• Tidak ada hasil yang ditemukan

Schaum College Physics.pdf

N/A
N/A
Protected

Academic year: 2018

Membagikan "Schaum College Physics.pdf"

Copied!
448
0
0

Teks penuh

(1)
(2)

THEORY AND PROBLEMS

OF

COLLEGE PHYSICS

Ninth Edition

FREDERICK J. BUECHE, Ph.D.

EUGENE HECHT, Ph.D.

!"

SCHAUM'S OUTLINE SERIES

# $% & %! '( )

* ! ! # !

(3)

Copyright © 1997, 1989, 1979, 1961, 1942, 1940, 1939, 1936 by The McGraw-Hill Companies, Inc All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-1367497

The material in this eBook also appears in the print version of this title: 0-07-008941-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro-grams. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071367497

abc

(4)

Preface

8 0& FF == FF == &! ) & ! ! ! ! !

FF == #! !! #

! ! , ! !! & G

! ! ( & 8 !! 0& # # ! ! # ! ! # ' / & ! : ! ! = GD G

! & 0 ! # & !! # !# ! H ' & !! 0 !!! I' . . ! 8 ! # ! # # - 0& ' & 0& & !!! & ! 0& & : #0 # & !! ! . & G & ! !&0 ! # = ! !

: & ! #( ! FF - ( = #!== 1 ! # FF== #! ! ' = ! ! 8 ! . & ! #! & #! I & 0 !! 8 0- ! ! ' #! G ' I # # ( FF0& & == 0 ! ! ! # ! 0#- & )

& = ! & & #0

#

& #! # * # ' !H &0 ! 8 # ! . !

B '! & !#H # -

& / !

0 3/4 & # & & 3/4

(5)

3 4 & # !0 3 4 8 # ! &= & ! & # # !# & & # 8 . . 3 ' 4 #! ! . # !0 ! ! I ! ! : & # & & ! #

!! # ' #! = 0 ! : ! " 12 $$,5%

"0 $ ::1: :" 8

(6)

Contents

Chapter

1

INTRODUCTION TO VECTORS 1

9 G J G

3 !4 ! ! 9#

8! "! "! !

!

Chapter

2

UNIFORMLY ACCELERATED MOTION 13

9 J ! !

!

J ! ( #!

Chapter

3

NEWTON'S LAWS 27

9 0! B 1 ' 8 &

1&= B & 1&= 9 & 1&= 8 &

& #& !

& 8 B 1! "K 0

"K ! !

&

Chapter

4

EQUILIBRIUM UNDER THE ACTION OF CONCURRENT

FORCES 47

" #( G#! B G#!

#! ! 3 4 #( 8

B 1!

Chapter

5

EQUILIBRIUM OF A RIGID BODY UNDER COPLANAR

FORCES 56

8G 3 !!4 8& G#! "

' #

Chapter

6

WORK, ENERGY, AND POWER 69

0 &0 : L

0 ! " & L&

Chapter

7

SIMPLE MACHINES 80

! &0 :K

(7)

Chapter

8

IMPULSE AND MOMENTUM 87

!!! ! ! !!!

" !!! " '

"K " !

Chapter

9

ANGULAR MOTION IN A PLANE 99

! :G

! ! #&

G " "

Chapter

10

RIGID-BODY ROTATION 111

8G 3 !!4 ! 8G

L "!# 0 &

!!! ! ' !

G

Chapter

11

SIMPLE HARMONIC MOTION AND SPRINGS 126

BG # ! !

9! ! ! 0 ! :

: 9 9 9

9 ! 9! ! 9

Chapter

12

DENSITY; ELASTICITY 138

9 . : 9 9 : !

2= ! /0 ! 9 !

Chapter

13

FLUIDS AT REST 146

9 !

= !=

Chapter

14

FLUIDS IN MOTION 157

B I& :G 9 J

= & 0 # 0 #

/= G 8= ! !#

Chapter

15

THERMAL EXPANSION 166

8! ' ' J!

'

(8)

Chapter

16

IDEAL GASES 171

3 4 ; ! # & 9

# H 9 !

3984 = & & #!

Chapter

17

KINETIC THEORY 179

L = !# !

0 ! G # !

Chapter

18

HEAT QUANTITIES 185

8! 9 . 3 4

H #! "! #! #

! ! &

Chapter

19

TRANSFER OF HEAT ENERGY 193

: # " 8! "

Chapter

20

FIRST LAW OF THERMODYNAMICS 198

0 # ! B & 8!!

# ! ! #

9 . 9 . 0

:K

Chapter

21

ENTROPY AND THE SECOND LAW 209

9 & 8!! : : !

##

Chapter

22

WAVE MOTION 213

& ! # 9

& 9 & "

3! 4 &

Chapter

23

SOUND 223

9 & :G 9

3 4 / )

)

(9)

Chapter

24

COULOMB'S LAW AND ELECTRIC FIELDS 232

"!#= & " GH " 8

: . 9 . : .

9

Chapter

25

POTENTIAL; CAPACITANCE 243

) # :

1 : "

" :

Chapter

26

CURRENT, RESISTANCE, AND OHM'S LAW 256

" / ;!= & ! #

!! ! 8! )

& !

Chapter

27

ELECTRICAL POWER 265

: &0 : & & 8!

"

Chapter

28

EQUIVALENT RESISTANCE; SIMPLE CIRCUITS 270

Chapter

29

KIRCHHOFF'S LAWS 283

L)= 3 (4 L)= 3 4 9

G #

Chapter

30

FORCES IN MAGNETIC FIELDS 289

. . " !

! .

. B ! . 8G I

Chapter

31

SOURCES OF MAGNETIC FIELDS 299

. ! . B!

! !! . !

Chapter

32

INDUCED EMF; MAGNETIC FLUX 305

) ! . I' !

B= & ! H= & !

(10)

Chapter

33

ELECTRIC GENERATORS AND MOTORS 315

: : !

Chapter

34

INDUCTANCE;R-CANDR-LTIME CONSTANTS . . . . 321

9 : 23!

23! :'

Chapter

35

ALTERNATING CURRENT 329

:! # 8! &

B! ;!= & !

& 8!

Chapter

36

REFLECTION OF LIGHT 338

1 & I ! 9 !

G 9H !

Chapter

37

REFRACTION OF LIGHT 346

9 ' 9= & "

I !

Chapter

38

THIN LENSES 353

8 ;#( ! !0= G &

Chapter

39

OPTICAL INSTRUMENTS 359

"!# 8

8

Chapter

40

INTERFERENCE AND DIFFRACTION OF LIGHT 366

" & ) )

9 ) ! ) G

) M ;

Chapter

41

RELATIVITY 374

! 9 !!!

! 8! 9!

J !

(11)

Chapter

42

QUANTUM PHYSICS AND WAVE MECHANICS 382

E ) !! "!

) / & / & EH Chapter

43

THE HYDROGEN ATOM 390

! : # : ! :! 9 ; # Chapter

44

MULTIELECTRON ATOMS 396

1 ! E! !# ' Chapter

45

NUCLEI AND RADIOACTIVITY 399

1 1 ! !# ! ! !# / 1 G Chapter

46

APPLIED NUCLEAR PHYSICS 409

1 # B B ! :) !! Appendix

A

SIGNIFICANT FIGURES 417

Appendix

B

TRIGONOMETRY NEEDED FOR COLLEGE PHYSICS 419

Appendix

C

EXPONENTS 422

Appendix

D

LOGARITHMS 424

Appendix

E

PREFIXES FOR MULTIPLES OF SI UNITS; THE GREEK ALPHABET 427

Appendix

F

FACTORS FOR CONVERSIONS TO SI UNITS 428

Appendix

G

PHYSICAL CONSTANTS 429

Appendix

H

TABLE OF THE ELEMENTS 430

INDEX 433

(12)

Chapter 1

Introduction to Vectors

A SCALAR QUANTITY, ! & ! ! ! ! H # 8 !# G ( ! G

9 . # !# # & 8& #'

A VECTOR QUANTITY # . ! & # ! 3H4 !

!!! G B '! "! , ! #

! 6 ! & x !

. '! &

6% & 314 & ; & %66, 3$%% 1ˆ%:66, #4 9!

! @% 0!7 ! @% 0!79;8

G # # & & 8 & ! G 36 ! 6% 1 @% 0!7 # '! 4 8 & G

! # # F & #

~F !! ! . & # !

#

THE RESULTANT, ! !# 3 '! 4 & ! ) 0

GRAPHICAL ADDITION OF VECTORS (POLYGON METHOD): 8 ! . ~

R 3~A ~B ~C4 # & 3 4 & 8 ! # 0 A ~A‡~B‡~Cˆ~C‡~A‡~Bˆ~R 8 & & B $$

$ Fig. 1-1

(13)

8 # & &

~R Rˆ j~Rj H ,

PARALLELOGRAM METHOD & A 8 & ! # # ! 8 & & ! & B $6 8 & ! &

SUBTRACTION OF VECTORS: 8 # ~B ! ~A

~B ~A ~A ~Bˆ~A‡ … ~B†:

THE TRIGONOMETRIC FUNCTIONS . B & B $5 # .

ˆ ˆB

C; ˆ

(

ˆA

C; ˆ

B A

!

BˆC AˆC BˆA

A COMPONENT OF A VECTOR ) B '! x

! ! ! x' #

! ! ! # !

,!! "" ! 9! & !

6 18;"8;1 8; J:"8;9 N" $

(14)

! # & ! & !

B $@ & ~R x y ! ~Rx ~Ry &

!

j~Rxj ˆ j~Rj j~Ryj ˆ j~Rj

G

RxˆR RyˆR

COMPONENT METHOD FOR ADDING VECTORS: : x y

z! & ! 0 8 x!

Rx ~R # ! x! 8 y z

! ! & ! 0& ! #

Rˆ R6 x‡R6y‡R6z

q

& ! & x' # !

ˆRy

Rx

UNIT VECTORS ! # # !#

& 8 ^i ^j k^ x y z'

5^i ‡x & ,^k .

z ~R x y z! Rx Ry

Rz # & ~RˆRx^i‡Ry^j‡Rzk^

THE DISPLACEMENT: #( ! ! ! ! .

" $O 18;"8;1 8; J:"8;9 5

(15)

Solved Problems

1.1 ! . & & !A 6% ! @%8

@% ! $6?8 # 0 ‡x' !

& & . . 39 ' . .4

"x y' & B $, ! !

1 ! ! ‡x' 8 ~R !

& ! ! . ! @+ !

& ! # $%$8 8 ! @+ ! $%$8:

1.2 B x y! 6,%! ! 6$%:%8:

8 ! ! & B $+ 8 !

x! ˆ …6,:% !† 5%:%8ˆ 6$:? !

y! ˆ …6,:% !† 5%:%8ˆ $6:, !

1 ! ! # 0

1.3 9 #! $$ # !

! & B $?3a4 3b4 3

!# & # ! 4 8 !

Rxˆ$:,5 ! 6:@$ !ˆ %:<< ! Ryˆ$:6* !‡5:$* !ˆ@:@< ! 1 ! ! #

8 & B $?3c4- &



…%:<< !†6‡ …@:@< !†6

q

ˆ@:+ ! ˆ@:@< !

%:<< !

ˆ?*8 ! & ˆ$<%8 ˆ$%$8 ~Rˆ@:+ !Ð$%$8 B;‡4M9- !!#

! '

@ 18;"8;1 8; J:"8;9 N" $

(16)

1.4 & & # ! !A 5% 1 5%8 6% 1

$@%8 !!# !# 0 5% 1 6% 1 & . .

8 & B $<3a4 ! ! &

B $<3b4 8 ~R # / !! & . ~R 5% 1

?68:

1.5 B # O & B $*3a4 B

9 !O & B $*3b4

8 & !O

" $O 18;"8;1 8; J:"8;9 ,

Fig. 1-7

Fig. 1-8

(17)

!R! & B $*3b4 . # $$* 1 ! #

# 5?8 !0 ˆ$<%8 5?8ˆ$@58 &

x' 8 $$* 1 $@58:

1.6 8 . & B $$%3a4 #( B

3$4 B & . x y! 8 ! &A

1 ‡

364 8 ~R ! RxˆFxRyˆFy & & Fx FF ! x

! ==

Rxˆ$*:% 1‡?:,% 1 $$:5 1 *:,5 1‡% 1ˆ ‡,:? 1

Ryˆ% 1‡$5:% 1‡$$:5 1 ,:,% 1 66:% 1ˆ 5:6 1

354 8 !

Rˆ



R6 x‡R6y

q

ˆ+:, 1

3@4 B & 0 & B $$%3b4 .

ˆ5:6 1

,:? 1ˆ%:,+

! & ˆ6*8 8 ˆ5+%8 6*8ˆ55$8 8 +, 1 55$8 3 6*84

~Rˆ+:, 1Ð55$8B;‡4M9

+ 18;"8;1 8; J:"8;9 N" $

B x"! y"!

$*% 1 $*% 1 % 1

$,% 1 …$,:% 14 +%:%8ˆ?:,% 1 …$,:% 14 +%:%8ˆ$5:% 1 $+% 1 …$+:% 14 @,:%8ˆ $$:5 1 …$+:% 14 @,:%8ˆ$$:5 1 $$% 1 …$$:% 14 5%:%8ˆ *:,5 1 …$$:% 14 5%:%8ˆ ,:,% 1

66% 1 % 1 66:% 1

(18)

1.7 9 #! $, # ! ! & ! & . .

8 ! A

1 ! 8 . &

RxˆFxˆ<% 1‡?$ 1 *, 1 $,% 1ˆ *@ 1

RyˆFyˆ%‡?$ 1‡,, 1 ,, 1ˆ?$ 1 8 & B $$$- &

Rˆ



…*@ 1†6‡ …?$ 1†6

q

ˆ$:6$%61

B ˆ …?$ 1†=…*@ 1† ! &ˆ5?8 8 $$< 1 $<%8 5?8ˆ$@58

~Rˆ$$< 1Ð$@58B;‡4M9

1.8 $%% 1 !0 & x' y! 5% 1 B

# x! 3!!# !# $%% 1

. . & 5% 1 &4

8 0 B $$6 & .Fx 0&

ˆ$%% 15% 1 ˆ%:5%

ˆ$?:@+8 & . .ˆ$?8:8 &

Fxˆ …$%% 1† $?:@+8ˆ*, 1

1.9 & +% 1 8 !0 @%8

3a4 "! ) !

3b4 "!

" $O 18;"8;1 8; J:"8;9 ?

B x"! y"!

<% 1 <% 1 %

$%% 1 3$%% 14 @,8ˆ?$ 1 3$%% 14 @,8ˆ?$ 1

$$% 1 …$$% 14 5%8 ˆ *, 1 3$$% 14 5%8ˆ,, 1

$+% 1 …$+% 14 6%8ˆ $,% 1 …$+% 14 6%8ˆ ,, 1

(19)

& B $$5 ! +% 1 5* 1 @+ 1 3a4 8

H ! @+ 1 3b4 8 ! 5* 1

1.10 & & FW ! & !0 H &

! ! & #0 = &P

& B $$@ = & ~FW & 0

! ~F 8 ! ! # !

FW !

1.11 :' & B $?3c4 $$%3b4 $$$ $$5 !~RˆRx^i‡Ry^j‡Rzk^ 3 4

!!# ! ! # & ' & &

B B $?3c4A ~Rˆ %:<<^i‡@:@<^j B B $$%3b4A ~Rˆ,:?^i 5:6^j

B B $$$A ~Rˆ *@^i‡?$^j B B $$5A ~Rˆ@+^i‡5*^j

1.12 8 # ~F$ˆ …6%^i 5+^j‡?5k^†1

~F6ˆ … $?^i‡6$^j @+^k†1 ~F5ˆ … $6k^†1 B . !

& . .

0&

RxˆFxˆ6% 1 $? 1‡% 1ˆ5 1

RyˆFyˆ 5+ 1‡6$ 1‡% 1ˆ $, 1

RzˆFzˆ?5 1 @+ 1 $6 1ˆ$, 1

9~RˆRx^i‡Ry^j‡Rzk & .^

~

Rˆ5^i $,^j‡$,^k

8 & . . ! !

Rˆ



R6

x‡R6y‡R6z

q

ˆp@,*ˆ6$ 1

< 18;"8;1 8; J:"8;9 N" $

(20)

1.13 ! & # &~A~B ~C & B $$,A 3a4~A‡~B- 3b4~A‡~B‡C- 3~ c4~A ~B- 3d4~A‡~B ~C:

9 B $$,3a4 3d4 3c4 ~A ~Bˆ~A‡ … ~B†- # ~B ! ~A

~

B ~A 9! 3d4~A‡~B ~Cˆ~A‡~B‡ … ~C† & ~C G

! # ~C:

1.14 ~Aˆ $6^i‡6,^j‡$5^k~Bˆ 5^j‡?k^ . &~A # !~B: B! !! &

~

B ~Aˆ … 5^j‡?^k† … $6^i‡6,^j‡$5^k†

ˆ 5^j‡?^k‡$6^i 6,^j $5^kˆ$6^i 6<^j +^k

1 $6^i 6,^j $5k^ ! ~A 8 & ~A

~B

1.15 # < 0!7 & 0 I& & !

! < 0!7 & ! ! 5 0!7 &

# ! & 3a4 ! 3b4 &!P

3a4 & & #= & # < 0!7 / !

5 0!7 8 #= < 0!= 5 0!=ˆ, 0!=:

3b4 ! # ! # !

< 0!=‡5 0!=ˆ$$ 0!=:

1.16 & ,%% 0!7 / *% 0!7 & #&

& P

8 = ! & ,%% 0!7Ð:98 *% 0!7Ð9;8

8 ! & B $$+ 8 =



…,%% 0!=†6‡ …*% 0!=†6

q

ˆ,%< 0!=

" $O 18;"8;1 8; J:"8;9 *

(21)

8 #

ˆ,%% 0!*% 0!==ˆ%:$<

! &ˆ$%8:8 = ,%< 0!7 $%8

1.17 ! #! $$+ & !

! :P

8 ! = & & # : 8 & ! B $$? 1 G & L ! & & . .

ˆ …*% 0!=†…,%% 0!=† ! &ˆ$%8 8 $%8

! & :

8 . = & & . Rˆ …,%% 0!=†ˆ@:*$%,!=:

Supplementary Problems

1.18 9 ! & <%% 0! $*6 0!

& ! ! ! & & 6%< 0!Ð+?:@89;8 ;B :98

1.19 xy & : #' $% ! #

$% ! 8 &0 & . 36@ $%4 6@ #'

x' $% #' y' ! ! !

& 6+ !Ð658/;J:4M9

1.20 # A & <% ! ,% ! 5% ! & @% ! B

3a4 & B ! AP 3b4 B ! !A B #

# & 3a4 ,% !Ð:98 $:% !Ð1;8 - 3b4 ,$% !Ð$$:589;8 ;B :98

1.21 B x y! & ! xy A 3a4 5%% ! $6?8

3b4 ,%% ! 66%8 & 3a4 $<% ! 6@% !- 3b4 5<5 ! 56$ !

1.22 8& #( &A $%% 1 $?%:%8 $%% 1 ,%:%8 B

& $%% 1 $$%8

1.23 9 & ! ! xy 3

! 4A +% !! ‡y 5% !! x @% !! $,%8

,% !! 6@%8 B ! # # & *? !! $,<8

$% 18;"8;1 8; J:"8;9 N" $

(22)

1.24 "! # & A $%% 1 5%8 $@$@ 1 @,8

$%% 1 6@%8 "0 & %$, 01 6,8

1.25 "! # & !A 6%% ! 5%:%8 @%% !

$6%:%8 6,% ! $<%:%8 @6% ! 6?%:%8 $6% ! 5$,:%8 "0 & & & 6%$ ! $*?8

1.26 8& <% 1 $%% 1 +%8& #( 3a4

& & P 3b4 3 5!)4 & # &

P 9 # & 3a4~RA %$+ 01 5@8& <% 1 - 3b4 ~RA %$+ 01 6$@8& <% 1

1.27 B # 3a4 3b4 G# 3 #! $6+4 & A

5%% 1 ' %8 @%% 1 5%8 @%% 1 $,%8 & 3a4 %,% 01 ,58- 3b4 %,% 01 6558

1.28 ! ?%8 x! @,% !P y! P & $5 0!

$6 0!

1.29 ! ! # ,% ! ! ‡x

! <, ! 6,8P & @, ! ,58

1.30 B $$< ! ~A~B ' 3a4~P 3b4~R 3c4~S 3d4~Q

& 3a4~A‡~B- 3b4~B- 3c4 ~A- 3d4~A ~B

1.31 B $$* ! ~A ~B ' 3a4 ~E 3b4 ~D ~C 3c4

~

E‡~D ~C & 3a4 ~A ~B …~A‡~B†- 3b4~A- 3c4 ~B

1.32 & ! #0 & & 6%8

H & & $,% 1 & & !

P & ,$ 1

1.33 #! $56 5%8# & ,* 1

1.34 B 3a4~A‡~B‡~C 3b4~A ~B 3c4~A ~C~Aˆ?^i +^j~Bˆ 5^i‡$6^j ~Cˆ@^i @^j

& 3a4 <^i‡6^j- 3b4 $%^i $<^j- 3c4 5^i 6^j

1.35 B ! ~R~Rˆ?:%^i $6^j & $@ +%8

" $O 18;"8;1 8; J:"8;9 $$

(23)

1.36 ! ! ! # !…6,^i $+^j†!

! ?% ! ‡xP & … $<^i‡$+^j†!

1.37 …$,^i $+^j‡6?k^†1 …65^j @%^k†1 ! P

& 6$ 1

1.38 0 ! ?% 0!7 8 ' # 0 #

!0 !0 6%8 # 0 & #& &

& & P & 6, 0!7

1.39 $% 0!7 ! # 5%8

& . P & 6% 0!7

1.40 # & %,% !7 & !

+% ! & 8 I& & %5% !7 3a4 &

! # # P 3b4 & 0 # P

& 3a4 5?8 !- 3b4 $:,$%6

1.41 0 0 & ,%% 0!7 8 0

8 # $%%% 0!7 ! : & # !0 & P

& 6+:+8

(24)

Chapter 2

Uniformly Accelerated Motion

SPEED G #( 0 ! t l

"ˆ

! 0

vavˆ l t

3 4 8 & = !

VELOCITY G #( !~s !

t

! ˆ !

! 0

~vavˆ~s t

8 ! ! 8 3 4 # ! !7 0!7

ACCELERATION ! ! A

! 0

~aav ˆ~vf ~vi t

&~vi ~vf . t ! &

8 # ! 8 '! 3!747 3

!764 30!747 3 0!74 1 G

~vf ~vi !! 0 !

( !#

UNIFORMLY ACCELERATED MOTION ALONG A STRAIGHT LINE !

! !

~v ~a # . & ! &

! # s 3

4 ! # # & 6 5 ! !

A

$5

(25)

sˆvavt

vavˆ vf ‡vi

6

aˆvf vi

t v6f ˆv6i ‡6as

sˆvit‡$6at 6

;s #xy !!vf vi & vv%

DIRECTION IS IMPORTANT, ! # & H ! : ! # ! ! # 0

INSTANTANEOUS VELOCITY !

H 8 #( ! ~s ! t #(

~vˆ !

t!% ~s

t

& ! ~s=t # ! t

H

GRAPHICAL INTERPRETATIONS ! 3 x'4 &A

. 8 ! #( ! ! !

! # H

. 8 ! #( ! !

!

. B ! xt B

! vt

. 3 & ! !4 !!

!

ACCELERATION DUE TO GRAVITY …g†: 8 # !

g 3 4 & &

& ; : gˆ*:<$ !76 …::;56:6 764- ! ;

$+ !76

VELOCITY COMPONENTS: 9 #( ! & ~v !

! x' & # & # & 8

x y ! 3 B $@4 ~vx ~vy 8 !

vxˆv vy ˆv

(26)

# !# ~v .

G vx>% vy>%- ~v G vx<% vy >%- ~v

Gvx<% vy <%- . ~v G vx>% vy<% /

G ! 0& ' !! ! 8 & . ! ' # & &#0 & ! FF== # G 3& # & & #4 & ' 8 #( ! &

! ~vˆ$%% !7Ð:98 ! ! ! ! *3*vxˆ $%% !7-

3& 4"vˆ$%% !7

PROJECTILE PROBLEMS # # ; !

! & A H ! & aˆ%

vf ˆviˆvav 3 4 ! & aˆgˆ*:<$ !76 &&

Solved Problems

2.1 " %6%% !7 0!

%:6%%!

ˆ %:6%% !

$% ,0! ! 5+%% 6@ 5+,

ˆ+5:$0!

2.2 !0 6%%! 0 ! 6, & = 3a4

3b4 P

3a4 B! .

ˆ ! 0 ˆ6%% !6, ˆ<:% !=

3b4 / ! !

H 9~vavˆ~s=t

j~vavj ˆ% !

6, ˆ% !=

2.3 #( ! & <%% !76 B 3a4

,%% 3b4 , 3c4

,%%

! . ,%% 80 ! # ‡x

3 sˆx4 0& viˆ% tˆ,:%% aˆ<:%% !76 / ! !

. ! G

vfxˆvix‡atˆ%‡ …<:%% !=6†…,:%% † ˆ@%:% !=

…a†

vavˆvix‡vfx

6 ˆ

%‡@%:%

6 !=ˆ6%:% !=

…b†

xˆvixt‡$ 6at

6

ˆ%‡$

6…<:%% != 6

†…,:%% †6ˆ$%% ! xˆvavtˆ …6%:% !=†…,:%% † ˆ$%% !

…c†

(27)

2.4 0= ! ! $, 0!7 +% 0!7 6% ! 3a4

3b4 3c4 !

B 6% 0‡x # ! &

vixˆ $,

0!

$%%% ! 0!

$

5+%%

ˆ@:$? !=

vfxˆ +% 0!=ˆ$+:? !=

vavˆ$6…vix‡vfx† ˆ$6…@:$?‡$+:?†!=ˆ$% !=

…a†

aˆvfx vix

t ˆ

…$+:? @:$?†!=

6% ˆ%:+5 !=

6

…b†

xˆvavtˆ …$%:@ !=†…6% † ˆ6%< !ˆ%:6$ 0!

…c†

2.5 ! ! ! B 6$ B

AB = P

P

/ # x=t & 0

A 8 B & A &

x

@:% !

<:% ˆ%:,% !=

8 B & aˆ%

vxˆ%:,% !=ˆvav:

2.6 #(= ! ! x' B 66 # !

8 #( G !Q!

/ H ! ' tˆ% tˆ6:% #(

! tˆ6:% #( # ! ‡x &

3 4 B tˆ6:% tˆ@:%

$+ 1B;2 ""::8: ;8;1 N" 6

(28)

vavˆ ˆ

ˆ

xf xi tf ti ˆ

5:% ! % ! @:% 6:% ˆ

5:% !

6:% ˆ$:, !=

8 ~vavˆ$:, !7Ð;98J:4:"8;1

tˆ@:% tˆ+:% #( - H x

B! tˆ+:% tˆ$% # #( ! x-

vavˆ ˆxf xi tf ti ˆ

6:% ! 5:% ! $%:% +:% ˆ

,:% !

@:% ˆ $:5 !=

8 ~vavˆ$:5 !7Ð1:8J:4:"8;1

2.7 8 ! #( B 65 # ! G .

AB C:

# & #(

! tˆ% & . B 38 H4 8 #

#0 &&

A &

vAˆ ˆ

y

$6:% ! 5:% !

@:% % ˆ

*:% !

@:% ˆ6:5 !=

8 A ‡yA~vAˆ6:5 !7Ð BC

vBˆ ˆ% !=

vCˆ ˆ

y

,:, ! $5:% ! $,:% <:, ˆ

?:, !

+:, ˆ $:6 !=

/ C yA~vCˆ$:6 !7Ð;1 !!#

G ! # . '

2.8 # ! ,% ! # 3a4 ( #

P 3b4 & 0 P

" 6O 1B;2 ""::8: ;8;1 $?

(29)

& # !

&& *<$ !76 80# & A

yˆ,%:% ! aˆ*:<$ !=6 viˆ%

v6fyˆv6iy‡6ayˆ%‡6…*:<$ !=6†…,%:% !† ˆ*<$ !6=6

…a†

vf ˆ5$:5 !7 3b4 B!aˆ …vfy viy†=t

tˆvfy viy

a ˆ

…5$:5 %†!= *:<$ !=6 ˆ5:$*

3 ( & 0" & & # P4

2.9 0 ! *% ! & 5% & ! &

0 G 6@ !7P !

! . 0= ! 5% 80 ! ‡x & tˆ5:% vixˆ% xˆ*:% ! 8xˆvixt‡$6at

6

aˆ6x t6 ˆ

$< !

…5:% †6ˆ6:% !=

6

& a ! &

vfxˆ6@ !7 B vixˆ%vfxˆ6@ !7aˆ6:% !76 8 !vf ˆvi‡at

tˆvfx vix

a ˆ

6@ != 6:% !=6ˆ$6

2.10 # ! 6% !7 # & 5% !7 B

& #

80 ! # ‡x B viˆ6% !7

vf ˆ% !7aˆ 5:% !76 1 # !

& 3 4

v6fxˆv6ix‡6ax

xˆ …6% !=†

6

6… 5:% !=6†ˆ+? !

2.11 ! 5% !7 & ! $% !7 ! ,% ! 3a4

3b4 !

0 ! # ‡x

3a4 B ,% & tˆ,:% vixˆ5% !7vf ˆ$% !7 vfxˆvix‡

aˆ…$% 5%†!=

,:% ˆ @:% !=

6

xˆ3 5:% † 3 6:% †

…b†

xˆ …vixt5‡$6at 6

5† …vixt6‡$6at 6 6†

xˆvix…t5 t6† ‡$ 6a…t

6 5 t66†

vixˆ5% !7aˆ @:% !76t6ˆ6:% t5ˆ5:%

xˆ …5% !=†…$:% † …6:% !=6†…,:% 6† ˆ6:% !

(30)

2.12 8 ! ! $, !7 ?% !7 &

*% ! 3a4 "! 3b4 & ! & # !

! P

0 ! # ‡x

3a4 vixˆ$, !7vfxˆ?:% !7xˆ*% ! 8v6fxˆv6ix‡6ax

aˆ %:*< !=6

3b4 & & vixˆ?:% !7vf ˆ%aˆ %:*< !76 8

v6fxˆv6ix‡6ax

xˆ% …?:% !=†

6

$:*+ !=6 ˆ6, !

2.13 & & 6% ! & &

&P

0" y 8 = H 8vfyˆ%

yˆ6% !aˆ *:<$ !76 38 ! # & &

& & 0" # 4 v6fyˆv6iy‡6ay .

viyˆ

 6… *:<$ !=6†…6% !†

q

ˆ6% !=

2.14 & & & 6% !7 & &

,% ! # & & & 3a4 & & & & P 3b4 & 0P

8 & B 6@ 0" 8 !

& # viyˆ6% !7yˆ ‡,:% ! 3 &

!4aˆ *:<$ !76:

" 6O 1B;2 ""::8: ;8;1 $*

(31)

3a4 v6fyˆv6iy‡6ay .

v6fyˆ …6% !=†6‡6… *:<$ !=6†…,:% !† ˆ5%6 !6=6

vfyˆ

 5%6 !6=6

q

ˆ $? !=

0 # ! && .

3b4 aˆ …vfy viy†=t .

tˆ… $?:@ 6%†!=

*:<$ !=6 ˆ5:<

1 & ! vfy:

2.15 # & & @% 8

$+% !76 && B #=

0" B ! # yˆ% 3 ! 4aˆ $:+% !76tˆ@:% yˆviyt‡$6at

6 .

%ˆviy…@:% † ‡$

6… $:+% != 6

†…@:% †6

! &viyˆ5:6 !=:

2.16 ## & & & 5, !7 "! 3a4

!'!! # # 3b4 ! 0 3c4

5% & 3d4 & #= $%% !

80" #= H 3a4 B!v6fyˆv6iy‡6ay& gˆ$:+% !76

%ˆ …5, !=†6‡6… $:+% !=6†y yˆ%:5< 0! 3b4 B!vfyˆviy‡at&

%ˆ5, !=‡ … $:+% !=6†t tˆ66 3c4 B!vfyˆviy‡at&

vfyˆ5, !=‡ … $:+% !=6†…5% † vfyˆ $5 !=

/vf & 0" && 8 #

& & tˆ5% 3d4 B!yˆviyt‡$

6at

6&

$%% !ˆ …5, !=†t‡$

6… $:+% != 6

†t6 %:<%t6 5,t‡$%%ˆ% / G !

xˆ b



b6 @ac

p

6a

& .tˆ5:$ @$ tˆ5:$ # $%% ! - tˆ@$ !

#

2.17 # # ! # 5%% ! # $5 !7 B

# . 3a4 !'!! 3b4 ,%

3c4 ! &

(32)

8 # & ! # $5 !7 & " 0yˆ%

3a4 vf ˆ% B!v6fyˆv6iy‡6ay

%ˆ …$5 !=†6‡6… *:<$ !=6†y yˆ<:+ ! 8 !'!! 5%%‡<:+ˆ5%<:+ ! %5$ 0!

3b4 80 # tˆ,:% :8 !yˆviyt‡$

6at 6

yˆ …$5 !=†…,:% † ‡$

6… *:<$ !=

6†…,:% †6

ˆ ,?:, ! ,< !

9 5%% ,<ˆ6@6 ! !vfyˆviy‡at

vfyˆ$5 !=‡ … *:<$ !=6†…,:% † ˆ 5+ !=

& & & 5+ !7Ð;1

3c4 C #= ! 5%% ! 8

yˆviyt‡$6at 6

#! 5%% !ˆ …$5 !=†t‡$

6… *:<$ != 6

†t6

@:*%t6 $5t 5%%ˆ% 8 G ! tˆ*:5 +:+ ; !

! G & *5

G ! # . ! vfA

v6fyˆv6iy‡6as #! v6fyˆ …$5 !=†6‡6… *:<$ !=6†… 5%% !†

vfyˆ ??:< !7 8 vfy3&P4 vfyˆviy‡tˆ*:5

#

2.18 & B 6, ( . H & 5% !7 ! )

<% ! 3a4 & & 0 0 # )P 3b4 &

! ) & 0P 3c4 & & 0P

3a4 8 H ! " . !

80" yˆ% ) &

yˆviyt‡$ 6ayt6

<% !ˆ%‡$

6… *:<$ != 6

†t6

! & tˆ@:%@ @% 1 H !

viˆ% !

" 6O 1B;2 ""::8: ;8;1 6$

(33)

3b4 1& H ! B aˆ% vxˆvixˆvfxˆ5% !7 8

t 3a4 &

xˆvxtˆ …5% !=†…@:%@ † ˆ$6$ ! %:$6 0!

3c4 8 . H ! 5% !7 / ! tˆ@:%@

#vfyˆviy‡ayt

vfyˆ%‡ … *:< !=6†…@:%@ † ˆ @% !=

8 & ! #~v B 6,- &

vˆ



…@% !=†6‡ …5% !=†6

q

ˆ,% !=

8 & # ˆ@%=5% ,58: ~vˆ,% !7Ð,58/:;4M9

2.19 I ! $, !7 I $%% ! #& & B 6+

& ! x! # 0 I !

0 P

B& ! #! 6$< & yˆviyt‡$6ayt6

$%% !ˆ%‡$

6… *:<$ != 6

†t6 tˆ@:,6 1&xˆvxtˆ …$, !=†…@:,6 † ˆ+?:< ! +< !

2.20 ## & & $%% !7 5%:%8# H

& B 6? & ! & & ## P

#! H &

vixˆvi 5%:%8ˆ<+:+ != viyˆvi 5%:%8ˆ,%:% !=

&" # 0

66 1B;2 ""::8: ;8;1 N" 6

Fig. 2-6

(34)

#!yˆ% # 8

yˆviyt‡$6ayt6 %ˆ …,%:% !=† ‡$6… *:<$ != 6

†t

tˆ$%:6 :

H #!vixˆvfxˆvxˆ<+:+ !7 8

xˆvxtˆ …<+:+ !=†…$%:6 † ˆ<<@ !

2.21 & B 6< # & ! # & # ,% !

& 8 # 6% !7Ð@%8/;J: ;R;18 & # #&

& # 0 &P

vixˆ …6% !=† @%8ˆ$,:5 !=

viyˆ …6% !=† @%8ˆ$6:* != " . H ! B

vixˆvfxˆvxˆ$,:5 !=

8xˆvxt

,% !ˆ …$,:5 !=†t tˆ5:6?

B ! 0# &

yˆviyt‡$6ayt6ˆ … $6:* !=†…5:6? † ‡$6…*:<$ !=

6†…5:6? †6

ˆ$%, !ˆ%:$$ 0!

9y # # & %$$ 0! #&

2.22 3a4 B x & . & !HH v

3b4 B & . & !HH $6% !7

! # $5%% ! 39 B 6*4

3a4 t# ! 0 8xˆvixttˆx=vix "

! 0" 0

J !ˆ%ˆviyt‡$

6… g†t 6

9 G tˆ6viy=g /tˆx=vix

x vixˆ

6viy

g xˆ

6vixviy

g ˆ

6…vi†…vi†

g

" 6O 1B;2 ""::8: ;8;1 65

(35)

8 ! 6 ˆ 6 # ! # &

xˆv

6 i 6

g

8 !'!! ˆ@,8 6 !'!! $ & 6ˆ*%8

ˆ@,8:

3b4 B! G 3a4 &

6ˆgx

v6 i

ˆ…*:<$ !=

6

†…$5%% !† …$6% !=†6 ˆ%:<<,

8 6ˆ %:<<,ˆ+68 ˆ5$8:

Supplementary Problems

2.23 8 0 0 0 5<%! @% !

& *, !7

2.24 ! # $6%% ! 6%% !7

& 0P +%%

2.25 = ! 66 +<? 0! 66 ?*$ 0! 8 0 @%

& = 0!7 !7P & 6+ 0!7 ?6 !7

2.26 6, 0!7 @% ! ,% 0!7 <% ! .

6% 0!7 6% ! B 3a4 0! 3b4 !

!7 & 3a4 *% 0!- 3b4 $%? !7 $$ !7

2.27 $, 0 ! ,% 8 ! 0 @% !

! $6+ ! B 3a4 3b4 ! =

/ - & ! (

& 3a4 5< !7- 3b4 %<% !7

2.28 0 6%% 0!7 3a4 &

@,% !P 3b4 ! & 3a4 $,% 0!- 3b4 H

6@ 1B;2 ""::8: ;8;1 N" 6

(36)

2.29 8 & # #( x' !

. #( 3a4tˆ,:% 3b4 $+ 3c4 65 & 3a4 %%$<

!7 x- 3b4 % !7- 3c4 %%$5 !7 x

2.30 B #( & ! # #! 66* . & !A 3a4 5%

3b4 $% 3c4 6@ & 3a4 $* !7 x- 3b4 $$ !7

x- 3c4 $, !7 x

2.31 B #( & ! B 65 . & !A

3a4 $% 3b4 @% 3c4 $% & 3a4 55 !7 y- 3b4 $% !7

y- 3c4 %<5 !7 y

2.32 # & <% !7 ! & +@% !

@% B @% . 3a4 3b4 . 3c4

& 3a4 $+ !7- 3b4 6@ !7- 3c4 %@% !76

2.33 0 ! ! & ,% !76 B

@% & 6% !7 @% !

2.34 #' & & ! ! 6? !7

5% B 3a4 3b4 ! . +% & 3a4 %*% !76- 3b4 $+ !

2.35 ! & 0 5% ! 8 ! 0 #&

0 @% = . 0 ,% !7 B =

0 & $5 !76 $% !7

2.36 = ! ! +% !7 6% !7 & ?% ! B

! 0 & 6+ !76 ,@

2.37 ! # 0) ! +%% !

$6 B 3a4 3b4 $6 3c4 ! &

& 3a4 <5 !76- 3b4 %$% 0!7- 3c4 *+ !

2.38 0 5% !7 & ! @@ B

& %:+< !76 %++ 0! +:+$%6!

2.39 #( ! $5 !7 & ! 6% !7 ! +% !

3a4 . 3b4 +% 3c4 ! +%

& 3a4 $% !7- 3b4 ?% !7- 3c4 @6 !

2.40 # ! B 3a4 3b4 5% 3c4

?% ! 3d4 ! G 6, !7 3e4 ! 0 5%% !

& 3a4 *<$ !76- 3b4 @@ !- 3c4 5? !7- 3d4 6+ - 3e4 ?<

2.41 !# ! # 0 & ,% " 3a4 & & 0

3b4 # & 3a4 @* !7- 3b4 %$6 0! $:6$%6!

2.42 & && & <% !7 ! 6, ! B 3a4 !

0 3b4 & & 0 & 3a4 $+ - 3b4 6@ !7

" 6O 1B;2 ""::8: ;8;1 6,

t34 % 6 @ + < $% $6 $@ $+ $< 6% 66 6@ 6+ 6<

(37)

2.43 ## & & & 5% !7 3a4 & & P 3b4 & &

P 3c4 & & P 3d4 & #

$+ !7P & 3a4 5$ - 3b4 @+ !- 3c4 +$ - 3d4 $@ @?

2.44 # ! # 6% ! # 3a4

& 3b4 & & ,% !7 & # &

& 6% 0!- 3b4 %*+ 0!

2.45 8& # ! ) ; $, #

# 0 ! ! ,% . & 3a4 )

! & & P 3b4 B! & & . # P & 3a4 +5

!-3b4 %$6 0!

2.46 ! ! # #! !

5%% !7 8 0 #! 6%% 3a4 & ! #! &

& ) P 3b4 & # #! & %6, )P

& 3a4 $5+ !- 3b4 $@ !

2.47 !# & 6% !7 ) # <% ! 3a4 &

0 IP 3b4 & H ! # !# 0

IP & 3a4 %@% - 3b4 <$ !

2.48 # ( & ! ,%8& H

@% !7 3a4 & & 0 P 3b4 & ! & 0P 3c4

& & H & 0P & 3a4 +5 - 3b4 %$+ 0!- 3c4 ,%8

2.49 # ( && 5%8& H ! # $?% !

@% !7 3a4 & & 0 # 0 P 3b4 & !

# & 0P 3c4 & & H & 0P & 3a4 @6 - 3b4 %$,

0!-3c4 +%8

2.50 ! & & @%8 H 8

& 6% !7 & & 0 & & <% ! &P

& ,@ !

2.51 9 # ! # & @% !7 6+8# H

. & 5% ! # #0 # & & $$% ! ! ! 8 # & $6% ! # & & # .= # P & +% !

2.52 & ! & +%8 & 5%8 #

# & ! H

2.53 # & & 5%8 H #

6% ! & 8 ,% ! # & & & # &P

& 6% !7

2.54 # & & & v! h! # 9& !

0 # 0 …v=g†‰$‡p$‡ …6hg=v6†

Š:

(38)

Chapter 3

Newton's Laws

THE MASS #( ! #(

# ! # ! ! & B 0 ! ! G!

THE STANDARD KILOGRAM #( & ! . # 0! 8

! #( # ! & ! , , G

' %%%$ 0

FORCE ! &

#( B G ! *!

& ! #

THE NET EXTERNAL FORCE #( #( 8 ! #( 3 & 0& ! 9 8 ! ' '! # & # 4

THE NEWTON 9 ; & 3$ 14 & &

$ 0 ! $ !76 8 " @@, 1

NEWTON'S FIRST LAWA )7 #!! , 8 )7 , #!!

, # ! 0 * " " ) *! B

!

NEWTON'S SECOND LAWA # 1& 9 & & ! ! !!! 8 ! & # " <

& ! # 3 4 ~F

#( ! m H #( 8

~a ! #(

~F & m 0! ~a !76 # &

~aˆ~F

m ~Fˆm~a

8 ~a ! ~F:

8 G~Fˆm~a # & ! !

Fxˆmax Fyˆmay Fzˆmaz

& ! ' #(

6?

(39)

NEWTON'S THIRD LAW: & ! Q ! * )0 5!0 ) ""! 0 , )

# & 8 # 2 1

& ) #(

THE LAW OF UNIVERSAL GRAVITATION: & ! m m0

& G ! B ! 3

!! #4 FG #

FGˆG mm0

r6

& r #& ! & Gˆ+:+?$% $$1!6=06 & FG

&mm0 0! r !

THE WEIGHT #( …FW† && #( ; : ' #( # & 3 94 3 / !4 / : ! ! # = & ! # & # ) ! . #

RELATION BETWEEN MASS AND WEIGHT: #( ! m &

: #( D & & & FW

#( 8 #(= FW g 8 ~Fˆm~a

& #& F ˆFW aˆg m- FW ˆmg /

gˆ*:<$ !76 : $%% 0 #( & *<$ 1 :=

THE TENSILE FORCE …~FT†

8 ! …FT†

THE FRICTION FORCE …~F† #( #( ( & & 8 ! ! ! ; & ' !'!! & #( #

THE NORMAL FORCE …~FN† #( # # !

THE COEFFICIENT OF KINETIC FRICTION …k† . &

! ˆ

F FN

(40)

THE COEFFICIENT OF STATIC FRICTION …s† . & (

!'!!

! ˆ

F…!'† FN

& !'!! & #( ( #

DIMENSIONAL ANALYSIS: ! G #

' ! ! !A L ! M ! T B '!

3 4 # 3!46- & , L=T6 &

& & ‰LT 6Š 8 ! ! ‰L5Š ‰LT $Š /

! ! # ! ‰MLT 6Š !

0 G ! G ! ! ! B '! ! G

sˆvit ‡$ 6at

6

‰LŠ ! ‰LT $ЉTŠ ‡ ‰LT 6ЉT6Š

! ! 2,,)0 !! , 5 , ,

, '! G ! ‰L5Š ‰L6Š

‰MLT 6Š# ! ‰LT $Š- ! ! !

MATHEMATICAL OPERATIONS WITH UNITS: !!

! 3 '! # ! 5 !7 !764 ! # & !# !

! !! !#

E # # ! 3 & ! !4 B '! & # , ! 34 < ! 34 & ! . ! ! ! ! & G # !# ! & & !# # # & G 8A

3$4 + !6‡6 !6ˆ< !6 …!6‡!6!!6†

364 , !6 !6ˆ$% !5 …!!6!!5†

354 6 !5$,%% 0

!5ˆ5%%% 0 !

5

0

!5!0

3@4 6 5 0! 6 ˆ+

0!

0! 6 !

0!

3,4 $,

5 =!5ˆ, !

5

=!5! !5

!!

5

!

(41)

Solved Problems

3.1 B & : # & ! 3a4 5%% 0 3b4 6%%

8 #& !m &FW FW ˆmg m! # 0

!g ! G FW & ; :gˆ*:<$ !76 8

!

3a4 FWˆ …5:%% 0†…*:<$ !=6† ˆ6*:@ 0!=6ˆ6*:@ 1 3b4 FW ˆ …%:6%% 0†…*:<$ !=6† ˆ$:*+ 1

3.2 6%% 0 #( ! #( @,% 1

x B #(

!0 & ! ! Fxˆmax & Fxˆ @,:% 1

mˆ6%:% 0 8

axˆ

Fx

m ˆ

@,:% 1

6%:% 0 ˆ 6:6, 1=0ˆ 6:6, !=

6

& & $ 1ˆ$ 0!=6 / #(

x

3.3 8 #( B 5$3a4 & ,% 1 # B

! #( 8& &

&& #FT 8

& #( FW ˆ,% 1 8 & & # ! B

5$3b4

8 ! ! & & . G#! 0" A

‡

!Fxˆ% #! %ˆ%

‡"Fyˆ% #! FT ,% 1ˆ%

! &FTˆ,% 1 8 & # G#!

G & #

5% 1:8;1=9 9 N" 5

(42)

3.4 ,% 0 #( # & %5% !76 # & ! # P

8 # ! #( & B 56 8 FT &

#( FWˆmgˆ …,:% 0†…*:<$ !=6† ˆ@*:$ 1 Fyˆmay&"0 &

FT mgˆmay FT @*:$ 1ˆ …,:% 0†…%:5% !=6†

! &FT ˆ,%:+ 1ˆ,$ 1 0 & FT FW ! # #(

&

3.5 H $@% 1 +%% 0 #' H I

K #& I #'P ! . . = G

8 # ! #' & B 55 / #' ! &

ayˆ% 8

Fyˆmay FN mgˆ …m†…% !=6†

! & & . FNˆmgˆ …+%:% 0†…*:<$ !=6† ˆ,<<:+ 1 B # #' !

H axˆ%

Fxˆmax $@% 1 Fˆ%

! & F ˆ$@% 1

F

FN ˆ

$@% 1

,<<:+ 1ˆ%:65<

3.6 8 ,% 0 #( ! Fxˆ6% 1 Fyˆ5% 1 B

#(

!0 FxˆmaxFyˆmay #

" 5O 1:8;1=9 9 5$

(43)

axˆ

Fx

m ˆ

6% 1

,:% 0ˆ@:% !=

6

ayˆFy

m ˆ

5% 1

,:% 0ˆ+:% !=

6

8 ! & B 5@ B! . &



…@:%†6‡ …+:%†6

q

!=6ˆ?:6 !=6 ˆ…+:%=@:%† ˆ,+8:

3.7 +%% 1 #( # %?% !76 & # !

P

1 & ! #( ! & & !

: & FW ˆmg .

mˆFW g ˆ

+%% 1

*:<$ !=6ˆ+$ 0

1& & 0& ! #( 3+$ 04 3%?% !764 &

Fˆmaˆ …+$ 0†…%:?% !=6† ˆ@5 1

3.8 ,% 0 #( ! ?% !7 5% !7 !

5% B

! . . #( & # 80 ! ! " 6 &

aˆvf vi

t ˆ

@:% !=

5:% ˆ $:55 !=

6

1& & Fˆma&mˆ,:% 0A

F ˆ …,:% 0†… $:55 !=6† ˆ +:? 1

8 ! !

56 1:8;1=9 9 N" 5

(44)

3.9 @%% #0 & <% !7 H #

%?% 1 3a4 & & # P 3b4 K

#& #0 # P

3a4 0 ! 8 # #0

%:?% 1 8

Fˆma #! %:?% 1ˆ …%:@%% 0†…a†

! & aˆ $:?, !=6 31 m & 0!4 8 . #0

& vixˆ%:<% !7vfxˆ% aˆ $:?, !76 8v6fx v6ixˆ6ax

xˆv

6 fx v6ix

6a ˆ

…% %:+@†!6=6

…6†… $:?, !=6†ˆ%:$< !

3b4 / #0 ! & #FN ! G

&, #0 8

FN ˆ

%:?% 1

…%:@% 0†…*:<$ !=6†ˆ%:$<

3.10 +%%0 ! 5% !7 3a4 & 3!

4 G ?% !P 3b4 !!! K

#& & # #P ! & 0 & & & Q =

3a4 ! . . = ! ! G 0& vixˆ5% !7vfxˆ%

xˆ?% ! v6fxˆv6ix‡6ax .

aˆv

6 fx v6ix

6x ˆ

% *%% !6=6

$@% ! ˆ +:@5 !=

6

1& & &

Fˆmaˆ …+%% 0†… +:@5 !=6† ˆ 5<+% 1ˆ 5:* 01

3b4 8 3a4 #& & 8

! Fˆ5<+% 1 8 K #

sˆF=FN & FN ! &

& G = & 8

FN ˆFW ˆmgˆ …+%% 0†…*:<$ !=6† ˆ,<<+ 1

F

FNˆ

5<+% ,<<+ˆ%:++

8 K ! # %++ & ?% !

3.11 <%%%0 @% %%%0 0

a$ˆ$:6% !76 …a6†& $+ %%%0 P

B ! 8

a6ˆm$ m6a$ˆ

<%%% 0‡@% %%% 0

<%%% 0‡$+ %%% 0…$:6% !=

6

† ˆ6:@% !=6

3.12 & B 5,3a4 #( !m # B

#( 3a4 3b4 ! 3c4 & &

aˆ5g=6 3d4 && aˆ%:?,g:

(45)

8& #(A FT & && mg 8

& # ! B 5,3b4 0" &Fyˆmay

3a4 ayˆ%A FT mgˆmayˆ% FTˆmg

3b4 ayˆ%A FT mgˆmayˆ% FTˆmg

3c4 ayˆ5g=6A FT mgˆm…5g=6† FTˆ6:,mg

3d4 ayˆ 5g=@A FT mgˆm… 5g=@† FTˆ%:6,mg

1 mg 3d4- #( &&

" ' &FTˆ% ayˆ gP

3.13 & & #0 ' $,%% 1 & ?%%0

P 3!!# $,%% . .- ' 4

8 & B 5+ ; x ! #

y # & ‡ & &

&

‡

!Fxˆmax #! $,%% 1ˆ …?%% 0†…a†

! &aˆ6:$@ !=6:

3.14 "! & & @,0 &! &

& 5%% 1

8 & &! mgˆ …@, 0†…*:<$ !=6† ˆ@@$ 1 /

5%% 1 # && F &! ! # @@$ 1 5%% 1ˆ$@$ 1

!!! &&

aˆF mˆ

$@$ 1

@, 0ˆ5:$ !=

6

3.15 ?%0 #' I # @%%1 & B 5? 8 K

#& #' I %,% & #' B #'

5@ 1:8;1=9 9 N" 5

(46)

9 y ! #

FNˆmgˆ …?% 0†…*:<$ !=6† ˆ+<? 1

/ F #

F ˆ0FNˆ …%:,%†…+<? 1† ˆ5@@ 1

1& &Fxˆmax #' 0 ! A

@%% 1 5@@ 1ˆ …?% 0†…a† aˆ%:<% !=6

3.16 9 & B 5< ?%0 #' # @%%1 5%8

H 8 K 0 %,% B #'

/ #' ! & & Fyˆmayˆ% B! B 5< &

G

FN‡6%% 1 mgˆ%

/mgˆ …?% 0†…*:<$ !=6† ˆ+<? 1 & FN ˆ@<+ 1:

' . #'A

F ˆ0FNˆ …%:,%†…@<+ 1† ˆ6@5 1

1& &Fxˆmax #'

…5@+ 6@5†1ˆ …?% 0†…ax†

! &axˆ$:, !76:

" 5O 1:8;1=9 9 5,

Fig. 3-7

(47)

3.17 ! 6% !7 H #0 ! & # K #& %*%P ! & #0 #0 = 0

8 & & $

F$ˆsFN$ˆFW$

&FW$ & # & $ # Ff # !

&A

F ˆsFW$‡sFW6‡sFW5‡sFW@ˆs…FW$‡FW6‡FW5‡FW@† ˆsFW

&FW & 31 & ! ! #0 &4 8

# 3& & 4 Fˆma

&F # sFW sFW ˆma &m = !

0 ! &FWˆmg- =

aˆ sFW

m ˆ

smg

m ˆ sgˆ … %:*%†…*:<$ !=

6† ˆ <:< !=6

. & & # # ! #! L& viˆ6% !7

vf ˆ% aˆ <:< !76 & . !v6f v6i ˆ6ax

xˆ…% @%%†!

6=6

$?:+ !=6 ˆ65 !

& # #0 ! & #

3.18 & B 5* @%% 1 6,0 #' 9 ! #'

6% !7 ! @% B K 0 #& #' I

& .f # Fˆma / . & ! .a! ! #! 0&

viˆ%vf ˆ6:% !7tˆ@:% vf ˆvi‡at

aˆvf vi

t ˆ

6:% !=

@:% ˆ%:,% !=

6

1& & &Fxˆmax &axˆaˆ%:,% !76 B! B 5* G #!

6,? 1 Fˆ …6, 0†…%:,% !=6† Fˆ6@, 1

& & ˆF=FN 8 .FN & &Fyˆmayˆ% !

B! B 5*

FN 5%+ 1 …6,†…*:<$†1ˆ% FNˆ,,$ 1

5+ 1:8;1=9 9 N" 5

(48)

8

F

FNˆ

6@, ,,$ˆ%:@@

3.19 6%%1 & # 5%8 &

) #P

8 & B 5$%3a4 / & !

8 & G#! . G#!

& #( 8 # A 3$4 FW 3

&4 &- 364 F' &

- 354 FN & 8 & #

! B 5$%3b4

B 0 x' y'

0 ! ' & & . G #!A

‡

Fxˆ% #! F %:,%FWˆ%

‡ Fyˆ% #! FN %:<?FW ˆ%

9 . G FWˆ6%% 1 & . F ˆ%:,%FW 8 G

& . . %$% 01

3.20 6%0 #' & B 5$$ 8 K 0 #&

#' %5% B #' &

#! & 0x y' & .

. # &Fxˆmax / . & ! .

F 5%8ˆ%:<++

Fyˆmayˆ% FN %:<?mgˆ%

! &FNˆ …%:<?†…6% 0†…*:<$ !=6† ˆ$?$ 1 1& & .F !

Fˆ0FN ˆ …%:5%†…$?$ 1† ˆ,$ 1

" 5O 1:8;1=9 9 5?

Fig. 3-10

!

(49)

Fxˆmax &

F %:,%mgˆmax ,$ 1 …%:,%†…6%†…*:<$†1ˆ …6% 0†…ax†

! &axˆ 6:5, !76 8 #' & 6@ !76

3.21 ,%% 1 6,0 #' & B 5$6 #'

%?, !76 B K 0 #& #'

8 ! & B 5$6 1 & x y' 0

9 #' ! 3& & !4 &

. .F # &Fxˆmax B! B 5$6 @%8ˆ%:+@5

5<5 1 F …%:+@†…6,†…*:<$†1ˆ …6, 0†…%:?, !=6†

! &F ˆ6%? 1

FN Fyˆmayˆ% @%8ˆ%:?++ &

FN 56$ 1 …%:??†…6,†…*:<$†1ˆ% FNˆ,$% 1

F

FNˆ

6%? ,$%ˆ%:@$ 8

5< 1:8;1=9 9 N" 5

Fig. 3-11

(50)

3.22 8& #0 !m$m6 # F & B 5$5 8 K

#& #0 # %@% 3a4 ! # F #0

6%% !76P & m$ ' m6P

m$ˆ5%% m6ˆ,%% !!# &0 9

8 #0 F$ˆ%:@m$g F6ˆ%:@m6g 0 & #0

!# #( - H #( ! 3 *!

4 FF$ F6 & #0 !

- # ' &! #( B #(

Fxˆmax #! F F$ F6ˆ …m$‡m6†ax

3a4 9 F # 0& & .

Fˆ%:@%g…m$‡m6† ‡ …m$‡m6†axˆ5:$@ 1‡$:+% 1ˆ@:? 1

3b4 1& #0m6 8 x #0m$

3& & #Fb4 F6ˆ%:@m6g 8

Fxˆmax #! Fb F6ˆm6ax

0& axˆ6:% !76

FbˆF6‡m6axˆ$:*+ 1‡$:%% 1ˆ6:*+ 1ˆ5:% 1

3.23 3 # ! 4

?%0 ! ! *%0 ! ! &

B 5$@ 38 ! # , 4 B !

/ & # ! 8

& ! & B 5$@ & #( mg

#( # 0 !

& 0 " ?%0 ! #

*%0 ! 3 & & # ! / =

! G4 Fyˆmay ! &

FT …?:%†…*:<$†1ˆ …?:% 0†…a† …*:%†…*:<$†1 FT ˆ …*:% 0†…a†

" 5O 1:8;1=9 9 5*

(51)

& & G 0&FT

…*:% ?:%†…*:<$†1ˆ …$+ 0†…a†

&aˆ$:65 !76 & # $65 !76a G #FT ˆ?? 1

3.24 B 5$, K 0 #& #0 A # %6%

mAˆ6, 0mBˆ$, 0 & & #0B . 5% ! P

9 #0A ! !

FN ˆmAgˆ …6, 0†…*:<$ !=6† ˆ6@, 1

F ˆ0FNˆ …%:6%†…6@, 1† ˆ@* 1

! . . ! & # !

Fˆma #0 80 ! &

FT F ˆmAa FT @* 1ˆ …6, 0†…a†

mBg FTˆmBa FT‡ …$,†…*:<$†1ˆ …$, 0†…a†

!FT # & G 8 a & .aˆ6:@, !76:

1& & &0 ! #! &aˆ6:@, !76viˆ%tˆ5:% A

yˆviyt‡$ 6at

6 y

ˆ%‡$

6…6:@, != 6

†…5:% †6ˆ$$ !

B . 5%

3.25 & H FT ! #0A B 5$,

%?, !76 # !P ! #! 56@ 0ˆ%:6%

mAˆ6, 0 mBˆ$, 0

& & & B 5$, & & & F & A

F # . #! 56@

Fˆ@* 1

@% 1:8;1=9 9 N" 5

(52)

&Fˆma #0 0 ! #

F FT @* 1ˆ …6, 0†…%:?, !=6† FT …$,†…*:<$†1ˆ …$, 0†…%:?, !=6†

G FT # G

0&F & . # 66+ 1 %65 01

3.26 8 K #& #' I # 0 %+%

!'!! 0 #' P

8 #' ' x #'

FˆsFW &FW & #'

0 ! #' !

0-& #' 0-& #' Fxˆmax #' Fˆmax

& #' FˆsFW sFWˆmax /FW ˆmg

axˆsmg

m ˆsgˆ …%:+%†…*:<$ !=

6

† ˆ,:* !=6 !'!! &

3.27 B 5$+ & #' ! @% 0 / '

&0ˆ%:$, B #'

FˆFN & . & #'

Fˆ …%:$,†…mg† F/ˆ …%:$,†…%:<?mg†

/mˆ@% 0 Fˆ,* 1 F/ˆ,$ 1

& Fxˆmax #0 0 ! 8

FT ,* 1ˆ …@% 0†…a† %:,mg FT ,$ 1ˆ …@% 0†…a†

9 & G aFT aˆ$:$ !=6FTˆ%:$% 01

" 5O 1:8;1=9 9 @$

(53)

3.28 ! & B 5$?3a4 F #0m$ B

! F K 0

8 H #0 & B 5$?3b4 3c4 /0m6 m$#

& m6g 8 ! & m$ m6

F 6ˆ0m6g #! m$ & ! …m$‡m6†g

F0ˆ0…m$‡m6†g & &Fxˆmax #0 0 ! A

FT ˆ0m6gˆm6a F FT m6g 0…m$‡m6†gˆm$a

!FT # & G #

F 60m6g 0…m$‡m6†…g† ˆ …m$‡m6†…a†

aˆF 60m6g m$‡m6 0g

! &

3.29 ! B 5$< ! # # B

m6 m$ˆ5%% m6ˆ,%% F ˆ$:,% 1

1 m$ & m6 3 ! dm$!

6d4 FT$ m$ FT6

# ! # H…Fˆma # !

H4 Fxˆmax ! &

FT$ˆ …m$†…6a† F FT6ˆm6a

& & 0& FT$ˆ$6FT6 . G FT6ˆ@m$a 9#

G

Fˆ …@m$‡m6†…a† aˆ

F

@m$‡m6ˆ

$:,% 1

$:6% 0‡%:,% 0ˆ%:<<6 !=

6

@6 1:8;1=9 9 N" 5

Fig. 3-17

(54)

3.30 B 5$* & #( 6%% 1 5%% 1 8

! P$ ' # P6 ! & B

FT$ FT6 #

B& !A& 2 # P6

6FT6 FT$& 9 ! FT$ˆ6FT63

#( ! 4 8& & B A

a# && A 8a=6 & B 3P4 &

&Fyˆmay ! 0 !

FT$ 5%% 1ˆ …mB†…$6a† 6%% 1 FT6ˆma

/mˆFW=g mAˆ …6%%=*:<$†0 mBˆ …5%%=*:<$†0 B FT$ˆ6FT6 9#

& G & ! FT6 FT$a 8

FT$ˆ56? 1 FT6ˆ$+@ 1 aˆ$:?< !=6

3.31 "! ! : ! # +5?% 0! &

. .

M# ! : m ! #( := 8 &

#( G mg G G…Mm†=r6 &r :=

mgˆGMm r6

Mˆgr

6

G ˆ

…*:<$ !=6†…+:5?$%+!†6

+:+?$% $$ 1!6=06 ˆ,:*?$% 6@ 0

! &

" 5O 1:8;1=9 9 @5

(55)

Supplementary Problems

3.32 ; ! 0 ! ' $% 1 ?<%

# 0 $%%0 ! !

%$% !76

3.33 8 # @,# 3,% #4 6+6 !7 0 $ !

# ! ' # $+6 # &

! ' & 5$%,!=6- %:@$%61

3.34 60 ! 5 !76 # !

& ! 3a4 $ 0P 3b4 @ 0P 3c4 & P & 3a4 + !76- 3b4 6 !76 -3c4 + 1

3.35 #( ! 5%% 3a4 & :P 3b4 ! P 3c4

& # & %,%% 1 P & 3a4 6*@

1-3b4 %5%% 0- 3c4 $+? !76

3.36 H # 6%%0 H 0 8 # ,%% 1 9

! 3a4 & & 0 <% !7P 3b4 & &

P & 3a4 56 - 3b4 $5 !

3.37 *%%0 6% !7 & G

5% !P 3A B . 4 & +% 01

3.38 $6% # ! ?%% !7 6%% ! # !

# & & P 3' ! 4

& $@? 01

3.39 6%0 B 3! 4 &

3a4 6,% 1 3b4 $,% 1 3c4 H 3d4 $*+ 1 & 3a4 6? !76 - 3b4 65 !76 &-3c4 *< !76&- 3d4 H

3.40 ,%0 ! B !

3a4 $, !76 3b4 $, !76& 3c4 *< !76& & 3a4 ,? 1- 3b4 @6 1- 3c4 H

3.41 ?%%1 ! I 8 ' &

3a4 $< !76 P 3b4 $< !76 &P

3c4 *< !76&P & 3a4 %<5 01- 3b4 %,? 01- 3c4 H

3.42 # #! 5@$ +,% 0 & ! &

gˆ$:+% !76 P & $%@ 1

3.43 ! @%0 #( $60 #(

"! & @* !76 ,* 1

3.44 ! & & ! 6% ! . %+%

5%0 0 #

P & +5 1

3.45 C +%0 ,% !7 %<%

$6% !7 B '

! ! & 6<,% 1‡,<< 1ˆ5@5< 1ˆ5:@ 01

(56)

3.46 5%% ! ! #! !

*%% ! 3a4 B & ! & %?%% !76:

3b4 B & %?%% !76&& & 3a4 $6+ 1

*@, 1- 3b4 $%* 1 <$* 1

3.47 6%0 & # 5%8# H

5% 1 ! & & ! & 3a4

3b4 %@% !76P & 3a4 5, 1- 3b4 @@ 1

3.48 $60 #' ! ,% ! !0 @%8

H +%1 ! ! #' 3a4 & # #'

3b4 & & 0 #! P & 3a4 $5 !76- 3b4 6<

3.49 B #! 5@< & K #& #' P

%+?

3.50 !0 5%8& H B

G $,0 #' 3a4 & $6 !76 3b4 &

& $6 !76 1 & 3a4 *6 1- 3b4 ,+ 1

3.51 H F ' 6%0 #' 5%8 8

! <% 1 & ! F # ! #' # 3a4 H

3b4 %?, !76P & 3a4 %6$ 01- 3b4 %66 01

3.52 !0 6,8& H 5%0 #0

6%0 #0 # ! "!

6%0 #0 & 6% ! 1 & 6* !

3.53 #! 5,6 K #& #0 %6% & %?@ !

3.54 H 6%% 1 G $,0 #0 6%8 &

6, !76 B 3a4 #0 3b4 K & 3a4 %$5

01-3b4 %+,

3.55 B #0 B 56% #

!P & 55 !76 $5 1

3.56 #! 5,, K 0 #& #0 # %5%

& %5* !76 $5 1

3.57 & F B 56$ +%0 #0 & $,% !76

K %@%P & @< 1

" 5O 1:8;1=9 9 @,

(57)

3.58 B 566 & F #0 5% !76 K 0 #& #0 # %6%P & $,%0 #0 '

6%0 #0P & 66 1 $, 1

3.59 3a4 ! 5?8 0 $%%1 & ! &

K 0 # %5%P 3b4 G 0

& ! P 3c4 *@ 1 & & #

#(P 3d4 #( 3c4 ! & & ! $% P

& 3a4 5+ 1- 3b4 <@ 1- 3c4 %*< !76 - 3d4 @* !

3.60 ,%0 #0 5%8 8 K #& #0

%6% & H ! #0 #0 # 3a4

3b4 & P & 3a4 @5 1- 3b4 $++ 1

3.61 8 #0 & ! +% 0 *% 0 $% 0 & B 565 8 K

#& # $%0 #0 %6% B 3a4 ! 3b4

& 3a4 %5* !76- 3b4 +$ 1 <, 1

3.62 8 := # +5?% 0! #( ! 6% 0 0 $+% 0!

# := 3a4 #(= ! P 3b4 & ! #( &

3 & ' 4 P & 3a4 6% 0- 3b4 %$* 01

3.63 8 : # +5?% 0! & # 5@@% 0! #( & 6%% 1

: & & & & & # P 8 !

%$$ : & ?, 1 5? !76

@+ 1:8;1=9 9 N" 5

Fig. 3-21 Fig. 3-22

(58)

Chapter 4

Equilibrium Under the Action of Concurrent Forces

CONCURRENT FORCES & !! 8 #( # ! #(

AN OBJECT IS IN EQUILIBRIUM

THE FIRST CONDITION FOR EQUILIBRIUM G! ~Fˆ% ! !

FxˆFy ˆFzˆ%

8 ' #( ! # H 8 K G#! & ' ! # . #( # G#! - " ,

PROBLEM SOLUTION METHOD (CONCURRENT FORCES):

3$4 #(

364 9& #( ! 33) ,4

354 B !

3@4 . G#! G ! 3,4 9 G G

THE WEIGHT OF AN OBJECT …~FW† & & &&

THE TENSILE FORCE …~FT† # 3 !!#4 8 !

…FT†

THE FRICTION FORCE …~F† #( #( ( & & 8 ! ! !

THE NORMAL FORCE …~FN† #( # # !

@?

(59)

Solved Problems

4.1 B @$3a4 H 5% 1 & B & #(

8 $ G & #( ! 8FT$ˆFW &

& .FT$FW

1 0& FT$ 0& 5% 1 # 0 P

!0 0 P #( 8 # ! &

0 & B @$3b4 8 ! &

' & . G#! 0 B! # !

‡

!Fxˆ% #! 5% 1 FT6 @%8ˆ%

‡"Fyˆ% #! FT6 @%8 FW ˆ%

9 . G FT6FT6ˆ5*:6 1 9# G

Referensi

Dokumen terkait

Moreover, although the information contained herein has been obtained from sources believed to be reliable, its accuracy, completeness and reliability cannot be guaranteed.. All

As such, no assurance can be given as to the Statistical Information s accuracy, appropriateness or completeness in any particular context, nor as to whether the

Moreover, although the information contained herein has been obtained from sources believed to be reliable, its accuracy, completeness and reliability cannot be guaranteed.. All

Moreover, although the information contained herein has been obtained from sources believed to be reliable, its accuracy, completeness and reliability cannot be guaranteed..

Moreover, although the information contained herein has been obtained from sources believed to be reliable, its accuracy, completeness and reliability cannot be guaranteed.. All

Moreover, although the information contained herein has been obtained from sources believed to be reliable, its accuracy, completeness and reliability cannot be guaranteed. All

This is very necessary to adjust the accuracy of the output value on the sensor obtained to be sent to a database website that displays the experimental results obtained so that the