• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:DM:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:DM:"

Copied!
18
0
0

Teks penuh

(1)

Non Tangential Convergence for

the Ornstein-Uhlenbeck Semigroup.

Convergencia no tangencial para el

semigrupo de Ornstein-Uhlenbeck

Ebner Pineda (

epineda@uicm.ucla.edu.ve

)

Departamento de Matem´atica, Decanato de Ciencia y Tecnolog´ıa, UCLA Apartado 400 Barquisimeto 3001 Venezuela

Wilfredo Urbina R.(

wurbina@euler.ciens.ucv.ve

)

Departamento de Matem´aticas, Facultad de Ciencias, UCV. Apartado 47195, Los Chaguaramos, Caracas 1041-A Venezuela, and Department of Mathematics and Statistics, University of New Mexico,

Albuquerque, NM, 87131, USA.

Abstract

In this paper we are going to get the non tangential convergence, in an appropriated parabolic “gaussian cone”, of the Ornstein-Uhlenbeck semigroup in providing two proofs of this fact. One is a direct proof by using the truncated non tangential maximal function associated. The second one is obtained by using a general statement. This second proof also allows us to get a similar result for the Poisson-Hermite semigroup. Key words and phrases: Non tangential convergence, Ornstein-Uhlenbeck semigroup, Poisson-Hermite semigroup, Hermite expansions.

Resumen

En este art´ıculo vamos a obtener la convergencia no tangencial, en un “cono gaussiano ”parab´olico apropiado, del semigrupo de Ornstein-Uhlenbeck dando dos pruebas diferentes de ello. La primera es una prueba directa usando la funci´on maximal no tangencial truncada aso-ciada. La segunda prueba se obtiene usando principios generales. Esta ´

ultima prueba nos permite obtener un resultado an´alogo para el semi-grupo de Poisson-Hermite.

Palabras y frases claves: Convergencia no tangencial, semigrupo de Ornstein-Uhlenbeck, semigrupo de Poisson-Hermite, desarrollos de Her-mite.

(2)

1

Introduction

Let us consider the Gaussian measure γd(x) = e −|x|2

πd/2 with x∈ Rd and the Ornstein-Uhlenbeck differential operator

L= 1

2△x− hx,∇xi. (1)

Let β = (β1, ..., βd) ∈ Nd be a multi-index, let β! = Qdi=1βi!, |β| =

Pd

i=1βi, ∂i=

∂xi,for each 1≤i≤dand∂β=∂ β1

1 ...∂

βd d .

Let us consider the normalized Hermite polynomial of orderβ, ind vari-ables

hβ(x) = 1 (2|β|β!)1/2

d

Y

i=1

(−1)βiex2i ∂ βi

∂xβii (e

−x2i), (2)

then, since the one dimensional Hermite polynomials satisfies the Hermite equation, see [7], then the the normalized Hermite polynomialhβis an eigen-function ofL, with eigenvalue−|β|,

Lhβ(x) =− |β|hβ(x). (3)

Given a function f ∈L1(γ

d) itsβ-Fourier-Hermite coefficient is defined by

ˆ

f(β) =< f, hβ >γd=

Z

Rd

f(x)hβ(x)γd(dx).

LetCn be the closed subspace ofL2(γd) generated by the linear combinations of {hβ :|β|=n}. By the orthogonality of the Hermite polynomials with respect to γd it is easy to see that {Cn} is an orthogonal decomposition of

L2(γ

d),

L2(γd) = ∞

M

n=0

Cn

which is called the Wiener chaos.

LetJnbe the orthogonal projection ofL2(γd) ontoCn. Iffis a polynomial,

Jnf =

X

|β|=n ˆ f(β)hβ.

The Ornstein-Uhlenbeck semigroup {Tt}t≥0is given by

Ttf(x) =

1 (1−e−2t)d/2

Z

Rd

e−

e−2t(|x|2+|y|2 )−2e−thx,yi 1−e−2t f(y)γ

d(dy)

= 1

πd/2(1e−2t)d/2 Z

Rd

e−

|y−e−t x|2

(3)

{Tt}t≥0is a strongly continuous Markov semigroup of contractions onLp(γd), with infinitesimal generator L. Also, by a change of variable we can write,

Ttf(x) =

Z

Rd

f(p1−e−2tu+e−tx)γ

d(du). (5)

Definition 1.1. The maximal function for the Ornstein-Uhlenbeck semigroup

is defined as

T∗f(x) = sup

t>0|Ttf(x)|

= sup

0<r<1

1

πd/2(1r2)d/2| Z

Rd

e−|y−rx| 2

1−r2 f(y)dy|. (6)

In [4] C. Guti´errez and W. Urbina obtained the following inequality for the maximal function T∗f,

T∗f(x)≤CdMγdf(x) + (2∨ |x|)de|x|

2

||f||1,γd, (7) where Mγdf is the Hardy-Littlewood maximal function off with respect to the gaussian measureγd,

Mγdf(x) = sup r>0

1 γd(B(x, r))

Z

B(x,r)|

f(y)|γd(dy). (8)

Unfortunately, this inequality only allows to get the weak (1,1) continuity of T∗f in the one dimensional case, d = 1, but allows to get a pointwise convergence result. Several results of this paper, see Lemma 1.1 and Theorem 1.2, use techniques contained in that paper.

Iff ∈L1(γ

d), u(x, t) =Ttf(x) is a solution of the initial value problem

( ∂u

∂t(x, t) =Lu(x, t) u(x,0) =f(x)

where u(x,0) =f(x) means that

lim

t→0+u(x, t) =f(x), a.e.x

We want to prove that this convergence is also non-tangential in the following sense. Let

Γpγ(x) =

½

(y, t)∈Rd++1:|yx|< t12 ∧ 1

|x|∧1 ¾

(4)

be a parabolic “gaussian cone”. We want to prove that

lim

(y,t)→x,(y,t)∈Γpγ(x)

Ttf(y) =f(x), a.e.x

Using the Bochner subordination formula (see [6]),

e−λ= √1π Z ∞

0

e−u

ue−λ2/4udu,

we define the Poisson-Hermite semigroup {Pt}t≥0 as

Ptf(x) = 1

π

Z ∞

0

e−u

uTt2/4uf(x)du. (10)

{Pt}t≥0 is also a strongly continuous semigroup onLp(γd), with infinitesimal generator −(−L)1/2. From (4) we obtain, after the change of variable r =

e−t2/4u ,

Ptf(x) = 1 2π(d+1)/2

Z

Rd

Z 1

0

texp

¡

t2/4 logr¢

(−logr)3/2

exp³−|y−rx|1−r2 2

´

(1−r2)d/2

dr

r f(y)dy. (11)

Definition 1.2. The maximal function for the Poisson-Hermite semigroup is

defined as

P∗f(x) = sup t>0|

Ptf(x)|. (12)

Iff ∈L1(γ

d), u(x, t) =Ptf(x) is solution of the initial value problem

 

∂2u

∂t2(x, t) =−Lu(x, t)

u(x,0) =f(x)

where u(x,0) =f(x) means that

lim

t→0+u(x, t) =f(x), a.e.x

We want to prove that this convergence, for the Poisson-Hermite semigroup, is also non-tangential in the following sense. Let

Γγ(x) =

½

(y, t)∈Rd++1: |yx|< t 1

|x|∧1 ¾

(5)

be a “gaussian cone”. Also we want to prove that

lim

(y,t)→x,(y,t)∈Γγ(x)

Ptf(y) =f(x), a.e.x

In order to study the non-tangential convergence for the Ornstein-Uhlenbeck semigroup we are going to consider the following maximal function, that was defined by L. Forzani and E. Fabes [3].

Definition 1.3. The non tangential maximal function associated to the

Orns-tein-Uhlenbeck semigroup is defined as

Tγ∗f(x) = sup

(y,t)∈Γpγ(x)

|Ttf(y)|. (14)

Using an inequality for a generalized maximal function, obtained by L. Forzani in [2] (for more details see [8] pag 65–73 and 88–92), it can be proved that Tγ∗f is weak (1,1) and strong (p, p) for 1< p <∞, with respect to the Gaussian measure.

Actually for the non-tangential convergence for the Ornstein-Uhlenbeck semigroup it is enough to consider a “truncated” maximal function. Let

Γp(x) =

½

(y, t)∈Rd++1 : |yx|< t12,0< t < 1

|x|2 ∧

1 4

¾

, (15)

be a truncated parabolic “gaussian cone”.

Definition 1.4. The truncated non-tangencial maximal function associated

to the Ornstein-Uhlenbeck semigroup is defined as

T∗f(x) = sup

(y,t)∈Γp(x)|Ttf(y)|. (16) In the next lemma we are going to get a inequality better than (8) for the truncated non tangential maximal functionT∗f, which implies, immediately, that T∗f is weak (1,1) and strong (p, p) for 1< p <, with respect to the gaussian measure.

Lemma 1.1.

T∗f(x)≤CdMγdf(x), (17)

(6)

Proof. Let us take u(y, t) = Ttf(y) and without loss of generality let us

assumef ≥0.

Let ao = 0 and aj = √j, j ∈ N, then aj < aj+1 ∀j ∈N, and let us

denote

Aj(y, t) ={u∈Rd:aj−1(1−e−2t)

1

2 ≤|e−ty−u|< a

j(1−e−2t)

1 2}, the annulus with center e−ty. Now consider for each j N the ball with center e−ty, and radius a

j(1 −e−2t)

1

2 and let us denote it by Bj(y, t) =

B(e−ty, a

j(1−e−2t)

1 2),then

Aj(y, t) =Bj(y, t)\Bj−1(y, t)

u(y, t) = 1

πd2(1−e−2t)

d

2

Z

Rd

e

− |e−tyu|2

1−e−2t

f(u)du

= 1

πd2(1−e−2t)d2

X

j=1 Z

Aj(y,t)

e

− |e−ty−u|2

1−e−2t

f(u)du

Now if (y, t)∈Γp(x) and|e−tyu|< a

j(1−e−2t)

1 2 then,

|e−txu| = |e−txe−ty+e−tyu|

≤ |e−t(xy)|+|e−tyu|

< e−tt1

2 +aj(1−e−2t) 1 2

< t12 +aj(1−e−2t) 1 2

< (1 +aj)(1−e−2t)

1 2,

sincet <1−e−2t ift <0.8

ConsideringCj(x, t) =B(e−tx,(1 +aj)(1−e−2t)

1

2), we have

u(y, t)≤ 1

πd2(1−e−2t)

d

2

X

j=1

e−a2j−1

Z

Cj(x,t)

(7)

Now,

Z

Cj(x,t)

f(u)du=

Z

Cj(x,t)

f(u)e|u|2e−|u|2du

=

Z

Cj(x,t)

f(u)e|u−e−tx|2+2e−tx.(u−e−tx)+|e−tx|2e−|u|2du

≤e(1+aj)2(1−e−2t)+2(1+aj)(1−e−2t)12|e−tx|+|e−tx|2Z

Cj(x,t)

f(u)e−|u|2du

but,|e−txu|<(1 +a

j)(1−e−2t)

1

2 and therefore,

|x−u|=|x−e−tx+e−tx−u|<(1−e−t)|x|+(1 +aj)(1−e−2t)

1 2.

Taking

Dj(x, t) =B(x,(1−e−t)|x|+(1 +aj)(1−e−2t)

1 2),

we get

Z

Cj(x,t)

f(u)e−|u|2du≤ Z

Dj(x,t)

f(u)e−|u|2du

≤Mγdf(x)

Z

Dj(x,t)

e−|u|2du=Mγdf(x)

Z

Dj(x,t)

e−|u−x|2+2x(x−u)−|x|2du

≤Mγdf(x)e−|x|

2Z

Dj(x,t)

e−|u−x|2+2|x||x−u|du

≤Mγdf(x)e−|x|

2+2|x|((1−e−t)|x|+(1+aj)(1−e−2t)12)Z

Dj(x,t)

e−|u−x|2du

=Mγdf(x)e−|x|

2+2|x|((1−e−t)|x|+(1+aj)(1−e−2t)12)Z

Ej(x,t)

e−|w|2dw

where Ej(x, t) =B(0,(1−e−t)|x|+(1 +aj)(1−e−2t)

1 2).

Sinceγdis ad−dimensional measure, and using thatt < 1

|x|2∧ 1

(8)
(9)

Thus,

which is negative forjsufficiently big, then

∞ Now we are ready to establish the convergence result for the Ornstein-Uhlenbeck semigroup.

Theorem 1.2. The Ornstein-Uhlenbeck semigroup{Ttf}converges in L1(γd) a.e

(10)

considering

Ωf(x) = lim α→0+

"

sup (y,s)∈Γpγ(x),0<s<α

|u(y, s)−f(x)|

#

,

and let us setf(x) =f(x)χ(0,k)+f(x)(I−χ(0,k)) =f1(x) +f2(x),fork∈Nfix. Let us prove that

Ωf(x)≤CdMγdf2(x),a.e,

for|x|≤k−1.

Let us considerxa Lebesgue’s point forf∈L1(γd), i.e. xverifies lim

r→0+

1

γd(B(x;r))

Z

B(x;r)

|f(u)−f(x)|γd(du) = 0 Then givenǫ >0 there exists 0< δ <1 such that

1

γd(B(x;r))

Z

B(x;r)

|f(u)−f(x)|γd(du)< ǫ,

for 0< r < δ.Let us define gas g(u) =

½

f(u)−f(x) if |u−x|≤δ

0 if |u−x|> δ Thusg

depends onxandMγdg(x)< ǫ.

On the other hand, since

u(y, t)−f(x) =u1(y, t)−f1(x) +u2(y, t)−f2(x) where

ui(y, t) = 1

πd2(1−e−2t)d2

Z

Rd

e

− |e−ty −u|2 1−e−2t f

i(u)du i= 1,2, then we get,

u1(y, t)−f1(x) = 1

πd2(1−e−2t)d2

Z

Rd

e

− |e−ty −u|2 1−e−2t

(f1(u)−f1(x))du

= 1

πd2(1−e−2t)d2

Z

|x−u|≤δ

e

− |e−ty −u|2 1−e−2t

(f1(u)−f1(x))du

+ 1

πd2(1−e−2t)d2

Z

|x−u|>δ

e

− |e−ty −u|2 1−e−2t

(f1(u)−f1(x))du.

Now we have that if | x |≤ k−1 and (y, t) ∈ Γp

γ(x) with t < |x1|2 ∧ 14, then

(y, t)∈Γp(x). Thus

|u−x|≤δimplies

(11)
(12)
(13)
(14)
(15)

Thus taking supremum on (y, t) ∈Γp

γ(x), 0< t < α < aand then takingα→0+ we obtain,

Ωf(x)≤Cd(ǫ+Mγdf2(x))

for allǫ >0 and almost everyxwith|x|≤k−1.

Givenǫ >0, let us takeksufficiently large such that kf2k1,γd≤Cdǫ

2

,

then by the estimation of Ω and the weak continuity ofMγd we get

γd({x∈Rd:|x|≤k−1,Ωf(x)> ǫ})≤ǫ

and that implies that Ωf(x) = 0 a.e. ¤ A similar proof for the Poisson-Hermite semigroup, using the non-tangential maximal function defined as

Pγ∗f(x) = sup (y,t)∈Γγ(x)

|Ptf(y)|, (20)

and its analogous truncated version, should be possible but it has some technical difficulties that we have been unable to overcome so far.

Let us now prove a general statement for families of linear operators that will allow us to get a simpler proof of the non-tangential convergence, both for the Ornstein-Uhlenbeck semigroup and also for the Poisson-Hermite semigroup. It is a generalization of Theorem 2.2 of J. Duoandikoetxea’s book [1].

Theorem 1.3. Let{Tt}t>0 be a family of linear operators onLp(Rd, µ)and for any

x∈Rd, letΓ(x)be a subset ofRd+1

+ such thatxis in(Γ(x))′, that is to sayxis an

accumulation point ofΓ(x). Let us define

T∗f(x) = sup{|Ttf(y)|: (y, t)∈Γ(x)},

forf∈Lp(Rd, µ)

andx∈Rd.IfTis weak(p, q) then the set

S=

½

f∈Lp(Rd, µ) : lim

(y,t)→x,(y,t)∈Γ(x)Ttf(y) =f(x)a.e.

¾

is closed inLp(Rd, µ).

(16)

lim sup and this implies that, givenλ >0,

(17)

Thus

lim

(y,t)→x,(y,t)∈Γ(x)Ttf(y) =f(x)a.e. and thenf∈S. ThereforeS is a closed set inLp(Rd, µ).

¤

Finally, as a consequence of this result, we get the non-tangential convergence for the Ornstein-Uhlenbeck semigroup{Tt}t>0 and the Poisson-Hermite semigroup {Pt}t>0.

Corollary 1.4. The Ornstein-Uhlenbeck semigroup{Tt}t>0 and the

Poisson-Her-mite semigroup{Pt}t>0 verify

lim (y,t)→x,(y,t)∈Γpγ(x)

Ttf(y) =f(x)a.e. x,

lim

(y,t)→x,(y,t)∈Γγ(x)Ptf(y) =f(x)a.e. x.

Proof. Let us discuss the proof for the the Ornstein-Uhlenbeck semigroup{Tt}t>0. The proof for the Poisson-Hermite semigroup{Pt}t>0 is totally similar.

It is immediate that for any given polynomialf(x) =Pn

k=0Jkf(x), sinceTtf(y) =

Tt¡ Pnk=0Jkf(y)¢=Pnk=0e−tkJkf(y), we have the non-tangential convergence, lim

(y,t)→x,(y,t)∈Γpγ(x)

Ttf(y) =f(x),

for allx∈Rd. Now considering the set

S=

(

f∈Lp(γ

d) : lim (y,t)→x,(y,t)∈Γpγ(x)

Ttf(y) =f(x)a.e.

)

,

corresponding to the Ornstein-Uhlenbeck semigroup, then the polynomials are inS. From the previous result, since non-tangential maximal function for the Ornstein-Uhlenbeck semigroupTγ∗f is weak (1,1) with respect to the Gaussian measure, we get that the setSis closed inLp(γ

d) and since the polynomials are dense inLp(γd) thenS=Lp(γ

d). ¤

Acknowledgement

(18)

References

[1] Duoandikoetxea, J.Fourier Analysis, Graduated Studies in Mathematics, Vol-ume 29, AMS, R. I., 2001.

[2] Forzani, L.Lemas de cubrimiento de tipo Besicovitch y su aplicaci´on al estudio del operador maximal de Ornstein-Uhlenbeck.Tesis de Doctorado. Universidad Nacional de San Luis, Argentina, 1993.

[3] Forzani, L., Fabes, E.Unpublished manuscript, 1994.

[4] Guti´errez, C., Urbina, W.,Estimates for the maximal operator of the Ornstein-Uhlenbeck semigroup.Proc. Amer. Math. Soc. 113 (1991), 99–104.

[5] Sj¨ogren P., Operators associated with the Hermite Semigroup-A Survey, J. Fourier Anal. Appl., (3)(1997), 813–823.

[6] Stein E., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.

[7] Szeg¨o, G., Orthogonal polynomials, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1959.

[8] Urbina W.m An´alisis Arm´onico Gaussiano: una visi´on panor´amica, Trabajo de Ascenso, Facultad de Ciencias, UCV, 1998. Available in

http://euler.ciens.ucv.ve/~wurbina/notes.html

Referensi

Dokumen terkait

Since those factors have some effect towards online search intention and online purchase intention, the researcher used the hypothesis, which are “Utilitarian value

Thus, after doing further research for the market and industry analysis of canned fruit products, as well as macro analysis in Australia and New Zealand, it is recommended

Dengan ini diumumkan Pemenang Seleksi Sedehana dengan metode evaluasi biaya terendah untuk paket pekerjaan sebagaimana tersebut diatas sebagai berikut:..

DINAS PERINDUSTRIAN, PERDAGANGAN, Pengembangan dan Pelayanan Belanja Barang Mesin Pres Batu Bata JB: 1 Pkt Rp... No Satuan Kerja Kegiatan Nama Paket Jenis Volume

Apabila pada saat pembuktian kualifikasi ditemukan pemalsuan data, maka perusahaan tersebut akan diberi sanksi dengan ketentuan hukum yang berlaku dan jika tidak

[r]

Berdasarkan pada hasil analisis SWOT dan melakukan formulasi strategi pengembangan bisnis terhadap usaha Artharaga fitness center, maka pengembangan bisnis yang

Dari daftar panjang tersebut diambil 3 (tiga) perusahaan dengan nilai terbaik untuk dimasukkan ke dalam daftar pendek konsultan yang diundang untuk mengikuti