• Tidak ada hasil yang ditemukan

Pendugaan Data Hilang pada Rancangan Bujur Sangkar Latin dengan Analisis Kovarian

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pendugaan Data Hilang pada Rancangan Bujur Sangkar Latin dengan Analisis Kovarian"

Copied!
7
0
0

Teks penuh

(1)

BAB 2

LANDASAN TEORI

2.1. Rancangan Percobaan

Percobaan merupakan serangkaian kegiatan di mana setiap tahap dalam rangkaian benar-benar terdefinisikan; dilakukan untuk menemukan jawaban tentang permasalahan yang diteliti melalui suatu pengujian hipotesis (Hanafiah, 2011).

Rancangan percobaan bertujuan untuk memperoleh atau mengumpulkan informasi sebanyak-banyaknya yang diperlukan dan berguna dalam melakukan penelitian persoalan yang akan dibahas. Rancangan percobaan berusaha untuk memperoleh informasi yang maksimum dengan menggunakan biaya yang minimum (Sudjana, 1994).

Unsur-unsur dasar suatu percobaan adalah (Hanafiah, 2011):

1. Perlakuan (treatment), yaitu semua tindakan coba-coba (trial and error) yang dilakukan terhadap suatu objek, yang pengaruhnya akan diselidiki untuk menguji hipotesis.

2. Ulangan (replication), yaitu frekuensi suatu perlakuan yang diselidiki dalam suatu percobaan. Jumlah ulangan suatu perlakuan tergantung pada derajat ketelitian yang diinginkan oleh si peneliti terhadap kesimpulan hasil percobaannya. Ulangan ini berfungsi untuk menghasilkan suatu estimasi tentang galat dan menghasilkan ukuran pengaruh perlakuan-perlakuan yang lebih tepat terhadap hasil percobaan.

3. Pengendalian (local control), yaitu upaya pengendalian kondisi lapangan yang heterogen menjadi nisbi homogen, setidak-tidaknya pada lokal-lokal tertentu, yang ditujukan untuk menekan galat menjadi nisbi kecil, sehingga bisa menonjolkan satu atau beberapa perlakuan yang logisnya memang lebih menonjol dari perlakuan kontrol atau perlakuan-perlakuan lainnya.

2.2. Rancangan Bujur Sangkar Latin

(2)

diselesaikan dengan jaminan bahwa setiap perlakuan terjadi hanya sekali dalam setiap pengelompokan baik baris maupun kolom. Prosedur ini memungkinkan untuk menduga keragaman di antara pengelompokan baris dan juga pengelompokan kolom dan mengeluarkannya dari galat percobaan (Gomez & Gomez, 1995).

Penempatan perlakuan ke dalam unit-unit percobaan sedemikian rupa sehingga perlakuan tertentu harus terjadi satu kali dalam baris dan kolom. Hal ini hanya mungkin terjadi jika banyaknya perlakuan sama dengan banyaknya baris dan sama dengan banyaknya kolom. Oleh karena itu, diperlukan suatu pola tertentu agar syarat-syarat terpenuhi (Yitnosumarto, 1993)

Rancangan ini jarang digunakan karena memerlukan persyaratan (Hanafiah, 2011):

1. Jumlah baris = jumlah kolom = jumlah perlakuan, sehingga jika jumlah

perlakuan terlalu sedikit derajat bebas yang berhubungan dengan galat percobaan menjadi terlalu kecil sebagai penduga yang layak; dan jika jumlah perlakuan terlalu besar akan menyebabkan ulangan perlakuan yang terlalu besar sehingga akan tidak ekonomis jika digunakan.

2. Tidak ada interaksi antara baris atau kolom dengan perlakuan. Jika ada

interaksi, maka RBSL ini tidak dapat digunakan dan jika tetap digunakan, maka kesimpulan atau hasil-hasil percobaan tersebut menjadi samar.

3. Adanya dua sumber keragaman data di luar perlakuan yang diteliti. Dua

sumber keragaman ini dapat berupa dua arah silang kemiringan lereng, dua arah silang kesuburan tanah, dua arah silang cara/tenaga/alat kerja, dua waktu pengamatan dan lain-lain, yang penting faktor-faktor ini bukanlah faktor yang diteliti.

Karena itu, RBSL digunakan hanya untuk percobaan dengan banyaknya perlakuan yang tidak kurang dari empat dan tidak lebih dari delapan. Karena keterbatasan tersebut, RBSL tidak digunakan secara luas dalam percobaan penelitian di samping potensinya yang besar dalam mengendalikan galat percobaan (Gomez & Gomez, 1995).

2.2.1. Pengacakan Perlakuan pada Rancangan Bujur Sangkar Latin

(3)

berikutnya) hingga pengacakan tak bebas (bukan pengacakan) untuk petak percobaan terakhir (Hanafiah, 2011).

Tabel 2.1. Pengacakan Perlakuan pada Rancangan Bujur Sangkar Latin

Baris

T = jumlah semua nilai pengamatan

Bi = jumlah nilai pengamatan baris ke-i

(4)

Pk = jumlah nilai pengamatan perlakuan ke-k

2.2.2. Model Linier Rancangan Bujur Sangkar Latin

Misalkan (i,j,k) merupakan baris, kolom, dan perlakuan pada suatu petak

percobaan. Sehingga ada sebanyak r3 nilai pengamatan yang memungkinkan,

dalam hal ini tiap perlakuan masing-masing diterapkan ke tiap petak percobaan.

���� = �…+ (��..− �…) +��.�.− �…�+ (�..� − �…) + (��..− �…)��.�.− �…�

+(�..− �)(�.. − �) +��..− �…�(�.. − �) +

+(�..− �)��..− �…�(�.. − �) (2.5)

�,�,�= 1,2,3, … ,�

Karena pada RBSL tiap perlakuan hanya diterapkan sekali di masing-masing baris dan kolom, sekarang misalkan

���� = ��� +�� (2.6)

di mana Xij merupakan nilai pengamatan di petak percobaan (ij), dan τk merupakan pengaruh pemberian perlakuan k terhadap nilai pengamatan. Persamaan (2.6) direduksi menjadi

���� = �..+ (��.+�..) +��.� +�..�+ (��.+�..)��.� +�..�+�.+ (��+�.)

���� = (�..+�.) + (��.+�..) +��.� +�..�+ (�� +�.)

+���� − �.− �.� +�..� (2.7)

dapat ditulis menjadi

���� = �…+ (��..− �…) +��.�.− �…�+ (�..� − �…) +����.− ��..− �.�.+�…� (2.8)

atau

���� = �+�� +�� +�� +���� (2.9)

dengan

Yijk = hasil pengamatan pada baris ke-i, kolom ke-j, dan perlakuan ke-k

µ = rata-rata umum

(5)

βj = pengaruh utama kolom ke-j τk = pengaruh perlakuan ke-k

εijk = pengaruh acak (galat) pada baris ke-i, kolom ke-j, dan perlakuan ke-k

Apabila RBSL menggunakan model tetap, asumsinya:

Tabel analisis varian pada RBSL adalah sebagai berikut:

Tabel 2.2. Analisis Varian pada Rancangan Bujur Sangkar Latin Sumber

Kadang-kadang ketika melakukan penelitian ataupun pengamatan terjadi satu atau mungkin lebih pengamatan yang hilang. Seekor binatang percobaan mati sebelum eksperimen berakhir, sebuah tabung percobaan pecah jatuh ke lantai, seorang pasien meninggal dunia ketika pengobatan masih sedang berlangsung, atau data hasil pengamatan hilang dan lain sebagainya (Sudjana, 1994).

Jika dalam percobaan dengan menggunakan RBSL �� terdapat sebuah

data hilang, maka nilai data yang hilang tersebut ditaksir oleh suatu nilai yang dihitung dengan rumus:

ℎ= �(�

++)2

(6)

dengan

h = nilai data pengganti data yang hilang

B’ = jumlah nilai pengamatan dalam baris dengan data hilang K’ = jumlah nilai pengamatan dalam kolom dengan data hilang P’ = jumlah nilai pengamatan untuk perlakuan dengan data hilang T’ = jumlah semua nilai pengamatan yang ada

2.4. Analisis Kovarian

Analisis kovarian adalah alat uji statistik multivariat yang merupakan penggabungan antara analisis regresi dengan analisis varian (Schefler, 1987).

Prosedur dalam analisis kovarian menggunakan kombinasi analisis varian dan analisis regresi di mana model linier untuk sebarang rancangannya adalah model analisis varian ditambah suatu variabel tambahan untuk menggambarkan adanya variabel pengiring.

Model linier rancangan acak lengkap (RAL) dengan satu faktor adalah sebagai berikut:

��� =�+�� +��� (2.11)

dengan:

Yij = nilai pengamatan dari perlakuan ke-i dalam kelompok ke-j i = 1, 2, …, t (t menyatakan banyaknya perlakuan)

j = 1, 2, …, r (r menyatakan banyaknya ulangan)

µ = rata-rata umum

τi = pengaruh dari perlakuan ke-i

εij = pengaruh galat yang muncul dari perlakuan ke-i dalam kelompok ke-j

Bentuk umum model linier aditif untuk analisis regresi adalah sebagai berikut:

(7)

Gabungan dari persamaan (2.11) dan (2.12) didapatkan model linier aditif dari analisis kovarian untuk RAL sebagai berikut:

��� =�+�� +����� − ���+��� (2.13)

Menurut Gaspersz (1991), asumsi yang diperlukan dalam analisis kovarian adalah:

1. Variabel pengiring tidak berkolerasi dengan perlakuan yang dicobakan.

2. Hubungan antara variabel pengiring (X) dengan variabel respon (Y) bersifat linier.

3. Galat berdistribusi normal.

4. Pengaruh X terhadap Y, yaitu X mempengaruhi Y.

Kemas Ali Hanafiah (2011) di dalam bukunya yang berjudul “Rancangan Percobaan: Teori dan Aplikasi” menuliskan bahwa analisis kovarian bermanfaat penting untuk:

1. Mengontrol galat dan memurnikan rata-rata pengaruh perlakuan, 2. Menaksir data hilang atau data rusak,

3. Meningkatkan keandalan interpretasi dari hasil-hasil percobaan.

2.5. Koefisien Keragaman

Koefisien keragaman merupakan suatu koefisien yang menunjukkan derajat ketepatan dari suatu kesimpulan atau hasil yang diperoleh dari suatu percobaan. Koefisien keragaman ini dinyatakan dalam bentuk persen (Hanafiah, 2011) yaitu:

�� =√���

�� × 100% (2.14)

dengan �� = rata-rata umum.

Dalam analisis kovarian, koefisien keragaman dinyatakan sebagai berikut:

�� =√�������������

�� × 100% (2.15)

Gambar

Tabel 2.1. Pengacakan Perlakuan pada Rancangan Bujur Sangkar Latin
Tabel 2.2. Analisis Varian pada Rancangan Bujur Sangkar Latin

Referensi

Dokumen terkait

Test Aplikasi yang Telah Dibangun di Dalam Development Fabric Pada tahap selanjutnya dilakukan pengujian atau test dari aplikasi yang telah dibangun ke dalam Development Fabric,

Front Office night report : Laporan rangkuman seluruh transaksi kamar, total tamu yang menginap, total kamar terjual, total tamu checkin, total tamu checkout dan informasi

 Ketika prosedur analitis mengindikasi fluktuasi yang tidak biasa, auditor harus melaksanakan pengujian substantif atas transaksi atau pengujian rincian saldo

Dengan memperhatikan hal-hal di atas maka penulis tertarik untuk membahas hal-hal yang berkaitan dengan kartu kredit sebagai pembahasan pada Laporan Tugas Akhir

Puji syukur kehadirat Allah SWT karena atas Rahmat dan Hidayah-Nya penulis mampu menyelesaikan penyusunan skripsi ini dengan judul “Aplikas Rencana Anggaran

Alhamdulillahirobbil’alamin puji syukur penulis panjatkan kehadirat Allah SWT, karena berkat rahmat, hidayah dan kehendak-Nyalah penulis dapat menyelesaikan karya tulis ini tepat

Aineistona on käytetty RKTL:n kalan ulkomaankauppatilastoja. Tilastoissa esitetään ihmisravinnoksi ja muuhun käyttöön tarkoitetun kalan ja kalavalmisteiden ulkomaan- kaupan määrä

11) Allah âlimdir. Kâfirlerin sözlerinden, fiillerinden, açık veya gizli planlarından haberdardır. Kıyamet günü de mutlaka onların kar ş ılı ğ ını kafirlere verecektir.