang ditemukan

Perancangan dan Pembuatan Transceiver SSB Untuk Komunikasi Suara dan Data Pada Spektrum High Frequency.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Perancangan dan Pembuatan Transceiver SSB Untuk Komunikasi Suara dan Data Pada Spektrum High Frequency."

Copied!
76
0
0

Teks penuh

(1)

ABSTRAK

Transceiver (transmitter receiver) tidak hanya digunakan untuk

komunikasi suara saja tetapi dapat digunakan untuk komunikasi data dengan menggunakan sebuah modem. Untuk komunikasi jarak jauh biasa digunakan

transceiver yang bekerja di High Frequency (HF) karena di HF ini gelombang

yang dipancarkan akan dipantulkan oleh lapisan ionosfer.

Tugas Akhir ini membahas prinsip kerja, perancangan, pembuatan

transceiver SSB yang bekerja di HF dan bagaimana cara menghubungkannya

dengan modem Phase Shift Keying (PSK). Transceiver SSB ini menggunakan frekuensi radio amatir di 3,85 MHz dan daya pancar 10 Watt.

Transceiver SSB ini bisa digunakan untuk komunikasi suara dan data,

dengan memanfaatkan input microphone dan output speaker serta PTT dari

(2)

ABSTRACT

Transceiver (transmitter receiver) is not only used for audio communication, but it is also can be used for data communication by using a modem. For long distance communication, it is usually used transceiver that works at high frequency (HF), because in the frequency, transmitted wave will be bounced by ionosphere coat.

This Final Project discusses the principle work, design, realization SSB transceiver that works at HF and how to connect it to the modem of Phase Shift Keying (PSK). This SSB transceiver uses amateurish radio frequency at 3,8 MHz and 10 watt emittance.

(3)

DAFTAR ISI

ABSTRAK ………..…….…….………. i

ABSTRACT ……… ii

KATA PENGANTAR ………...……… iii

DAFTAR ISI…….………...………. v

DAFTAR TABEL ………..……….. vii

DAFTAR GAMBAR.………..….……… viii

DAFTAR LAMPIRAN………. x

BAB 1 PENDAHULUAN 1.1 Latar Belakang ………..………..……… 1

1.2 Perumusan Masalah ...……….……….…… 1

1.3 Tujuan Penulisan ……….…………..….……….… 2

1.4 Pembatasan Masalah ..……….……… .. 2

1.5 Sistematika Penulisan ………..……….... 2

BAB 2 LANDASAN TEORI 2.1 Gelombang Radio ………..……… 4

2.2 Frekuensi Radio ……..………. 5

2.3 Modulasi Sinyal ……… 6

2.3.1 Modulasi Amplitudo …………..……….... 6

2.3.2 Sistem Modulasi SSB ….………..……….... 8

2.4 Pemancar (Transmitter) Sistem SSB ……….…….……… .. 9

2.5 Penerima (Receiver) Sistem SSB…….………..………... 10

2.6 Balanced Modulator ………. 10

2.7 Osilator ………. 12

2.8 Filter ………. 13

2.9 Detektor ……… 16

BAB 3 PERANCANGAN DAN REALISASI 3.1 Pemancar ………….……….. 17

(4)

3.1.3 Osilator Lokal (OL1) ……… 20

3.1.4 Filter Upper Side Band 1 ……… 21

3.1.5 Balanced Modulator 2 (BM 2) sebagai Mixer ……. 22

3.1.6 Osilator Lokal 2 (OL 2) ……….. 22

3.1.7 Filter Upper Side Band 2 ……… 23

3.1.8 Penguat Daya RF ……… 24

3.1.8.1 RF Pre Driver ……… 24

3.1.8.2 RF Driver ……….. 26

3.1.8.3 Rangkaian Penguat Akhir (RF Final) ………… 27

3.2 Penerima (Receiver) ………. 29

3.2.1 RF Amplifier ……… 30

3.2.2 RF Mixer ………. 30

3.2.3 Osilator Lokal 2 (OL 2) ……….. 31

3.2.4 Filter USB I ……… 31

3.2.5 Intermediate Frequency ……….……… 31

3.2.6 Detektor ……… 32

3.2.7 Osilator Lokal 1 (OL 1) ……… 32

3.2.8 Penguat Audio / Suara ……….. 32

3.2.9 Automatic Gain Control (AGC) ……… 33

3.3 Rangkaian PTT ……… 34

BAB 4 PENGUJIAN DAN ANALISA 4.1 Pengujian Transceiver SSB ………..…….……... 35

4.1.1 Pengujian Bagian Pemancar ………. 37

4.1.2 Pengujian Bagian Penerima ………. 44

4.2 Penghubungan Transceiver dengan Modem PSK ……… 47

BAB 5 KESIMPULAN DAN SARAN 5.1 Kesimpulan……….……. 49

5.2 Saran…..………..………….... 49

DAFTAR PUSTAKA

(5)

DAFTAR TABEL

Tabel Judul Halaman

2.1 Spektrum Frekuensi 5

(6)

DAFTAR GAMBAR

Gambar Judul Halaman

2.1 Modulasi Amplitudo 7

2.2 Pemancar (Transmitter) Sistem SSB 9

2.3 Penerima (Receiver) Sistem SSB 10

2.4 Balanced Modulator IC 11

2.5 Osilator colpitts 13 2.6 Osilator Kristal. 13 2.7 Low pass filter 14 2.8 High pass filter 14 2.9 Band pass filter 15 2.10 Band stop filter 15 2.11 Detektor 16 3.1 Diagram Blok Transceiver SSB 17

3.2 Rangkaian Pre Amp Mic dan Tone Control 18

3.3 IC LM 1496 19

3.4 Rangkaian Balanced Modulator 20

3.5 Rangkaian Osilator Lokal 1 21

3.6 Filter Upper Side Band 21

3.7 Rangkaian Balanced Modulator 2 22

3.8 Rangkaian Osilator Lokal 2 23

3.9 Rangkaian Filter Upper Side Band 2 24

3.10 Diagram Blok Penguat Daya 24

3.11 Rangkaian RF Pre Driver 26

3.12 Rangkaian RF Driver 27

3.13 Rangkaian LPF Normalisasi 27

3.14 Rangkaian LPF dengan fc=5,56 MHz 29 3.15 Rangkaian Penguat Akhir dan Filter 29

3.16 Rangkaian RF Amp 30

(7)

3.18 Rangkaian Intermediate Frequency 31

3.19 Detektor 32

3.20 Rangkaian Penguat Audio 33

3.21 Rangkaian AGC 33

3.22 Rangkaian PTT 34

4.1 Diagram Blok Pengujian Transceiver 36 4.2 Hasil Pengukuran TP 1 dengan Osiloskop 37

4.3 Sinyal Informasi dengan Frekuensi 2 KHz 37 4.4 Hasil Pengukuran TP 2 dengan Frekuensi Counter 38 4.5 Hasil Pengukuran TP 2 dengan Osiloskop 38 4.6 Sinyal Carrier dengan Frekuensi 455 KHz 38

4.7 Sinyal Hasil Modulasi 39

4.8 Hasil Pengukuran TP 4 dengan Frekuensi Counter 40 4.9 Hasil Pengukuran TP 4 dengan Spectrum Analyzer 40 4.10 Spektrum Sinyal Carrier dengan Frekuensi 3.4 MHz 40 4.11 Hasil Pengukuran TP 5 dengan Spectrum Analyzer 41 4.12 Hasil Pengukuran TP 5 dengan Osiloskop 41 4.13 Spektrum Sinyal USB dengan Frekuensi 3,857 MHz 41 4.14 Hasil Pengukuran TP 6 dengan Power Meter 42 4.15 Sketsa Hasil Pengukuran TP 6 42 4.16 Hasil Pengukuran TP 7 dengan Power Meter 43

4.17 Sketsa Hasil Pengukuran TP 7 43

4.18 Hasil Pengukuran TP 8 dengan SWR Meter 44

4. 19 Sketsa Hasil Pengukuran TP 8 44

4.20 Signal Generator dengan Frekuensi 3,857 MHz 45

4.21 Spektrum Sinyal USB 45

4.22 Spektrum dari TP 11 46

4.23 Spektrum dari TP 12 46

4.24 Sinyal Informasi dari Output Detektor 47

(8)

DAFTAR LAMPIRAN

Lampiran Judul Halaman

A Data Sheet Transistor 2SK 192 A-1 B Data Sheet Transistor 2SC 828 B-1 C Data Sheet Transistor 2SC 829 C-1 D Data Sheet Transistor 2SC 1383 D-1 E Data Sheet Transistor 2SC 1162 E-1 F Data Sheet Transistor 2SC 1969 F-1

G Data Sheet IC LM 741 G-1

H Data Sheet IC LM 386 H-1

(9)

LM386

Low Voltage Audio Power Amplifier

General Description

The LM386 is a power amplifier designed for use in low volt-age consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200.

The inputs are ground referenced while the output is auto-matically biased to one half the supply voltage. The quies-cent power drain is only 24 milliwatts when operating from a 6 volt supply, making the LM386 ideal for battery operation.

Features

n Battery operation n Minimum external parts

n Wide supply voltage range: 4V–12V or 5V–18V n Low quiescent current drain: 4 mA

n Voltage gains from 20 to 200 n Ground referenced input

n Self-centering output quiescent voltage n Low distortion

n Available in 8 pin MSOP package

Applications

n AM-FM radio amplifiers n Portable tape player amplifiers n Intercoms

n TV sound systems n Line drivers n Ultrasonic drivers n Small servo drivers n Power converters

Equivalent Schematic and Connection Diagrams

DS006976-1

Small Outline, Molded Mini Small Outline, and Dual-In-Line Packages

DS006976-2 Top View

Order Number LM386M-1, LM386MM-1, LM386N-1, LM386N-3 or LM386N-4 See NS Package Number

M08A, MUA08A or N08E

(10)

Absolute Maximum Ratings(Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage

(LM386N-1, -3, LM386M-1) 15V

Supply Voltage (LM386N-4) 22V

Package Dissipation (Note 3)

(LM386N) 1.25W

(LM386M) 0.73W

(LM386MM-1) 0.595W

Input Voltage ±0.4V

Storage Temperature −65˚C to +150˚C

Operating Temperature 0˚C to +70˚C

Junction Temperature +150˚C

Soldering Information

Dual-In-Line Package

Soldering (10 sec) +260˚C

Small Outline Package (SOIC and MSOP)

Vapor Phase (60 sec) +215˚C

Infrared (15 sec) +220˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

Thermal Resistance

θJC(DIP) 37˚C/W

θJA(DIP) 107˚C/W

θJC(SO Package) 35˚C/W

θJA(SO Package) 172˚C/W

θJA(MSOP) 210˚C/W

θJC(MSOP) 56˚C/W

Electrical Characteristics(Notes 1, 2) TA= 25˚C

Parameter Conditions Min Typ Max Units

Operating Supply Voltage (VS)

LM386N-1, -3, LM386M-1, LM386MM-1 4 12 V

LM386N-4 5 18 V

Quiescent Current (IQ) VS= 6V, VIN= 0 4 8 mA

Output Power (POUT)

LM386N-1, LM386M-1, LM386MM-1 VS= 6V, RL= 8Ω, THD = 10% 250 325 mW

Pins 1 and 8 Open, Referred to Output

Input Resistance (RIN) 50 kΩ

Input Bias Current (IBIAS) VS= 6V, Pins 2 and 3 Open 250 nA

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is

func-tional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guar-antee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guarguar-anteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: For operation in ambient temperatures above 25˚C, the device must be derated based on a 150˚C maximum junction temperature and 1) a thermal

resis-tance of 107˚C/W junction to ambient for the dual-in-line package and 2) a thermal resisresis-tance of 170˚C/W for the small outline package.

(11)

Application Hints

GAIN CONTROL

To make the LM386 a more versatile amplifier, two pins (1 and 8) are provided for gain control. With pins 1 and 8 open the 1.35 kΩresistor sets the gain at 20 (26 dB). If a capacitor is put from pin 1 to 8, bypassing the 1.35 kΩresistor, the gain will go up to 200 (46 dB). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. Gain control can also be done by capacitively cou-pling a resistor (or FET) from pin 1 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and fre-quency response for individual applications. For example, we can compensate poor speaker bass response by fre-quency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal 15 kΩresistor). For 6 dB effective bass boost: R≅15 kΩ, the lowest value for good stable operation is R = 10 kΩif pin 8 is open. If pins 1 and 8 are bypassed then R as low as 2 kΩcan be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

INPUT BIASING

The schematic shows that both inputs are biased to ground with a 50 kΩresistor. The base current of the input transis-tors is about 250 nA, so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM386 is higher than 250 kΩit will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than 10 kΩ, then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by put-ting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset prob-lems are eliminated if the input is capacitively coupled. When using the LM386 with higher gains (bypassing the 1.35 kΩresistor between pins 1 and 8) it is necessary to by-pass the unused input, preventing degradation of gain and possible instabilities. This is done with a 0.1 µF capacitor or a short to ground depending on the dc source resistance on the driven input.

(12)

Typical Performance Characteristics

Quiescent Supply Current vs Supply Voltage

DS006976-5

Power Supply Rejection Ratio (Referred to the Output) vs Frequency

DS006976-12

Peak-to-Peak Output Voltage Swing vs Supply Voltage

DS006976-13

Voltage Gain vs Frequency

DS006976-14

Distortion vs Frequency

DS006976-15

Distortion vs Output Power

DS006976-16

Device Dissipation vs Output Power — 4Load

DS006976-17

Device Dissipation vs Output Power — 8Load

DS006976-18

Device Dissipation vs Output Power — 16Load

DS006976-19

(13)

Typical Applications

Amplifier with Gain = 20 Minimum Parts

DS006976-3

Amplifier with Gain = 200

DS006976-4

Amplifier with Gain = 50

DS006976-6

Low Distortion Power Wienbridge Oscillator

DS006976-7

Amplifier with Bass Boost

DS006976-8

Square Wave Oscillator

DS006976-9

(14)

Typical Applications (Continued)

Note 4: Twist Supply lead and supply ground very tightly.

Note 5: Twist speaker lead and ground very tightly.

Note 6: Ferrite bead in Ferroxcube K5-001-001/3B with 3 turns of wire.

Note 7: R1C1 band limits input signals.

Note 8: All components must be spaced very closely to IC.

Frequency Response with Bass Boost

DS006976-10

AM Radio Power Amplifier

DS006976-11

(15)

Physical Dimensions inches (millimeters) unless otherwise noted

SO Package (M) Order Number LM386M-1 NS Package Number M08A

(16)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

8-Lead (0.118” Wide) Molded Mini Small Outline Package Order Number LM386MM-1

NS Package Number MUA08A

(17)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

National Semiconductor Europe

National Semiconductor Asia Pacific Customer

National Semiconductor Japan Ltd.

Dual-In-Line Package (N)

Order Number LM386N-1, LM386N-3 or LM386N-4 NS Package Number N08E

LM386

Low

V

oltage

Audio

Power

(18)

LM741

Operational Amplifier

General Description

The LM741 series are general purpose operational amplifi-ers which feature improved performance over industry stan-dards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their applica-tion nearly foolproof: overload protecapplica-tion on the input and output, no latch-up when the common mode range is ex-ceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0˚C to +70˚C temperature range, instead of −55˚C to +125˚C.

Schematic Diagram

DS009341-1

Offset Nulling Circuit

DS009341-7

May 1998

LM741

Operational

(19)

Absolute Maximum Ratings(Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 6)

LM741A LM741E LM741 LM741C

Supply Voltage ±22V ±22V ±22V ±18V

Power Dissipation (Note 2) 500 mW 500 mW 500 mW 500 mW

Differential Input Voltage ±30V ±30V ±30V ±30V

Input Voltage (Note 3) ±15V ±15V ±15V ±15V

Output Short Circuit Duration Continuous Continuous Continuous Continuous Operating Temperature Range −55˚C to +125˚C 0˚C to +70˚C −55˚C to +125˚C 0˚C to +70˚C Storage Temperature Range −65˚C to +150˚C −65˚C to +150˚C −65˚C to +150˚C −65˚C to +150˚C

Junction Temperature 150˚C 100˚C 150˚C 100˚C

Soldering Information

N-Package (10 seconds) 260˚C 260˚C 260˚C 260˚C

J- or H-Package (10 seconds) 300˚C 300˚C 300˚C 300˚C

M-Package

Vapor Phase (60 seconds) 215˚C 215˚C 215˚C 215˚C

Infrared (15 seconds) 215˚C 215˚C 215˚C 215˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.

ESD Tolerance (Note 7) 400V 400V 400V 400V

Electrical Characteristics(Note 4)

Parameter Conditions LM741A/LM741E LM741 LM741C Units

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage TA= 25˚C

RS≤10 kΩ 1.0 5.0 2.0 6.0 mV

RS≤50Ω 0.8 3.0 mV

TAMIN≤TA≤TAMAX

RS≤50Ω 4.0 mV

RS≤10 kΩ 6.0 7.5 mV

Average Input Offset 15 µV/˚C

Voltage Drift

Input Offset Voltage TA= 25˚C, VS=±20V ±10 ±15 ±15 mV

Adjustment Range

Input Offset Current TA= 25˚C 3.0 30 20 200 20 200 nA

TAMIN≤TA≤TAMAX 70 85 500 300 nA

Average Input Offset 0.5 nA/˚C

(20)

Electrical Characteristics(Note 4) (Continued)

Parameter Conditions LM741A/LM741E LM741 LM741C Units

Min Typ Max Min Typ Max Min Typ Max

Large Signal Voltage Gain TA= 25˚C, RL≥2 kΩ

Transient Response TA= 25˚C, Unity Gain

Rise Time 0.25 0.8 0.3 0.3 µs

Overshoot 6.0 20 5 5 %

Bandwidth (Note 5) TA= 25˚C 0.437 1.5 MHz

Slew Rate TA= 25˚C, Unity Gain 0.3 0.7 0.5 0.5 V/µs

Supply Current TA= 25˚C 1.7 2.8 1.7 2.8 mA

Power Consumption TA= 25˚C

VS=±20V 80 150 mW

Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is

(21)

Electrical Characteristics(Note 4) (Continued)

Note 2: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tjmax. (listed under “Absolute Maximum

Rat-ings”). Tj= TA+ (θjAPD).

Thermal Resistance Cerdip (J) DIP (N) HO8 (H) SO-8 (M)

θjA(Junction to Ambient) 100˚C/W 100˚C/W 170˚C/W 195˚C/W

θjC(Junction to Case) N/A N/A 25˚C/W N/A

Note 3: For supply voltages less than±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: Unless otherwise specified, these specifications apply for VS=±15V, −55˚C≤TA≤+125˚C (LM741/LM741A). For the LM741C/LM741E, these

specifica-tions are limited to 0˚C≤TA≤+70˚C.

Note 5: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).

Note 6: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 7: Human body model, 1.5 kΩin series with 100 pF.

Connection Diagram

Metal Can Package

DS009341-2

Note 8: LM741H is available per JM38510/10101

Order Number LM741H, LM741H/883 (Note 8), LM741AH/883 or LM741CH See NS Package Number H08C

Dual-In-Line or S.O. Package

DS009341-3

Order Number LM741J, LM741J/883, LM741CM, LM741CN or LM741EN See NS Package Number J08A, M08A or N08E

Ceramic Dual-In-Line Package

DS009341-5

Note 9: also available per JM38510/10101 Note 10: also available per JM38510/10102

Order Number LM741J-14/883 (Note 9), LM741AJ-14/883 (Note 10) See NS Package Number J14A

Ceramic Flatpak

DS009341-6

(22)

Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H)

Order Number LM741H, LM741H/883, LM741AH/883, LM741CH or LM741EH NS Package Number H08C

Ceramic Dual-In-Line Package (J) Order Number LM741CJ or LM741J/883

(23)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Ceramic Dual-In-Line Package (J) Order Number LM741J-14/883 or LM741AJ-14/883

NS Package Number J14A

(24)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Dual-In-Line Package (N) Order Number LM741CN or LM741EN

(25)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor

10-Lead Ceramic Flatpak (W) Order Number LM741W/883 NS Package Number W10A

LM741

Operational

(26)

TL/H/7887

LM1596/LM1496

Balanced

Modulator-Demodulator

February 1995

LM1596/LM1496 Balanced Modulator-Demodulator

General Description

The LM1596/LM1496 are doubled balanced modulator-de-modulators which produce an output voltage proportional to the product of an input (signal) voltage and a switching (car-rier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.

The LM1596 is specified for operation over theb55§C to

a125§C military temperature range. The LM1496 is

speci-fied for operation over the 0§C toa70§C temperature range.

Features

Y Excellent carrier suppression

65 dB typical at 0.5 MHz 50 dB typical at 10 MHz

Y Adjustable gain and signal handling

Y Fully balanced inputs and outputs

Y Low offset and drift

Y Wide frequency response up to 100 MHz

Schematic and Connection Diagrams

TL/H/7887 – 1 Numbers in parentheses show DIP connections.

Metal Can Package

TL/H/7887 – 2

Top View

Note:Pin 10 is connected electrically to the case through the device substrate.

Order Number LM1496H or LM1596H See NS Package Number H08C Dual-In-Line and Small Outline Packages

TL/H/7887 – 3

Order Number LM1496M or LM1496N See NS Package Number M14A or N14A

(27)

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Internal Power Dissipation (Note 1) 500 mW

Applied Voltage (Note 2) 30V

Differential Input Signal (V7bV8) g5.0V

Differential Input Signal (V4bV1) g(5aI5R0)V

Input Signal (V2bV1, V3bV4) 5.0V

Bias Current (I5) 12 mA

Operating Temperature Range LM1596 b55§C toa125§C

LM1496 0§C toa70§C

Storage Temperature Range b65§C toa150§C

Soldering Information

# Dual-In-Line Package

Soldering (10 seconds) 260§C

# Small Outline Package

Vapor Phase (60 seconds) 215§C

Infrared (15 seconds) 220§C

See AN-450 ‘‘Surface Mounting Methods and their effects on Product Reliability’’ for other methods of soldering sur-face mount devices.

Electrical Characteristics(TAe25§C, unless otherwise specified, see test circuit)

Parameter Conditions LM1596 LM1496 Units Min Typ Max Min Typ Max

Carrier Feedthrough VCe60 mVrms sine wave 40 40 mVrms

fCe1.0 kHz, offset adjusted

VCe60 mVrms sine wave 140 140 mVrms

fCe10 kHz, offset adjusted

VCe300 mVppsquare wave 0.04 0.2 0.04 0.2 mVrms

fCe1.0 kHz, offset adjusted

VCe300 mVppsquare wave 20 100 20 150 mVrms

fCe1.0 kHz, not offset adjusted

Carrier Suppression fSe10 kHz, 300 mVrms 50 65 50 65 dB

fCe500 kHz, 60 mVrms sine wave offset adjusted

fSe10 kHz, 300 mVrms 50 50 dB

fCe10 MHz, 60 mVrms sine wave offset adjusted

Transadmittance Bandwidth RLe50X 300 300 MHz

Carrier Input Port, VCe60 mVrms sine wave

fSe1.0 kHz, 300 mVrms sine wave

Signal Input Port, VSe300 mVrms sine wave 80 80 MHz

V7bV8e0.5Vdc

Voltage Gain, Signal Channel VSe100 mVrms, fe1.0 kHz 2.5 3.5 2.5 3.5 V/V

V7bV8e0.5 Vdc

Input Resistance, Signal Port fe5.0 MHz

200 200 kX

V7bV8e0.5 Vdc

Input Capacitance, Signal Port fe5.0 MHz

2.0 2.0 pF

V7bV8e0.5 Vdc

Single Ended Output Resistance fe10 MHz 40 40 kX

Single Ended Output fe10 MHz

(28)

Electrical Characteristics(TAe25§C, unless otherwise specified, see test circuit) (Continued)

Parameter Conditions LM1596 LM1496 Units Min Typ Max Min Typ Max

Signal Port Common Mode fSe1.0 kHz 5.0 5.0 V

p-p

Input Voltage Range

Signal Port Common Mode V7bV8e0.5 Vdc b85 b85 dB

Rejection Ratio

Common Mode Quiescent

8.0 8.0 Vdc

Output Voltage

Differential Output Swing

8.0 8.0 Vp-p

Capability

Positive Supply Current (I6aIg) 2.0 3.0 2.0 3.0 mA

Negative Supply Current (I10) 3.0 4.0 3.0 4.0 mA

Power Dissipation 33 33 mW

Note 1:LM1596 rating applies to case temperatures toa125§C; derate linearly at 6.5 mW/§C for ambient temperature above 75§C. LM1496 rating applies to case

temperatures toa70§C.

Note 2:Voltage applied between pins 6-7, 8-1, 9-7, 9-8, 7-4, 7-1, 8-4, 6-8, 2-5, 3-5.

Note 3:Refer to rets1596x drawing for specifications of military LM1596H versions.

Typical Performance Characteristics

Carrier Input Level Carrier Suppression vs

Frequency

Carrier Suppression vs

Frequency

Carrier Feedthrough vs

Carrier Levels Sideband Output vs

Frequency

Transadmittances vs Sideband and Signal Port

Response

Signal-Port Frequency

TL/H/7887 – 5

(29)

Typical Application and Test Circuit

Suppressed Carrier Modulator

Numbers in parentheses show DIP connections.

TL/H/7887 – 4

Note:S1is closed for ‘‘adjusted’’ measurements.

SSB Product Detector

Numbers in parentheses show DIP connections.

(30)

Typical Applications(Continued)

Broadband Frequency Doubler

Numbers in parentheses show DIP connections.

TL/H/7887 – 7 The frequency doubler circuit shown will double low-level signals with low distortion. The value of C should be chosen for low reactance at the operating frequency. Signal level at the carrier input must be less than 25 mV peak to maintain operation in the linear region of the switching differential amplifier. Levels to 50 mV peak may be used with some distortion of the output waveform. If a larger input signal is available a resistive divider may be used at the carrier input, with full signal applied to the signal input.

(31)
(32)

Physical Dimensionsinches (millimeters)

Metal Can Package (H) Order Number LM1496H or LM1596H

NS Package Number H08C

Molded Small Outline Package (M) Order Number LM1496M NS Package Number M14A

(33)

LM1596/LM1496

Balanced

Modulator-Demodulator

Physical Dimensionsinches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number LM1496N NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor

Corporation Europe Hong Kong Ltd. Japan Ltd.

1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309

Arlington, TX 76017 Email: cnjwge@tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408

Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon

(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)

Transistor

2SC829

Silicon NPN epitaxial planer type

For high-frequency amplification

Features

● Optimum for RF amplification, oscillation, mixing, and IF stage of FM/AM radios.

Absolute Maximum Ratings (Ta=25˚C)

Unit: mm

Parameter

Collector to base voltage

Collector to emitter voltage

Emitter to base voltage

Collector current

Collector power dissipation

Junction temperature

Electrical Characteristics (Ta=25˚C)

Parameter

Collector to base voltage

Collector to emitter voltage

Emitter to base voltage

Forward current transfer ratio

Transition frequency

Common emitter reverse transfer capacitance

Reverse transfer impedance

Symbol

FE Rank classification

Rank B C

(43)

Transistor 2SC829

Collector power dissipation P

C

Collector current I

C

Collector current I

C

Collector to emitter saturation voltage V

CE(sat)

Forward current transfer ratio h

FE

Transition frequency f

T

Reverse transfer impedance Z

rb

Common emitter reverse transfer capacitance C

re

(pF

(44)

Transistor 2SC829

Collector output capacitance C

ob

Input susceptance b

ie

Reverse transfer susceptance b

re

Forward transfer susceptance b

fe

Output susceptance b

oe

(mS

(45)

2SC1162

Silicon NPN Epitaxial

Application

Low frequency power amplifier complementary pair with 2SA715

Outline

1. Emitter 2. Collector 3. Base TO-126 MOD

1 2

3

Absolute Maximum Ratings (Ta = 25°C)

Item Symbol Ratings Unit

Collector to base voltage VCBO 35 V

Collector to emitter voltage VCEO 35 V

Emitter to base voltage VEBO 5 V

Collector current IC 2.5 A

Collector peak current IC(peak) 3 A

(46)

2SC1162

Electrical Characteristics (Ta = 25°C)

Item Symbol Min Typ Max Unit Test conditions

Collector to base breakdown voltage

V(BR)CBO 35 — — V IC = 1 mA, IE = 0

Collector to emitter breakdown voltage

V(BR)CEO 35 — — V IC = 10 mA, RBE = ∞

Emitter to base breakdown voltage

V(BR)EBO 5 — — V IE = 1 mA, IC = 0

Collector cutoff current ICBO — — 20 µA VCB = 35 V, IE = 0

DC current transfer ratio hFE*

1

Collector to emitter saturation voltage

VCE(sat) — 0.5 1.0 V IC = 2 A, IB = 0.2 A (pulse test)

Gain bandwidth product fT — 180 — MHz VCE = 2 V, IC = 0.2 A

Note: 1. The 2SC1162 is grouped by hFE as follows.

B C D

Collector power dissipation P

C

(W)

Maximum Collector Dissipation Curve

0.75

Collector current I

C

(A)

Area of Safe Operation 5

1.0

0.2

1 2 10

IC(max)(DC Operation)

TC = 25°C

P

(47)

2SC1162

Collector power dissipation P

C

(W)

Maximum Collector Dissipation Curve

2.0

2 5

Collector to emitter voltage VCE (V)

Typical Output Characteristics

1.6

Collector current I

C

Collector Current I

C

(A)

Typical Transfer Characteristics

0.02

DC current transfer ratio h

FE

(48)

3.1

φ +0.15

–0.1

8.0 ± 0.5

2.3

±

0.3

1.1

3.7

±

0.7

11.0

±

0.5

15.6

±

0.5

0.8

2.29 ± 0.5 2.29 ± 0.5 0.55 1.2

2.7 ± 0.4

120

°

120°

120 °

Hitachi Code JEDEC EIAJ

TO-126 Mod —

(49)

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation

conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm

Hitachi Asia Ltd.

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong

Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Hitachi Europe GmbH

Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Semiconductor

(America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223

(50)

Transistor

2SC1383, 2SC1384

Silicon NPN epitaxial planer type

For low-frequency power amplification and driver amplification Complementary to 2SA683 and 2SA684

Features

● Low collector to emitter saturation voltage VCE(sat).

● Complementary pair with 2SA683 and 2SA684.

Absolute Maximum Ratings (Ta=25˚C)

Unit: mm

Emitter to base voltage

Peak collector current

Collector current

Collector power dissipation

Junction temperature

Electrical Characteristics (Ta=25˚C)

Parameter

Collector cutoff current

Collector to base

voltage

Collector to emitter

voltage

Emitter to base voltage

Forward current transfer ratio

Collector to emitter saturation voltage

Base to emitter saturation voltage

Transition frequency

Collector output capacitance

Symbol

FE1 Rank classification

Rank Q R S

hFE1 85 ~ 170 120 ~ 240 170 ~ 340

(51)

Transistor 2SC1383, 2SC1384

Collector power dissipation P

C

Collector current I

C

Collector current I

C

Collector to emitter saturation voltage V

CE(sat)

Base to emitter saturation voltage V

BE(sat)

Forward current transfer ratio h

FE

Transition frequency f

T

Collector output capacitance C

ob

Collector to emitter voltage V

CER

(V

(52)

Transistor 2SC1383, 2SC1384

Collector current I

C

(A

(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)

`BAB I

PENDAHULUAN

1.1 Latar Belakang

Seiring dengan perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, maka bukan suatu hal yang asing bila komunikasi data dapat dikirim jarak jauh dengan menggunakan sebuah pemancar- penerima atau lebih dikenal dengan nama transceiver (Transmitter-Receiver). Transceiver ini tidak hanya digunakan untuk komunikasi suara saja, tetapi juga dimanfaatkan untuk komunikasi data dengan dihubungkan ke sebuah Modem

(Modulator-Demodulator) yang berfungsi untuk mengubah sinyal analog (sinyal suara)

menjadi sinyal digital, dan terhubung ke sebuah PC (Personal Computer). Modem ini berfungsi untuk mengubah sinyal analog yang berupa sinyal suara menjadi sinyal digital dan sebaliknya. Hal ini merupakan suatu terobosan yang sangat bagus, karena selain untuk komunikasi suara transceiver dapat digunakan untuk komunikasi data. Saat ini untuk komunikasi data, transceiver yang banyak digunakan bekerja di VHF (Very High Frequency) yang dihubungkan ke sebuah modem FSK (Frequency Shift Keying). Akan tetapi, gelombang yang dipancarkan tidaklah begitu jauh, karena di VHF ini gelombang memancar secara line of sight. Berbeda dengan transceiver sistem SSB (Single Side Band) yang bekerja di HF (High Frequency), gelombang yang dipancarkan akan dipantulkan oleh lapisan

ionosfer, sehingga jarak jangkauannya bisa lebih jauh. Untuk itu, modem yang

digunakan adalah modem PSK (Phase Shift Keying) karena modem PSK mempunyai peluang error yang lebih kecil.

1.2 Perumusan Masalah

Dari latar belakang tersebut, maka masalah dalam Tugas Akhir ini dapat dirumuskan sebagai berikut :

(73)

Bab I Pendahuluan 2

1.3 Tujuan Penulisan

Tujuan dari Tugas Akhir ini adalah:

1. Merancang dan membuat transceiver dengan sistem SSB serta menghubungkannya dengan modem PSK.

1.4 Pembatasan Masalah

Adapun pembatasan masalah dalam tugas akhir ini, adalah:

1. Transceiver ini menggunakan sistem SSB dan bekerja di frekuensi radio

amatir 3,85 MHz. 2. Daya pancar 10 watt.

3. Modem yang digunakan adalah modem PSK 1200 bps.

1.5 Sistematika Penulisan

Untuk mendapatkan gambaran yang jelas dan lengkap tentang masalah yang akan dibahas, maka penulisan Tugas Akhir ini dibagi menjadi 5 bab dengan sistematika sebagai berikut :

Bab I : Pendahuluan

Pada bab ini berisikan uraian tentang latar belakang, perumusan masalah, tujuan penulisan, pembatasan masalah dan sistematika penulisan dari laporan Tugas Akhir ini.

Bab II : Landasan Teori

Pada bab ini, dijelaskan teori dasar dari transceiver yang mencakup pembahasan tentang gelombang radio, modulasi sinyal terutama mengenai AM (Amplitude Modulation), modulasi sistem SSB, balanced modulator, osilator, filter, detektor.

Bab III : Perancangan dan Realisasi

(74)

Bab I Pendahuluan 3

penala RF, osilator, penala RF, penguat IF (Intermediate

Frequency), detektor, penguat sinyal audio dan rangkaian PTT

(Push To Talk).

Bab IV : Pengujian dan Analisa

Pada bab ini, dijelaskan tentang teknik pengujian dan analisa data hasil pengukuran.

Bab V : Kesimpulan dan Saran

(75)

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Pada penyusunan Tugas Akhir ini dapat diambil kesimpulan, yaitu :

1. Transceiver SSB telah dibuat dengan frekuensi 3,855 MHz. Pada

pengujian filter USB 2 pada bagian pemancar, filter belum bisa melewatkan USB dengan baik karena bandwidth filter yang terlalu lebar. Untuk daya pancarnya (daya keluaran dari RF final) hanya keluar 5 watt disebabkan oleh transistor RF drivernya tidak bekerja di daerah aktif sehingga daya yang keluar tidak memenuhi untuk mendorong rangkaian RF final.

5.2 Saran

Saran yang dapat disampaikan pada tugas akhir ini adalah :

1. Agar diperoleh sinyal SSB yang benar-benar murni maka filter dibuat sebaik mungkin, dan bertingkat agar di dapatkan bandwidth yang sesuai dengan sinyal informasinya.

2. Agar daya pancar pada tingkat final maksimal maka harus dibuat rangkaian RF driver dengan daya yang sesuai agar bisa mendorong RF final dengan maksimal.

(76)

DAFTAR PUSTAKA

1. Dennis Roody, John Coolen, Kamal Idris, “Komunikasi Elektronika” , Terjemahan, Erlangga, Jakarta, 1994

2. Kennedy, Davis, “Electronic Communication Systems”, McGraw Hill International Editions

3. “7MHz SSB Transceiver” [online], Available:

http://www.FlashWebHost.com

4. “Build a 5 watt, 80 meter QRP CW Transceiver “ [online], Available :

http://www.rason.org

5. Sudarminto, “Membuat Sendiri Handy Talky-Walky Talky” Karya Remaja Bandung

Referensi

Dokumen terkait

a) Panjang maksimum udang jantan yang tertangkap yaitu 17,5 cm dan udang betina 17 cm. Panjang minimum udang jantan yang tertangkap yaitu 6,5 cm dan udang betina yaitu 5,5

Di dalam Framework .NET terdapat sangat banyak class library mulai dari class yang berisi fungsi- fungsi matematika, class-class yang berhubungan dengan keamanan, class-class

[r]

Alasan  berhenti:  alasan  pengguna  menghentikan  pengerjaannya,  apakah  karena  selesai  mengerjakan   ataukah  pengguna  meminta  berhenti  sebelum

Pada contoh soal jumlah opsi jawaban ada 5 (lima), sedangkan jumlah opsi jawaban pada ExamView Test Generator ada 4, maka klik angka 4 di sebelah Choices (lihat gambar 2.5) dan

motor dalam waktu satu bulan. Dalam perjalanannya sepeda motor tersebut tidak dipakai dalam satu minggu, kemudian penyewa menyewakan satu minggu pada penyewa kedua, maka

Adapun hasil perhitungan yang sudah dilakukan dengan menggunakan metode ELECTRE dapat dijadikan sebagai rekomendasi untuk digunakan pihak perusahaan yang bergerak

Dari hasil pengolahan data dengan menggunakan Software SPSS for Windows 10.0 diperolah informasi bahwa besarnya korelasi antara Social Comparison dengan Body Image Satisfaction