• Tidak ada hasil yang ditemukan

SOME NEW PARANORMED SEQUENCE SPACES DEFINED BY ORLICZ FUNCTION 20

N/A
N/A
Protected

Academic year: 2017

Membagikan "SOME NEW PARANORMED SEQUENCE SPACES DEFINED BY ORLICZ FUNCTION 20"

Copied!
7
0
0

Teks penuh

(1)

AYHAN ESI

Abstract. In this paper we present new classes of sequence spaces using the concept of n-norm and to investigate these spaces for some linear topological structures as well as examine these spaces with respect to derived (n-1) norms. We use an Orlicz function, a bounded sequence of positive real numbers and Λmoperator to construct these spaces so that they became more generalized.

This investigations will enhance the acceptability of the notion of n-norm by giving a way to contruct different sequence spaces with elements in n-normed space.

1. INTRODUCTION

Recall in [6] that an Orlicz functionM is continuous, convex, nondecreasing function define for x > 0 such that M(0) = 0 and M(x) > 0. If convexity of Orlicz function is replaced by M(x+y) ≤ M(x) +M(y) then this function is called the modulus function and characterized by Ruckle [7].An Orlicz functionM

is said to satisfy ∆2−condition for all values u, if there exists K > 0 such that

M(2u)≤KM(u), u≥0.

Lemma. Let M be an Orlicz function which satisfies ∆2−condition and let 0< δ <1.Then for eachtδ, we haveM(t)< Kδ−1M(2) for some constant

K >0.

A sequence spaceX is said to be solid or normal if (αkxk)∈X, and for all double sequencesα= (αk) of scalars with |αk| ≤1 for allk∈N.

The concept of 2-normed spaces was initially developed by Gahler [5] in the mid of 1960’s, while that of n-normed spaces can be found in Misiak [4]. Since then, many others have studied this concept and obtained various results, see for instance Gunawan [2−3], Gunawan and Mashadi [1], Esi [9−10], Esi and Ozdemir [11], Fistikci and et al.[12] and many others.

Let n ∈N and X be a real vector space of dimension d, where n d. A

real-valued functionk., ..., .k onX satisfying the following four condition:

(i)kx1, x2, ..., xnk= 0 if and only ifx1, x2, ..., xn are linearly dependent,

(ii)kx1, x2, ..., xnkis invariant under permutation,

(iii)kαx1, x2, ..., xnk=|α| kx1, x2, ..., xnk, α∈R,

(iv)kx1+xı1, x2, ..., xnk ≤ kx1, x2, ..., xnk+kxı1, x2, ..., xnk

called an n-norm on X, and the pair (X,k., ..., .k) is called an n-normed space [2].

Let (X,k., ..., .k) be an n-normed space of dimensiondn2 and{a1, a2, ..., an} be a linearly independent set in X. Then the following functionk., ..., .k onXn−1

Adiyaman University, Science and Art FacultyAdiyaman University, Science and Art Faculty Department of Mathematics, 02040, Adiyaman, Turkey

E-mail: aesi23@hotmail.com

AMS Subject Classification: 40A05, 46A45, 46B70

Key words and phrases: n-norm, paranorm, completeness, Orlicz function.

(2)

defined by

kx1, x2, ..., xn−1k∞= max{kx1, x2, ..., xn−1, aik:i= 1,2, ..., n} defines an (n-1)-norm onX with respect to{a1, a2, ..., an}.

Letn∈Nand (X,h., .i) be a real inner product space of dimensiondn.

Then the following functionk., ..., .kS onX×X×...×X (n factors) defined by

kx1, x2, ..., xnkS = [det (hxi, xji)]

1 2

is an n-norm onX, which is known as standard n-norm onX. If we takeX =Rn, then this n-norm is exactly the same as Euclidean n-norm such as

kx1, x2, ..., xnkE=abs 

x11...x1n

... xn1...xnn

wherexi= (xi1, ..., xin)∈Rn for each i=1,2,...,n.

We procure the following results those will help in establishing some results of this article.

Lemma 1.[1] A standard n-normed space is complete if and only if it is complete with respect to the usual normk.k=h., .i12.

Lemma 2.[1] On a standard n-normed space X, the derived (n-1)-norms k., ..., .k∞,defined with respect to orthonormal set{e1, e2, ..., en}, is equivalent to the standard (n-1)-normsk., ..., .kS.Precisely, we have for allx1, x2, ..., xn−1

kx1, x2, ..., xn−1k∞≤ kx1, x2, ..., xn−1kS≤√nkx1, x2, ..., xn−1k∞ wherekx1, x2, ..., xn−1k∞= max{kx1, x2, ..., xn−1, eik:i= 1,2, ..., n}.

In paper [8],Mursaleen and Noman introduced the notion ofλ−convergent

and λ−bounded sequences as follows: Let λ = (λk)∞k=0 be a strictly increasing sequence of positive real numbers tending to infinity, that is

0< λo< λ1< ...andλk→ ∞as k→ ∞

and said that a sequencex= (xk)∈wis λ−convergentto the numberL, called a theλlimit ofx, if Λm(x)→Las m→ ∞,where

Λm(x) = 1

λm m X

k=1

(λk−λk−1)xk.

The sequencex= (xk)∈w isλ−boundedif supm|Λm(x)|<∞. It is well known [8] that if limmxm=ain the ordinary sense of convergence, then

lim m

1

λm m X

k=1

(λk−λk−1)|xk−a| !

= 0.

This implies that

lim

m |Λm(x)−a|= limm

1

λm m X

k=1

(λk−λk−1) (xk−a)

= 0

which yields that limmΛm(x) =aand hencex= (xk)∈wisλ−convergenttoa.

2. MAIN RESULTS

(3)

Let (X,k., ..., .k) be real n-normed space and w(n−X) denotes the space ofX-valued sequences. LetM be an Orlicz function andp= (pk) be any bounded sequence of strictly positive real numbers. Now, we define the following sequence spaces:

The following well-known inequality will be used in this study: If 0 ≤ infkpk=Ho≤pk ≤supk =H <∞, D= max 1,2H−1

In this section we investigate some linear topological structures of the se-quence spaces [M,Λ, p,k., ..., .k]o,[M,Λ, p,k., ..., .k] and [M,Λ, p,k., ..., .k].

(4)

Theorem 2.2. The classes of sequences [M,Λ, p,k., ..., .k]o,[M,Λ, p,k., ..., .k] are complete paranormed spaces, paranormed byhdefined by

h(x) = inf

Hence we have

h(x+y) = inf

(5)

+ inf follows from the following equality:

h(αx) = inf

Using the definition of paranorm, we get

inf

Then we have

inf

Hence, we have

sup

It follows that

M

Then we have

(6)

AYHAN ESI

This implies that

lim j inf

(

ρpmH : sup m

"

M

Λm xi−xj

ρ , z1, z2, ..., zn−1

!# ≤1

)

< ε.

Since M and n-norms are continuous functions, we have

inf (

ρpmH : sup m

"

M

Λm xi−x

ρ , z1, z2, ..., zn−1

!# ≤1

)

< ε, for allino.

It follows that xix

belongs to any one of the spaces [M,Λ, p,k., ..., .k]o,[M,Λ, p,k., ..., .k] and [M,Λ, p,k., ..., .k].Since these spaces are linear, so we havex=xi xix

belongs to any one of the spaces. This completes the proof. We state the following Theorem in view of Lemma 2.

Theorem 2.4. Let X be a standard n-norm space and{e1, e2, ..., en}be an orthonormal set inX. Then

[M,Λ, p,k., ..., .k∞]o= h

M,Λ, p,k., ..., .k(n−1) i

o,

[M,Λ, p,k., ..., .k∞] = h

M,Λ, p,k., ..., .k(n−1) i

and

[M,Λ, p,k., ..., .k]=hM,Λ, p,k., ..., .k(n−1)i

where k., ..., .k is the derived (n-1)-norm defined with respect to {e1, e2, ..., en} andk., ..., .k(n−1) is the standard (n-1)-norm onX.

References

[1] H.Gunawan and Mashadi M., On n-normed spaces, Int.J.Math.Math.Sci.,27(10)(2001), 631-639.

[2] H.Gunawan, On n-inner product, n-norms and the Cauchy-Schwarz Inequality, Scientiae Mathematicae Japonicae Online,5(2001), 47-54

[3] H.Gunawan, The space of p-summable sequences and its natural n-norm, Bull.Aust.Math.Soc.,64(1)(2001), 137-147.

[4] A.Misiak, n-inner product spaces, Math.Nachr.,140(1989), 299-319. [5] S.Gahler, Linear 2-normietre Rume, Math.Nachr.,28(1965), 1-43.

[6] M.A.Krasnoselski and Y.B.Rutickii, Convex function and Orlicz spaces, Groningen, Neder-land, 1961.

[7] W.H.Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded, Canad.J.Math.,25(1973), 973-978.

[8] M.Mursaleen and A.K.Noman, On the spaces ofλ−convergentandboundedsequences, Thai

J.Math.8(2)(2010), 311-329.

[9] A.Esi, Strongly almost summable sequence spaces in 2-normed spaces defined by ideal con-vergence and an Orlicz function, Stud.Univ.Babe¸s-Bolyai Math.27(1)(2012), 75-82.

[10] A.Esi, Strongly lacunary summable double sequence spaces in n-normed spaces defined by ideal convergence and an Orlicz function, Advanced Modeling and Optimization, 14(1)(2012),79-86.

¨

(7)

[11] A.Esi and M.K.Ozdemir, Λ−Strongly summable sequence spaces in n-normed spaces defined

by ideal convergence and an Orlicz function, Mathematica Slovaca (2012) (to appear). [12] N.Fistikci, M.Acikgoz and A.Esi, I-lacunary generalized difference convergent sequences in

n-normed spaces, Journal of Mathematical Analysis, 2(1)(2011), 18-24.

Referensi

Dokumen terkait

Untuk Jalan Arteri Primer Sudirman volume arus lalu lintas harian tertinggi terjadi pada hari Senin sebesar 2823,2 smp / jam, kapasitas (C) Jalan Arteri Primer Sudirman adalah

1. Kepala Sekolah hendaknya bisa menerapkan kombinasi kedua gaya kepemimpinan baik Transformasional maupun Transaksional sesuai dengan situasi dan sifat tugas

Berdasarkan surat Penetapan Hasil Prakualifikasi Penyedia Jasa Konsultansi Pokja STTD Pengadaan Jasa Konsultansi Pekerjaan Supervisi Pembangunan Gedung Workshop dan Peningkatan

Bagaimanapun Gambar 9 tetap dapat digunakan sebagai acuan dalam menganalisis pengaruh penambahan barium karbonat pada arang bakau untuk media padat pada

Puspita Analisis Faktor- Faktor yang Mempengar uhi Kebijakan Dividend Payout Ratio (Studi Kasus pada Perusahaan yang Terdaftar di Cash Ratio (CR) berpengaruh positif

Mengingat pentingnya acara dimaksud, dimohon agar rapat dihadiri oleh Direktur Utama/Pimpinan atau wakil yang memperoleh kuasa penuh dari Direktur

Kesimpulan yang dapat diambil dari hasil ketiga Uji statistik tersebut adalah: Bantuan benih padi bermutu telah mampu mening- katkan produktivitas padi meskipun

Saran yang diberikan untuk perusahaan ini yaitu, perlunya perusahaan menjaga hubungan baik dengan pihak ekspedisi untuk mendistribusikan barang ke berbagai wilayah,