THEORY AND PROBLEMS
OF
COLLEGE PHYSICS
Ninth Edition
FREDERICK J. BUECHE, Ph.D.
EUGENE HECHT, Ph.D.
!"
SCHAUM'S OUTLINE SERIES
# $% & %! '( )
* ! ! # !
Copyright © 1997, 1989, 1979, 1961, 1942, 1940, 1939, 1936 by The McGraw-Hill Companies, Inc All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.
0-07-1367497
The material in this eBook also appears in the print version of this title: 0-07-008941-8.
All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.
McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro-grams. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069.
TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.
THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.
DOI: 10.1036/0071367497
abc
Preface
8 0& FF == FF == &! ) & ! ! ! ! !
FF == #! !! #
! ! , ! !! & G
! ! ( & 8 !! 0& # # ! ! # ! ! # ' / & ! : ! ! = GD G
! & 0 ! # & !! # !# ! H ' & !! 0 !!! I' . . ! 8 ! # ! # # - 0& ' & 0& & !!! & ! 0& & : #0 # & !! ! . & G & ! !&0 ! # = ! !
: & ! #( ! FF - ( = #!== 1 ! # FF== #! ! ' = ! ! 8 ! . & ! #! & #! I & 0 !! 8 0- ! ! ' #! G ' I # # ( FF0& & == 0 ! ! ! # ! 0#- & )
& = ! & & #0
#
& #! # * # ' !H &0 ! 8 # ! . !
B '! & !#H # -
& / !
0 3/4 & # & & 3/4
3 4 & # !0 3 4 8 # ! &= & ! & # # !# & & # 8 . . 3 ' 4 #! ! . # !0 ! ! I ! ! : & # & & ! #
!! # ' #! = 0 ! : ! " 12 $$,5%
"0 $ ::1: :" 8
Contents
Chapter
1
INTRODUCTION TO VECTORS 19 G J G
3 !4 ! ! 9#
8! "! "! !
!
Chapter
2
UNIFORMLY ACCELERATED MOTION 139 J ! !
!
J ! ( #!
Chapter
3
NEWTON'S LAWS 279 0! B 1 ' 8 &
1&= B & 1&= 9 & 1&= 8 &
& #& !
& 8 B 1! "K 0
"K ! !
&
Chapter
4
EQUILIBRIUM UNDER THE ACTION OF CONCURRENTFORCES 47
" #( G#! B G#!
#! ! 3 4 #( 8
B 1!
Chapter
5
EQUILIBRIUM OF A RIGID BODY UNDER COPLANARFORCES 56
8G 3 !!4 8& G#! "
' #
Chapter
6
WORK, ENERGY, AND POWER 690 &0 : L
0 ! " & L&
Chapter
7
SIMPLE MACHINES 80! &0 :K
Chapter
8
IMPULSE AND MOMENTUM 87!!! ! ! !!!
" !!! " '
"K " !
Chapter
9
ANGULAR MOTION IN A PLANE 99! :G
! ! #&
G " "
Chapter
10
RIGID-BODY ROTATION 1118G 3 !!4 ! 8G
L "!# 0 &
!!! ! ' !
G
Chapter
11
SIMPLE HARMONIC MOTION AND SPRINGS 126BG # ! !
9! ! ! 0 ! :
: 9 9 9
9 ! 9! ! 9
Chapter
12
DENSITY; ELASTICITY 1389 . : 9 9 : !
2= ! /0 ! 9 !
Chapter
13
FLUIDS AT REST 1469 !
= !=
Chapter
14
FLUIDS IN MOTION 157B I& :G 9 J
= & 0 # 0 #
/= G 8= ! !#
Chapter
15
THERMAL EXPANSION 1668! ' ' J!
'
Chapter
16
IDEAL GASES 1713 4 ; ! # & 9
# H 9 !
3984 = & & #!
Chapter
17
KINETIC THEORY 179L = !# !
0 ! G # !
Chapter
18
HEAT QUANTITIES 1858! 9 . 3 4
H #! "! #! #
! ! &
Chapter
19
TRANSFER OF HEAT ENERGY 193: # " 8! "
Chapter
20
FIRST LAW OF THERMODYNAMICS 1980 # ! B & 8!!
# ! ! #
9 . 9 . 0
:K
Chapter
21
ENTROPY AND THE SECOND LAW 2099 & 8!! : : !
##
Chapter
22
WAVE MOTION 213& ! # 9
& 9 & "
3! 4 &
Chapter
23
SOUND 2239 & :G 9
3 4 / )
)
Chapter
24
COULOMB'S LAW AND ELECTRIC FIELDS 232"!#= & " GH " 8
: . 9 . : .
9
Chapter
25
POTENTIAL; CAPACITANCE 243) # :
1 : "
" :
Chapter
26
CURRENT, RESISTANCE, AND OHM'S LAW 256" / ;!= & ! #
!! ! 8! )
& !
Chapter
27
ELECTRICAL POWER 265: &0 : & & 8!
"
Chapter
28
EQUIVALENT RESISTANCE; SIMPLE CIRCUITS 270
Chapter
29
KIRCHHOFF'S LAWS 283L)= 3 (4 L)= 3 4 9
G #
Chapter
30
FORCES IN MAGNETIC FIELDS 289. . " !
! .
. B ! . 8G I
Chapter
31
SOURCES OF MAGNETIC FIELDS 299. ! . B!
! !! . !
Chapter
32
INDUCED EMF; MAGNETIC FLUX 305) ! . I' !
B= & ! H= & !
Chapter
33
ELECTRIC GENERATORS AND MOTORS 315: : !
Chapter
34
INDUCTANCE;R-CANDR-LTIME CONSTANTS . . . . 3219 : 23!
23! :'
Chapter
35
ALTERNATING CURRENT 329:! # 8! &
B! ;!= & !
& 8!
Chapter
36
REFLECTION OF LIGHT 3381 & I ! 9 !
G 9H !
Chapter
37
REFRACTION OF LIGHT 3469 ' 9= & "
I !
Chapter
38
THIN LENSES 3538 ;#( ! !0= G &
Chapter
39
OPTICAL INSTRUMENTS 359"!# 8
8
Chapter
40
INTERFERENCE AND DIFFRACTION OF LIGHT 366" & ) )
9 ) ! ) G
) M ;
Chapter
41
RELATIVITY 374! 9 !!!
! 8! 9!
J !
Chapter
42
QUANTUM PHYSICS AND WAVE MECHANICS 382E ) !! "!
) / & / & EH Chapter
43
THE HYDROGEN ATOM 390! : # : ! :! 9 ; # Chapter
44
MULTIELECTRON ATOMS 3961 ! E! !# ' Chapter
45
NUCLEI AND RADIOACTIVITY 3991 1 ! !# ! ! !# / 1 G Chapter
46
APPLIED NUCLEAR PHYSICS 4091 # B B ! :) !! Appendix
A
SIGNIFICANT FIGURES 417Appendix
B
TRIGONOMETRY NEEDED FOR COLLEGE PHYSICS 419Appendix
C
EXPONENTS 422Appendix
D
LOGARITHMS 424Appendix
E
PREFIXES FOR MULTIPLES OF SI UNITS; THE GREEK ALPHABET 427Appendix
F
FACTORS FOR CONVERSIONS TO SI UNITS 428Appendix
G
PHYSICAL CONSTANTS 429Appendix
H
TABLE OF THE ELEMENTS 430INDEX 433
Chapter 1
Introduction to Vectors
A SCALAR QUANTITY, ! & ! ! ! ! H # 8 !# G ( ! G
9 . # !# # & 8& #'
A VECTOR QUANTITY # . ! & # ! 3H4 !
!!! G B '! "! , ! #
! 6 ! & x !
. '! &
6% & 314 & ; & %66, 3$%% 1%:66, #4 9!
! @% 0!7 ! @% 0!79;8
G # # & & 8 & ! G 36 ! 6% 1 @% 0!7 # '! 4 8 & G
! # # F & #
~F !! ! . & # !
#
THE RESULTANT, ! !# 3 '! 4 & ! ) 0
GRAPHICAL ADDITION OF VECTORS (POLYGON METHOD): 8 ! . ~
R 3~A ~B ~C4 # & 3 4 & 8 ! # 0 A ~A~B~C~C~A~B~R 8 & & B $$
$ Fig. 1-1
8 # & &
~R R j~Rj H ,
PARALLELOGRAM METHOD & A 8 & ! # # ! 8 & & ! & B $6 8 & ! &
SUBTRACTION OF VECTORS: 8 # ~B ! ~A
~B ~A ~A ~B~A ~B:
THE TRIGONOMETRIC FUNCTIONS . B & B $5 # .
B
C;
(
A
C;
(
B A
!
BC AC BA
A COMPONENT OF A VECTOR ) B '! x
! ! ! x' #
! ! ! # !
,!! "" ! 9! & !
6 18;"8;1 8; J:"8;9 N" $
! # & ! & !
B $@ & ~R x y ! ~Rx ~Ry &
!
j~Rxj j~Rj j~Ryj j~Rj
G
RxR RyR
COMPONENT METHOD FOR ADDING VECTORS: : x y
z! & ! 0 8 x!
Rx ~R # ! x! 8 y z
! ! & ! 0& ! #
R R6 xR6yR6z
q
& ! & x' # !
Ry
Rx
UNIT VECTORS ! # # !#
& 8 ^i ^j k^ x y z'
5^i x & ,^k .
z ~R x y z! Rx Ry
Rz # & ~RRx^iRy^jRzk^
THE DISPLACEMENT: #( ! ! ! ! .
" $O 18;"8;1 8; J:"8;9 5
Solved Problems
1.1 ! . & & !A 6% ! @%8
@% ! $6?8 # 0 x' !
& & . . 39 ' . .4
"x y' & B $, ! !
1 ! ! x' 8 ~R !
& ! ! . ! @+ !
& ! # $%$8 8 ! @+ ! $%$8:
1.2 B x y! 6,%! ! 6$%:%8:
8 ! ! & B $+ 8 !
x! 6,:% ! 5%:%8 6$:? !
y! 6,:% ! 5%:%8 $6:, !
1 ! ! # 0
1.3 9 #! $$ # !
! & B $?3a4 3b4 3
!# & # ! 4 8 !
Rx$:,5 ! 6:@$ ! %:<< ! Ry$:6* !5:$* !@:@< ! 1 ! ! #
8 & B $?3c4- &
R
%:<< !6 @:@< !6
q
@:+ ! @:@< !
%:<< !
?*8 ! & $<%8 $%$8 ~R@:+ !Ð$%$8 B;4M9- !!#
! '
@ 18;"8;1 8; J:"8;9 N" $
1.4 & & # ! !A 5% 1 5%8 6% 1
$@%8 !!# !# 0 5% 1 6% 1 & . .
8 & B $<3a4 ! ! &
B $<3b4 8 ~R # / !! & . ~R 5% 1
?68:
1.5 B # O & B $*3a4 B
9 !O & B $*3b4
8 & !O
" $O 18;"8;1 8; J:"8;9 ,
Fig. 1-7
Fig. 1-8
!R! & B $*3b4 . # $$* 1 ! #
# 5?8 !0 $<%8 5?8$@58 &
x' 8 $$* 1 $@58:
1.6 8 . & B $$%3a4 #( B
3$4 B & . x y! 8 ! &A
1
364 8 ~R ! RxFxRyFy & & Fx FF ! x
! ==
Rx$*:% 1?:,% 1 $$:5 1 *:,5 1% 1 ,:? 1
Ry% 1$5:% 1$$:5 1 ,:,% 1 66:% 1 5:6 1
354 8 !
R
R6 xR6y
q
+:, 1
3@4 B & 0 & B $$%3b4 .
5:6 1
,:? 1%:,+
! & 6*8 8 5+%8 6*855$8 8 +, 1 55$8 3 6*84
~R+:, 1Ð55$8B;4M9
+ 18;"8;1 8; J:"8;9 N" $
B x"! y"!
$*% 1 $*% 1 % 1
$,% 1 $,:% 14 +%:%8?:,% 1 $,:% 14 +%:%8$5:% 1 $+% 1 $+:% 14 @,:%8 $$:5 1 $+:% 14 @,:%8$$:5 1 $$% 1 $$:% 14 5%:%8 *:,5 1 $$:% 14 5%:%8 ,:,% 1
66% 1 % 1 66:% 1
1.7 9 #! $, # ! ! & ! & . .
8 ! A
1 ! 8 . &
RxFx<% 1?$ 1 *, 1 $,% 1 *@ 1
RyFy%?$ 1,, 1 ,, 1?$ 1 8 & B $$$- &
R
*@ 16 ?$ 16
q
$:6$%61
B ?$ 1= *@ 1 ! &5?8 8 $$< 1 $<%8 5?8$@58
~R$$< 1Ð$@58B;4M9
1.8 $%% 1 !0 & x' y! 5% 1 B
# x! 3!!# !# $%% 1
. . & 5% 1 &4
8 0 B $$6 & .Fx 0&
$%% 15% 1 %:5%
$?:@+8 & . .$?8:8 &
Fx $%% 1 $?:@+8*, 1
1.9 & +% 1 8 !0 @%8
3a4 "! ) !
3b4 "!
" $O 18;"8;1 8; J:"8;9 ?
B x"! y"!
<% 1 <% 1 %
$%% 1 3$%% 14 @,8?$ 1 3$%% 14 @,8?$ 1
$$% 1 $$% 14 5%8 *, 1 3$$% 14 5%8,, 1
$+% 1 $+% 14 6%8 $,% 1 $+% 14 6%8 ,, 1
& B $$5 ! +% 1 5* 1 @+ 1 3a4 8
H ! @+ 1 3b4 8 ! 5* 1
1.10 & & FW ! & !0 H &
! ! & #0 = &P
& B $$@ = & ~FW & 0
! ~F 8 ! ! # !
FW !
1.11 :' & B $?3c4 $$%3b4 $$$ $$5 !~RRx^iRy^jRzk^ 3 4
!!# ! ! # & ' & &
B B $?3c4A ~R %:<<^i@:@<^j B B $$%3b4A ~R,:?^i 5:6^j
B B $$$A ~R *@^i?$^j B B $$5A ~R@+^i5*^j
1.12 8 # ~F$ 6%^i 5+^j?5k^1
~F6 $?^i6$^j @+^k1 ~F5 $6k^1 B . !
& . .
0&
RxFx6% 1 $? 1% 15 1
RyFy 5+ 16$ 1% 1 $, 1
RzFz?5 1 @+ 1 $6 1$, 1
9~RRx^iRy^jRzk & .^
~
R5^i $,^j$,^k
8 & . . ! !
R
R6
xR6yR6z
q
p@,*6$ 1
< 18;"8;1 8; J:"8;9 N" $
1.13 ! & # &~A~B ~C & B $$,A 3a4~A~B- 3b4~A~BC- 3~ c4~A ~B- 3d4~A~B ~C:
9 B $$,3a4 3d4 3c4 ~A ~B~A ~B- # ~B ! ~A
~
B ~A 9! 3d4~A~B ~C~A~B ~C & ~C G
! # ~C:
1.14 ~A $6^i6,^j$5^k~B 5^j?k^ . &~A # !~B: B! !! &
~
B ~A 5^j?^k $6^i6,^j$5^k
5^j?^k$6^i 6,^j $5^k$6^i 6<^j +^k
1 $6^i 6,^j $5k^ ! ~A 8 & ~A
~B
1.15 # < 0!7 & 0 I& & !
! < 0!7 & ! ! 5 0!7 &
# ! & 3a4 ! 3b4 &!P
3a4 & & #= & # < 0!7 / !
5 0!7 8 #= < 0!= 5 0!=, 0!=:
3b4 ! # ! # !
< 0!=5 0!=$$ 0!=:
1.16 & ,%% 0!7 / *% 0!7 & #&
& P
8 = ! & ,%% 0!7Ð:98 *% 0!7Ð9;8
8 ! & B $$+ 8 =
R
,%% 0!=6 *% 0!=6
q
,%< 0!=
" $O 18;"8;1 8; J:"8;9 *
8 #
,%% 0!*% 0!==%:$<
! &$%8:8 = ,%< 0!7 $%8
1.17 ! #! $$+ & !
! :P
8 ! = & & # : 8 & ! B $$? 1 G & L ! & & . .
*% 0!= ,%% 0!= ! &$%8 8 $%8
! & :
8 . = & & . R ,%% 0!=@:*$%,!=:
Supplementary Problems
1.18 9 ! & <%% 0! $*6 0!
& ! ! ! & & 6%< 0!Ð+?:@89;8 ;B :98
1.19 xy & : #' $% ! #
$% ! 8 &0 & . 36@ $%4 6@ #'
x' $% #' y' ! ! !
& 6+ !Ð658/;J:4M9
1.20 # A & <% ! ,% ! 5% ! & @% ! B
3a4 & B ! AP 3b4 B ! !A B #
# & 3a4 ,% !Ð:98 $:% !Ð1;8 - 3b4 ,$% !Ð$$:589;8 ;B :98
1.21 B x y! & ! xy A 3a4 5%% ! $6?8
3b4 ,%% ! 66%8 & 3a4 $<% ! 6@% !- 3b4 5<5 ! 56$ !
1.22 8& #( &A $%% 1 $?%:%8 $%% 1 ,%:%8 B
& $%% 1 $$%8
1.23 9 & ! ! xy 3
! 4A +% !! y 5% !! x @% !! $,%8
,% !! 6@%8 B ! # # & *? !! $,<8
$% 18;"8;1 8; J:"8;9 N" $
1.24 "! # & A $%% 1 5%8 $@$@ 1 @,8
$%% 1 6@%8 "0 & %$, 01 6,8
1.25 "! # & !A 6%% ! 5%:%8 @%% !
$6%:%8 6,% ! $<%:%8 @6% ! 6?%:%8 $6% ! 5$,:%8 "0 & & & 6%$ ! $*?8
1.26 8& <% 1 $%% 1 +%8& #( 3a4
& & P 3b4 3 5!)4 & # &
P 9 # & 3a4~RA %$+ 01 5@8& <% 1 - 3b4 ~RA %$+ 01 6$@8& <% 1
1.27 B # 3a4 3b4 G# 3 #! $6+4 & A
5%% 1 ' %8 @%% 1 5%8 @%% 1 $,%8 & 3a4 %,% 01 ,58- 3b4 %,% 01 6558
1.28 ! ?%8 x! @,% !P y! P & $5 0!
$6 0!
1.29 ! ! # ,% ! ! x
! <, ! 6,8P & @, ! ,58
1.30 B $$< ! ~A~B ' 3a4~P 3b4~R 3c4~S 3d4~Q
& 3a4~A~B- 3b4~B- 3c4 ~A- 3d4~A ~B
1.31 B $$* ! ~A ~B ' 3a4 ~E 3b4 ~D ~C 3c4
~
E~D ~C & 3a4 ~A ~B ~A~B- 3b4~A- 3c4 ~B
1.32 & ! #0 & & 6%8
H & & $,% 1 & & !
P & ,$ 1
1.33 #! $56 5%8# & ,* 1
1.34 B 3a4~A~B~C 3b4~A ~B 3c4~A ~C~A?^i +^j~B 5^i$6^j ~C@^i @^j
& 3a4 <^i6^j- 3b4 $%^i $<^j- 3c4 5^i 6^j
1.35 B ! ~R~R?:%^i $6^j & $@ +%8
" $O 18;"8;1 8; J:"8;9 $$
1.36 ! ! ! # ! 6,^i $+^j!
! ?% ! xP & $<^i$+^j!
1.37 $,^i $+^j6?k^1 65^j @%^k1 ! P
& 6$ 1
1.38 0 ! ?% 0!7 8 ' # 0 #
!0 !0 6%8 # 0 & #& &
& & P & 6, 0!7
1.39 $% 0!7 ! # 5%8
& . P & 6% 0!7
1.40 # & %,% !7 & !
+% ! & 8 I& & %5% !7 3a4 &
! # # P 3b4 & 0 # P
& 3a4 5?8 !- 3b4 $:,$%6
1.41 0 0 & ,%% 0!7 8 0
8 # $%%% 0!7 ! : & # !0 & P
& 6+:+8
Chapter 2
Uniformly Accelerated Motion
SPEED G #( 0 ! t l
"
! 0
vav l t
3 4 8 & = !
VELOCITY G #( !~s !
t
! !
! 0
~vav~s t
8 ! ! 8 3 4 # ! !7 0!7
ACCELERATION ! ! A
!
! 0
~aav ~vf ~vi t
&~vi ~vf . t ! &
8 # ! 8 '! 3!747 3
!764 30!747 3 0!74 1 G
~vf ~vi !! 0 !
( !#
UNIFORMLY ACCELERATED MOTION ALONG A STRAIGHT LINE !
! !
~v ~a # . & ! &
! # s 3
4 ! # # & 6 5 ! !
A
$5
svavt
vav vf vi
6
avf vi
t v6f v6i 6as
svit$6at 6
;s #xy !!vf vi & vv%
DIRECTION IS IMPORTANT, ! # & H ! : ! # ! ! # 0
INSTANTANEOUS VELOCITY !
H 8 #( ! ~s ! t #(
~v !
t!% ~s
t
& ! ~s=t # ! t
H
GRAPHICAL INTERPRETATIONS ! 3 x'4 &A
. 8 ! #( ! ! !
! # H
. 8 ! #( ! !
!
. B ! xt B
! vt
. 3 & ! !4 !!
!
ACCELERATION DUE TO GRAVITY g: 8 # !
g 3 4 & &
& ; : g*:<$ !76 ::;56:6 764- ! ;
$+ !76
VELOCITY COMPONENTS: 9 #( ! & ~v !
! x' & # & # & 8
x y ! 3 B $@4 ~vx ~vy 8 !
vxv vy v
# !# ~v .
G vx>% vy>%- ~v G vx<% vy >%- ~v
Gvx<% vy <%- . ~v G vx>% vy<% /
G ! 0& ' !! ! 8 & . ! ' # & � & ! FF== # G 3& # & & #4 & ' 8 #( ! &
! ~v$%% !7Ð:98 ! ! ! ! *3*vx $%% !7-
3& 4"v$%% !7
PROJECTILE PROBLEMS # # ; !
! & A H ! & a%
vf vivav 3 4 ! & ag*:<$ !76 &&
Solved Problems
2.1 " %6%% !7 0!
%:6%%!
%:6%% !
$% ,0! ! 5+%% 6@ 5+,
+5:$0!
2.2 !0 6%%! 0 ! 6, & = 3a4
3b4 P
3a4 B! .
! 0 6%% !6, <:% !=
3b4 / ! !
H 9~vav~s=t
j~vavj % !
6, % !=
2.3 #( ! & <%% !76 B 3a4
,%% 3b4 , 3c4
,%%
! . ,%% 80 ! # x
3 sx4 0& vi% t,:%% a<:%% !76 / ! !
. ! G
vfxvixat% <:%% !=6 ,:%% @%:% !=
a
vavvixvfx
6
%@%:%
6 !=6%:% !=
b
xvixt$ 6at
6
%$
6 <:%% != 6
,:%% 6$%% ! xvavt 6%:% != ,:%% $%% !
c
2.4 0= ! ! $, 0!7 +% 0!7 6% ! 3a4
3b4 3c4 !
B 6% 0x # ! &
vix $,
0!
$%%% ! 0!
$
5+%%
@:$? !=
vfx +% 0!=$+:? !=
vav$6 vixvfx $6 @:$?$+:?!=$% !=
a
avfx vix
t
$+:? @:$?!=
6% %:+5 !=
6
b
xvavt $%:@ != 6% 6%< !%:6$ 0!
c
2.5 ! ! ! B 6$ B
AB = P
P
/ # x=t & 0
A 8 B & A &
x
t
@:% !
<:% %:,% !=
8 B & a%
vx%:,% !=vav:
2.6 #(= ! ! x' B 66 # !
8 #( G !Q!
/ H ! ' t% t6:% #(
! t6:% #( # ! x &
3 4 B t6:% t@:%
$+ 1B;2 ""::8: ;8;1 N" 6
vav
xf xi tf ti
5:% ! % ! @:% 6:%
5:% !
6:% $:, !=
8 ~vav$:, !7Ð;98J:4:"8;1
t@:% t+:% #( - H x
B! t+:% t$% # #( ! x-
vav xf xi tf ti
6:% ! 5:% ! $%:% +:%
,:% !
@:% $:5 !=
8 ~vav$:5 !7Ð1:8J:4:"8;1
2.7 8 ! #( B 65 # ! G .
AB C:
# & #(
! t% & . B 38 H4 8 #
#0 &&
A &
vA
y
t
$6:% ! 5:% !
@:% %
*:% !
@:% 6:5 !=
8 A yA~vA6:5 !7Ð BC
vB % !=
vC
y
t
,:, ! $5:% ! $,:% <:,
?:, !
+:, $:6 !=
/ C yA~vC$:6 !7Ð;1 !!#
G ! # . '
2.8 # ! ,% ! # 3a4 ( #
P 3b4 & 0 P
" 6O 1B;2 ""::8: ;8;1 $?
& # !
&& *<$ !76 80# & A
y,%:% ! a*:<$ !=6 vi%
v6fyv6iy6ay%6 *:<$ !=6 ,%:% ! *<$ !6=6
a
vf 5$:5 !7 3b4 B!a vfy viy=t
tvfy viy
a
5$:5 %!= *:<$ !=6 5:$*
3 ( & 0" & & # P4
2.9 0 ! *% ! & 5% & ! &
0 G 6@ !7P !
! . 0= ! 5% 80 ! x & t5:% vix% x*:% ! 8xvixt$6at
6
a6x t6
$< !
5:% 66:% !=
6
& a ! &
vfx6@ !7 B vix%vfx6@ !7a6:% !76 8 !vf viat
tvfx vix
a
6@ != 6:% !=6$6
2.10 # ! 6% !7 # & 5% !7 B
& #
80 ! # x B vi6% !7
vf % !7a 5:% !76 1 # !
& 3 4
v6fxv6ix6ax
x 6% !=
6
6 5:% !=6+? !
2.11 ! 5% !7 & ! $% !7 ! ,% ! 3a4
3b4 !
0 ! # x
3a4 B ,% & t,:% vix5% !7vf $% !7 vfxvix
a $% 5%!=
,:% @:% !=
6
x3 5:% 3 6:%
b
x vixt5$6at 6
5 vixt6$6at 6 6
xvix t5 t6 $ 6a t
6 5 t66
vix5% !7a @:% !76t66:% t55:%
x 5% != $:% 6:% !=6 ,:% 6 6:% !
2.12 8 ! ! $, !7 ?% !7 &
*% ! 3a4 "! 3b4 & ! & # !
! P
0 ! # x
3a4 vix$, !7vfx?:% !7x*% ! 8v6fxv6ix6ax
a %:*< !=6
3b4 & & vix?:% !7vf %a %:*< !76 8
v6fxv6ix6ax
x% ?:% !=
6
$:*+ !=6 6, !
2.13 & & 6% ! & &
&P
0" y 8 = H 8vfy%
y6% !a *:<$ !76 38 ! # & &
& & 0" # 4 v6fyv6iy6ay .
viy
6 *:<$ !=6 6% !
q
6% !=
2.14 & & & 6% !7 & &
,% ! # & & & 3a4 & & & & P 3b4 & 0P
8 & B 6@ 0" 8 !
& # viy6% !7y ,:% ! 3 &
!4a *:<$ !76:
" 6O 1B;2 ""::8: ;8;1 $*
3a4 v6fyv6iy6ay .
v6fy 6% !=66 *:<$ !=6 ,:% ! 5%6 !6=6
vfy
5%6 !6=6
q
$? !=
0 # ! && .
3b4 a vfy viy=t .
t $?:@ 6%!=
*:<$ !=6 5:<
1 & ! vfy:
2.15 # & & @% 8
$+% !76 && B #=
0" B ! # y% 3 ! 4a $:+% !76t@:% yviyt$6at
6 .
%viy @:% $
6 $:+% != 6
@:% 6
! &viy5:6 !=:
2.16 ## & & & 5, !7 "! 3a4
!'!! # # 3b4 ! 0 3c4
5% & 3d4 & #= $%% !
80" #= H 3a4 B!v6fyv6iy6ay& g$:+% !76
% 5, !=66 $:+% !=6y y%:5< 0! 3b4 B!vfyviyat&
%5, != $:+% !=6t t66 3c4 B!vfyviyat&
vfy5, != $:+% !=6 5% vfy $5 !=
/vf & 0" && 8 #
& & t5% 3d4 B!yviyt$
6at
6&
$%% ! 5, !=t$
6 $:+% != 6
t6 %:<%t6 5,t$%%% / G !
x b
b6 @ac
p
6a
& .t5:$ @$ t5:$ # $%% ! - t@$ !
#
2.17 # # ! # 5%% ! # $5 !7 B
# . 3a4 !'!! 3b4 ,%
3c4 ! &
8 # & ! # $5 !7 & " 0y%
3a4 vf % B!v6fyv6iy6ay
% $5 !=66 *:<$ !=6y y<:+ ! 8 !'!! 5%%<:+5%<:+ ! %5$ 0!
3b4 80 # t,:% :8 !yviyt$
6at 6
y $5 != ,:% $
6 *:<$ !=
6 ,:% 6
,?:, ! ,< !
9 5%% ,<6@6 ! !vfyviyat
vfy$5 != *:<$ !=6 ,:% 5+ !=
& & & 5+ !7Ð;1
3c4 C #= ! 5%% ! 8
yviyt$6at 6
#! 5%% ! $5 !=t$
6 *:<$ != 6
t6
@:*%t6 $5t 5%%% 8 G ! t*:5 +:+ ; !
! G & *5
G ! # . ! vfA
v6fyv6iy6as #! v6fy $5 !=66 *:<$ !=6 5%% !
vfy ??:< !7 8 vfy3&P4 vfyviyt*:5
#
2.18 & B 6, ( . H & 5% !7 ! )
<% ! 3a4 & & 0 0 # )P 3b4 &
! ) & 0P 3c4 & & 0P
3a4 8 H ! " . !
80" y% ) &
yviyt$ 6ayt6
<% !%$
6 *:<$ != 6
t6
! & t@:%@ @% 1 H !
vi% !
" 6O 1B;2 ""::8: ;8;1 6$
3b4 1& H ! B a% vxvixvfx5% !7 8
t 3a4 &
xvxt 5% != @:%@ $6$ ! %:$6 0!
3c4 8 . H ! 5% !7 / ! t@:%@
#vfyviyayt
vfy% *:< !=6 @:%@ @% !=
8 & ! #~v B 6,- &
v
@% !=6 5% !=6
q
,% !=
8 & # @%=5% ,58: ~v,% !7Ð,58/:;4M9
2.19 I ! $, !7 I $%% ! #& & B 6+
& ! x! # 0 I !
0 P
B& ! #! 6$< & yviyt$6ayt6
$%% !%$
6 *:<$ != 6
t6 t@:,6 1&xvxt $, != @:,6 +?:< ! +< !
2.20 ## & & $%% !7 5%:%8# H
& B 6? & ! & & ## P
#! H &
vixvi 5%:%8<+:+ != viyvi 5%:%8,%:% !=
&" # 0
66 1B;2 ""::8: ;8;1 N" 6
Fig. 2-6
#!y% # 8
yviyt$6ayt6 % ,%:% != $6 *:<$ != 6
t
t$%:6 :
H #!vixvfxvx<+:+ !7 8
xvxt <+:+ != $%:6 <<@ !
2.21 & B 6< # & ! # & # ,% !
& 8 # 6% !7Ð@%8/;J: ;R;18 & # #&
& # 0 &P
vix 6% != @%8$,:5 !=
viy 6% != @%8$6:* != " . H ! B
vixvfxvx$,:5 !=
8xvxt
,% ! $,:5 !=t t5:6?
B ! 0# &
yviyt$6ayt6 $6:* != 5:6? $6 *:<$ !=
6 5:6? 6
$%, !%:$$ 0!
9y # # & %$$ 0! #&
2.22 3a4 B x & . & !HH v
3b4 B & . & !HH $6% !7
! # $5%% ! 39 B 6*4
3a4 t# ! 0 8xvixttx=vix "
! 0" 0
J !%viyt$
6 gt 6
9 G t6viy=g /tx=vix
x vix
6viy
g x
6vixviy
g
6 vi vi
g
" 6O 1B;2 ""::8: ;8;1 65
8 ! 6 6 # ! # &
xv
6 i 6
g
8 !'!! @,8 6 !'!! $ & 6*%8
@,8:
3b4 B! G 3a4 &
6gx
v6 i
*:<$ !=
6
$5%% ! $6% !=6 %:<<,
8 6 %:<<,+68 5$8:
Supplementary Problems
2.23 8 0 0 0 5<%! @% !
& *, !7
2.24 ! # $6%% ! 6%% !7
& 0P +%%
2.25 = ! 66 +<? 0! 66 ?*$ 0! 8 0 @%
& = 0!7 !7P & 6+ 0!7 ?6 !7
2.26 6, 0!7 @% ! ,% 0!7 <% ! .
6% 0!7 6% ! B 3a4 0! 3b4 !
!7 & 3a4 *% 0!- 3b4 $%? !7 $$ !7
2.27 $, 0 ! ,% 8 ! 0 @% !
! $6+ ! B 3a4 3b4 ! =
/ - & ! (
& 3a4 5< !7- 3b4 %<% !7
2.28 0 6%% 0!7 3a4 &
@,% !P 3b4 ! & 3a4 $,% 0!- 3b4 H
6@ 1B;2 ""::8: ;8;1 N" 6
2.29 8 & # #( x' !
. #( 3a4t,:% 3b4 $+ 3c4 65 & 3a4 %%$<
!7 x- 3b4 % !7- 3c4 %%$5 !7 x
2.30 B #( & ! # #! 66* . & !A 3a4 5%
3b4 $% 3c4 6@ & 3a4 $* !7 x- 3b4 $$ !7
x- 3c4 $, !7 x
2.31 B #( & ! B 65 . & !A
3a4 $% 3b4 @% 3c4 $% & 3a4 55 !7 y- 3b4 $% !7
y- 3c4 %<5 !7 y
2.32 # & <% !7 ! & +@% !
@% B @% . 3a4 3b4 . 3c4
& 3a4 $+ !7- 3b4 6@ !7- 3c4 %@% !76
2.33 0 ! ! & ,% !76 B
@% & 6% !7 @% !
2.34 #' & & ! ! 6? !7
5% B 3a4 3b4 ! . +% & 3a4 %*% !76- 3b4 $+ !
2.35 ! & 0 5% ! 8 ! 0 #&
0 @% = . 0 ,% !7 B =
0 & $5 !76 $% !7
2.36 = ! ! +% !7 6% !7 & ?% ! B
! 0 & 6+ !76 ,@
2.37 ! # 0) ! +%% !
$6 B 3a4 3b4 $6 3c4 ! &
& 3a4 <5 !76- 3b4 %$% 0!7- 3c4 *+ !
2.38 0 5% !7 & ! @@ B
& %:+< !76 %++ 0! +:+$%6!
2.39 #( ! $5 !7 & ! 6% !7 ! +% !
3a4 . 3b4 +% 3c4 ! +%
& 3a4 $% !7- 3b4 ?% !7- 3c4 @6 !
2.40 # ! B 3a4 3b4 5% 3c4
?% ! 3d4 ! G 6, !7 3e4 ! 0 5%% !
& 3a4 *<$ !76- 3b4 @@ !- 3c4 5? !7- 3d4 6+ - 3e4 ?<
2.41 !# ! # 0 & ,% " 3a4 & & 0
3b4 # & 3a4 @* !7- 3b4 %$6 0! $:6$%6!
2.42 & && & <% !7 ! 6, ! B 3a4 !
0 3b4 & & 0 & 3a4 $+ - 3b4 6@ !7
" 6O 1B;2 ""::8: ;8;1 6,
t34 % 6 @ + < $% $6 $@ $+ $< 6% 66 6@ 6+ 6<
2.43 ## & & & 5% !7 3a4 & & P 3b4 & &
P 3c4 & & P 3d4 & #
$+ !7P & 3a4 5$ - 3b4 @+ !- 3c4 +$ - 3d4 $@ @?
2.44 # ! # 6% ! # 3a4
& 3b4 & & ,% !7 & # &
& 6% 0!- 3b4 %*+ 0!
2.45 8& # ! ) ; $, #
# 0 ! ! ,% . & 3a4 )
! & & P 3b4 B! & & . # P & 3a4 +5
!-3b4 %$6 0!
2.46 ! ! # #! !
5%% !7 8 0 #! 6%% 3a4 & ! #! &
& ) P 3b4 & # #! & %6, )P
& 3a4 $5+ !- 3b4 $@ !
2.47 !# & 6% !7 ) # <% ! 3a4 &
0 IP 3b4 & H ! # !# 0
IP & 3a4 %@% - 3b4 <$ !
2.48 # ( & ! ,%8& H
@% !7 3a4 & & 0 P 3b4 & ! & 0P 3c4
& & H & 0P & 3a4 +5 - 3b4 %$+ 0!- 3c4 ,%8
2.49 # ( && 5%8& H ! # $?% !
@% !7 3a4 & & 0 # 0 P 3b4 & !
# & 0P 3c4 & & H & 0P & 3a4 @6 - 3b4 %$,
0!-3c4 +%8
2.50 ! & & @%8 H 8
& 6% !7 & & 0 & & <% ! &P
& ,@ !
2.51 9 # ! # & @% !7 6+8# H
. & 5% ! # #0 # & & $$% ! ! ! 8 # & $6% ! # & & # .= # P & +% !
2.52 & ! & +%8 & 5%8 #
# & ! H
2.53 # & & 5%8 H #
6% ! & 8 ,% ! # & & & # &P
& 6% !7
2.54 # & & & v! h! # 9& !
0 # 0 v=g$p$ 6hg=v6
:
Chapter 3
Newton's Laws
THE MASS #( ! #(
# ! # ! ! & B 0 ! ! G!
THE STANDARD KILOGRAM #( & ! . # 0! 8
! #( # ! & ! , , G
' %%%$ 0
FORCE ! &
#( B G ! *!
& ! #
THE NET EXTERNAL FORCE #( #( 8 ! #( 3 & 0& ! 9 8 ! ' '! # & # 4
THE NEWTON 9 ; & 3$ 14 & &
$ 0 ! $ !76 8 " @@, 1
NEWTON'S FIRST LAWA )7 #!! , 8 )7 , #!!
, # ! 0 * " " ) *! B
!
NEWTON'S SECOND LAWA # 1& 9 & & ! ! !!! 8 ! & # " <
& ! # 3 4 ~F
#( ! m H #( 8
~a ! #(
~F & m 0! ~a !76 # &
~a~F
m ~Fm~a
8 ~a ! ~F:
8 G~Fm~a # & ! !
Fxmax Fymay Fzmaz
& ! ' #(
6?
NEWTON'S THIRD LAW: & ! Q ! * )0 5!0 ) ""! 0 , )
# & 8 # 2 1
& ) #(
THE LAW OF UNIVERSAL GRAVITATION: & ! m m0
& G ! B ! 3
!! #4 FG #
FGG mm0
r6
& r #& ! & G+:+?$% $$1!6=06 & FG
&mm0 0! r !
THE WEIGHT #( FW && #( ; : ' #( # & 3 94 3 / !4 / : ! ! # = & ! # & # ) ! . #
RELATION BETWEEN MASS AND WEIGHT: #( ! m &
: #( D & & & FW
#( 8 #(= FW g 8 ~Fm~a
& #& F FW ag m- FW mg /
g*:<$ !76 : $%% 0 #( & *<$ 1 :=
THE TENSILE FORCE ~FT
8 ! FT
THE FRICTION FORCE ~F #( #( ( & & 8 ! ! ! ; & ' !'!! & #( #
THE NORMAL FORCE ~FN #( # # !
THE COEFFICIENT OF KINETIC FRICTION k . &
k!
F FN
THE COEFFICIENT OF STATIC FRICTION s . & (
s
!'!!
!
F !' FN
& !'!! & #( ( #
DIMENSIONAL ANALYSIS: ! G #
' ! ! !A L ! M ! T B '!
3 4 # 3!46- & , L=T6 &
& & LT 6 8 ! ! L5 LT $ /
! ! # ! MLT 6 !
0 G ! G ! ! ! B '! ! G
svit $ 6at
6
L ! LT $T LT 6T6
! ! 2,,)0 !! , 5 , ,
, '! G ! L5 L6
MLT 6# ! LT $- ! ! !
MATHEMATICAL OPERATIONS WITH UNITS: !!
! 3 '! # ! 5 !7 !764 ! # & !# !
! !! !#
E # # ! 3 & ! !4 B '! & # , ! 34 < ! 34 & ! . ! ! ! ! & G # !# ! & & !# # # & G 8A
3$4 + !66 !6< !6 !6!6!!6
364 , !6 !6$% !5 !!6!!5
354 6 !5$,%% 0
!55%%% 0 !
5
0
!5!0
3@4 6 5 0! 6 +
0!
0! 6 !
0!
3,4 $,
5 =!5, !
5
=!5! !5
!!
5
!
Solved Problems
3.1 B & : # & ! 3a4 5%% 0 3b4 6%%
8 #& !m &FW FW mg m! # 0
!g ! G FW & ; :g*:<$ !76 8
!
3a4 FW 5:%% 0 *:<$ !=6 6*:@ 0!=66*:@ 1 3b4 FW %:6%% 0 *:<$ !=6 $:*+ 1
3.2 6%% 0 #( ! #( @,% 1
x B #(
!0 & ! ! Fxmax & Fx @,:% 1
m6%:% 0 8
ax
Fx
m
@,:% 1
6%:% 0 6:6, 1=0 6:6, !=
6
& & $ 1$ 0!=6 / #(
x
3.3 8 #( B 5$3a4 & ,% 1 # B
! #( 8& &
&& #FT 8
& #( FW ,% 1 8 & & # ! B
5$3b4
8 ! ! & & . G#! 0" A
!Fx% #! %%
"Fy% #! FT ,% 1%
! &FT,% 1 8 & # G#!
G & #
5% 1:8;1=9 9 N" 5
3.4 ,% 0 #( # & %5% !76 # & ! # P
8 # ! #( & B 56 8 FT &
#( FWmg ,:% 0 *:<$ !=6 @*:$ 1 Fymay&"0 &
FT mgmay FT @*:$ 1 ,:% 0 %:5% !=6
! &FT ,%:+ 1,$ 1 0 & FT FW ! # #(
&
3.5 H $@% 1 +%% 0 #' H I
K #& I #'P ! . . = G
8 # ! #' & B 55 / #' ! &
ay% 8
Fymay FN mg m % !=6
! & & . FNmg +%:% 0 *:<$ !=6 ,<<:+ 1 B # #' !
H ax%
Fxmax $@% 1 F%
! & F $@% 1
0
F
FN
$@% 1
,<<:+ 1%:65<
3.6 8 ,% 0 #( ! Fx6% 1 Fy5% 1 B
#(
!0 FxmaxFymay #
" 5O 1:8;1=9 9 5$
ax
Fx
m
6% 1
,:% 0@:% !=
6
ayFy
m
5% 1
,:% 0+:% !=
6
8 ! & B 5@ B! . &
a
@:%6 +:%6
q
!=6?:6 !=6 +:%=@:% ,+8:
3.7 +%% 1 #( # %?% !76 & # !
P
1 & ! #( ! & & !
: & FW mg .
mFW g
+%% 1
*:<$ !=6+$ 0
1& & 0& ! #( 3+$ 04 3%?% !764 &
Fma +$ 0 %:?% !=6 @5 1
3.8 ,% 0 #( ! ?% !7 5% !7 !
5% B
! . . #( & # 80 ! ! " 6 &
avf vi
t
@:% !=
5:% $:55 !=
6
1& & Fma&m,:% 0A
F ,:% 0 $:55 !=6 +:? 1
8 ! !
56 1:8;1=9 9 N" 5
3.9 @%% #0 & <% !7 H #
%?% 1 3a4 & & # P 3b4 K
#& #0 # P
3a4 0 ! 8 # #0
%:?% 1 8
Fma #! %:?% 1 %:@%% 0 a
! & a $:?, !=6 31 m & 0!4 8 . #0
& vix%:<% !7vfx% a $:?, !76 8v6fx v6ix6ax
xv
6 fx v6ix
6a
% %:+@!6=6
6 $:?, !=6%:$< !
3b4 / #0 ! & #FN ! G
&, #0 8
0
FN
%:?% 1
%:@% 0 *:<$ !=6%:$<
3.10 +%%0 ! 5% !7 3a4 & 3!
4 G ?% !P 3b4 !!! K
#& & # #P ! & 0 & & & Q =
3a4 ! . . = ! ! G 0& vix5% !7vfx%
x?% ! v6fxv6ix6ax .
av
6 fx v6ix
6x
% *%% !6=6
$@% ! +:@5 !=
6
1& & &
Fma +%% 0 +:@5 !=6 5<+% 1 5:* 01
3b4 8 3a4 #& & 8
! F5<+% 1 8 K #
sF=FN & FN ! &
& G = & 8
FN FW mg +%% 0 *:<$ !=6 ,<<+ 1
s
F
FN
5<+% ,<<+%:++
8 K ! # %++ & ?% !
3.11 <%%%0 @% %%%0 0
a$$:6% !76 a6& $+ %%%0 P
B ! 8
a6m$ m6a$
<%%% 0@% %%% 0
<%%% 0$+ %%% 0 $:6% !=
6
6:@% !=6
3.12 & B 5,3a4 #( !m # B
#( 3a4 3b4 ! 3c4 & &
a5g=6 3d4 && a%:?,g:
8& #(A FT & && mg 8
& # ! B 5,3b4 0" &Fymay
3a4 ay%A FT mgmay% FTmg
3b4 ay%A FT mgmay% FTmg
3c4 ay5g=6A FT mgm 5g=6 FT6:,mg
3d4 ay 5g=@A FT mgm 5g=@ FT%:6,mg
1 mg 3d4- #( &&
" ' &FT% ay gP
3.13 & & #0 ' $,%% 1 & ?%%0
P 3!!# $,%% . .- ' 4
8 & B 5+ ; x ! #
y # & & &
&
!Fxmax #! $,%% 1 ?%% 0 a
! &a6:$@ !=6:
3.14 "! & & @,0 &! &
& 5%% 1
8 & &! mg @, 0 *:<$ !=6 @@$ 1 /
5%% 1 # && F &! ! # @@$ 1 5%% 1$@$ 1
!!! &&
aF m
$@$ 1
@, 05:$ !=
6
3.15 ?%0 #' I # @%%1 & B 5? 8 K
#& #' I %,% & #' B #'
5@ 1:8;1=9 9 N" 5
9 y ! #
FNmg ?% 0 *:<$ !=6 +<? 1
/ F #
F 0FN %:,% +<? 1 5@@ 1
1& &Fxmax #' 0 ! A
@%% 1 5@@ 1 ?% 0 a a%:<% !=6
3.16 9 & B 5< ?%0 #' # @%%1 5%8
H 8 K 0 %,% B #'
/ #' ! & & Fymay% B! B 5< &
G
FN6%% 1 mg%
/mg ?% 0 *:<$ !=6 +<? 1 & FN @<+ 1:
' . #'A
F 0FN %:,% @<+ 1 6@5 1
1& &Fxmax #'
5@+ 6@51 ?% 0 ax
! &ax$:, !76:
" 5O 1:8;1=9 9 5,
Fig. 3-7
3.17 ! 6% !7 H #0 ! & # K #& %*%P ! & #0 #0 = 0
8 & & $
F$sFN$FW$
&FW$ & # & $ # Ff # !
&A
F sFW$sFW6sFW5sFW@s FW$FW6FW5FW@ sFW
&FW & 31 & ! ! #0 &4 8
# 3& & 4 Fma
&F # sFW sFW ma &m = !
0 ! &FWmg- =
a sFW
m
smg
m sg %:*% *:<$ !=
6 <:< !=6
. & & # # ! #! L& vi6% !7
vf % a <:< !76 & . !v6f v6i 6ax
x % @%%!
6=6
$?:+ !=6 65 !
& # #0 ! & #
3.18 & B 5* @%% 1 6,0 #' 9 ! #'
6% !7 ! @% B K 0 #& #' I
& .f # Fma / . & ! .a! ! #! 0&
vi%vf 6:% !7t@:% vf viat
avf vi
t
6:% !=
@:% %:,% !=
6
1& & &Fxmax &axa%:,% !76 B! B 5* G #!
6,? 1 F 6, 0 %:,% !=6 F6@, 1
& & F=FN 8 .FN & &Fymay% !
B! B 5*
FN 5%+ 1 6, *:<$1% FN,,$ 1
5+ 1:8;1=9 9 N" 5
8
0
F
FN
6@, ,,$%:@@
3.19 6%%1 & # 5%8 &
) #P
8 & B 5$%3a4 / & !
8 & G#! . G#!
& #( 8 # A 3$4 FW 3
&4 &- 364 F' &
- 354 FN & 8 & #
! B 5$%3b4
B 0 x' y'
0 ! ' & & . G #!A
Fx% #! F %:,%FW%
Fy% #! FN %:<?FW %
9 . G FW6%% 1 & . F %:,%FW 8 G
& . . %$% 01
3.20 6%0 #' & B 5$$ 8 K 0 #&
#' %5% B #' &
#! & 0x y' & .
. # &Fxmax / . & ! .
F 5%8%:<++
Fymay% FN %:<?mg%
! &FN %:<? 6% 0 *:<$ !=6 $?$ 1 1& & .F !
F0FN %:5% $?$ 1 ,$ 1
" 5O 1:8;1=9 9 5?
Fig. 3-10
!
Fxmax &
F %:,%mgmax ,$ 1 %:,% 6% *:<$1 6% 0 ax
! &ax 6:5, !76 8 #' & 6@ !76
3.21 ,%% 1 6,0 #' & B 5$6 #'
%?, !76 B K 0 #& #'
8 ! & B 5$6 1 & x y' 0
9 #' ! 3& & !4 &
. .F # &Fxmax B! B 5$6 @%8%:+@5
5<5 1 F %:+@ 6, *:<$1 6, 0 %:?, !=6
! &F 6%? 1
FN Fymay% @%8%:?++ &
FN 56$ 1 %:?? 6, *:<$1% FN,$% 1
0
F
FN
6%? ,$%%:@$ 8
5< 1:8;1=9 9 N" 5
Fig. 3-11
3.22 8& #0 !m$m6 # F & B 5$5 8 K
#& #0 # %@% 3a4 ! # F #0
6%% !76P & m$ ' m6P
m$5%% m6,%% !!# &0 9
8 #0 F$%:@m$g F6%:@m6g 0 & #0
!# #( - H #( ! 3 *!
4 FF$ F6 & #0 !
- # ' &! #( B #(
Fxmax #! F F$ F6 m$m6ax
3a4 9 F # 0& & .
F%:@%g m$m6 m$m6ax5:$@ 1$:+% 1@:? 1
3b4 1& #0m6 8 x #0m$
3& & #Fb4 F6%:@m6g 8
Fxmax #! Fb F6m6ax
0& ax6:% !76
FbF6m6ax$:*+ 1$:%% 16:*+ 15:% 1
3.23 3 # ! 4
?%0 ! ! *%0 ! ! &
B 5$@ 38 ! # , 4 B !
/ & # ! 8
& ! & B 5$@ & #( mg
#( # 0 !
& 0 " ?%0 ! #
*%0 ! 3 & & # ! / =
! G4 Fymay ! &
FT ?:% *:<$1 ?:% 0 a *:% *:<$1 FT *:% 0 a
" 5O 1:8;1=9 9 5*
& & G 0&FT
*:% ?:% *:<$1 $+ 0 a
&a$:65 !76 & # $65 !76a G #FT ?? 1
3.24 B 5$, K 0 #& #0 A # %6%
mA6, 0mB$, 0 & & #0B . 5% ! P
9 #0A ! !
FN mAg 6, 0 *:<$ !=6 6@, 1
F 0FN %:6% 6@, 1 @* 1
! . . ! & # !
Fma #0 80 ! &
FT F mAa FT @* 1 6, 0 a
mBg FTmBa FT $, *:<$1 $, 0 a
!FT # & G 8 a & .a6:@, !76:
1& & &0 ! #! &a6:@, !76vi%t5:% A
yviyt$ 6at
6 y
%$
6 6:@, != 6
5:% 6$$ !
B . 5%
3.25 & H FT ! #0A B 5$,
%?, !76 # !P ! #! 56@ 0%:6%
mA6, 0 mB$, 0
& & & B 5$, & & & F & A
F # . #! 56@
F@* 1
@% 1:8;1=9 9 N" 5
&Fma #0 0 ! #
F FT @* 1 6, 0 %:?, !=6 FT $, *:<$1 $, 0 %:?, !=6
G FT # G
0&F & . # 66+ 1 %65 01
3.26 8 K #& #' I # 0 %+%
!'!! 0 #' P
8 #' ' x #'
FsFW &FW & #'
0 ! #' !
0-& #' 0-& #' Fxmax #' Fmax
& #' FsFW sFWmax /FW mg
axsmg
m sg %:+% *:<$ !=
6
,:* !=6 !'!! &
3.27 B 5$+ & #' ! @% 0 / '
&0%:$, B #'
FFN & . & #'
F %:$, mg F/ %:$, %:<?mg
/m@% 0 F,* 1 F/,$ 1
& Fxmax #0 0 ! 8
FT ,* 1 @% 0 a %:,mg FT ,$ 1 @% 0 a
9 & G aFT a$:$ !=6FT%:$% 01
" 5O 1:8;1=9 9 @$
3.28 ! & B 5$?3a4 F #0m$ B
! F K 0
8 H #0 & B 5$?3b4 3c4 /0m6 m$#
& m6g 8 ! & m$ m6
F 60m6g #! m$ & ! m$m6g
F00 m$m6g & &Fxmax #0 0 ! A
FT 0m6gm6a F FT m6g 0 m$m6gm$a
!FT # & G #
F 60m6g 0 m$m6 g m$m6 a
aF 60m6g m$m6 0g
! &
3.29 ! B 5$< ! # # B
m6 m$5%% m6,%% F $:,% 1
1 m$ & m6 3 ! dm$!
6d4 FT$ m$ FT6
# ! # H Fma # !
H4 Fxmax ! &
FT$ m$ 6a F FT6m6a
& & 0& FT$$6FT6 . G FT6@m$a 9#
G
F @m$m6 a a
F
@m$m6
$:,% 1
$:6% 0%:,% 0%:<<6 !=
6
@6 1:8;1=9 9 N" 5
Fig. 3-17
3.30 B 5$* & #( 6%% 1 5%% 1 8
! P$ ' # P6 ! & B
FT$ FT6 #
B& !A& 2 # P6
6FT6 FT$& 9 ! FT$6FT63
#( ! 4 8& & B A
a# && A 8a=6 & B 3P4 &
&Fymay ! 0 !
FT$ 5%% 1 mB $6a 6%% 1 FT6ma
/mFW=g mA 6%%=*:<$0 mB 5%%=*:<$0 B FT$6FT6 9#
& G & ! FT6 FT$a 8
FT$56? 1 FT6$+@ 1 a$:?< !=6
3.31 "! ! : ! # +5?% 0! &
. .
M# ! : m ! #( := 8 &
#( G mg G G Mm=r6 &r :=
mgGMm r6
Mgr
6
G
*:<$ !=6 +:5?$%+!6
+:+?$% $$ 1!6=06 ,:*?$% 6@ 0
! &
" 5O 1:8;1=9 9 @5
Supplementary Problems
3.32 ; ! 0 ! ' $% 1 ?<%
# 0 $%%0 ! !
%$% !76
3.33 8 # @,# 3,% #4 6+6 !7 0 $ !
# ! ' # $+6 # &
! ' & 5$%,!=6- %:@$%61
3.34 60 ! 5 !76 # !
& ! 3a4 $ 0P 3b4 @ 0P 3c4 & P & 3a4 + !76- 3b4 6 !76 -3c4 + 1
3.35 #( ! 5%% 3a4 & :P 3b4 ! P 3c4
& # & %,%% 1 P & 3a4 6*@
1-3b4 %5%% 0- 3c4 $+? !76
3.36 H # 6%%0 H 0 8 # ,%% 1 9
! 3a4 & & 0 <% !7P 3b4 & &
P & 3a4 56 - 3b4 $5 !
3.37 *%%0 6% !7 & G
5% !P 3A B . 4 & +% 01
3.38 $6% # ! ?%% !7 6%% ! # !
# & & P 3' ! 4
& $@? 01
3.39 6%0 B 3! 4 &
3a4 6,% 1 3b4 $,% 1 3c4 H 3d4 $*+ 1 & 3a4 6? !76 - 3b4 65 !76 &-3c4 *< !76&- 3d4 H
3.40 ,%0 ! B !
3a4 $, !76 3b4 $, !76& 3c4 *< !76& & 3a4 ,? 1- 3b4 @6 1- 3c4 H
3.41 ?%%1 ! I 8 ' &
3a4 $< !76 P 3b4 $< !76 &P
3c4 *< !76&P & 3a4 %<5 01- 3b4 %,? 01- 3c4 H
3.42 # #! 5@$ +,% 0 & ! &
g$:+% !76 P & $%@ 1
3.43 ! @%0 #( $60 #(
"! & @* !76 ,* 1
3.44 ! & & ! 6% ! . %+%
5%0 0 #
P & +5 1
3.45 C +%0 ,% !7 %<%
$6% !7 B '
! ! & 6<,% 1,<< 15@5< 15:@ 01
3.46 5%% ! ! #! !
*%% ! 3a4 B & ! & %?%% !76:
3b4 B & %?%% !76&& & 3a4 $6+ 1
*@, 1- 3b4 $%* 1 <$* 1
3.47 6%0 & # 5%8# H
5% 1 ! & & ! & 3a4
3b4 %@% !76P & 3a4 5, 1- 3b4 @@ 1
3.48 $60 #' ! ,% ! !0 @%8
H +%1 ! ! #' 3a4 & # #'
3b4 & & 0 #! P & 3a4 $5 !76- 3b4 6<
3.49 B #! 5@< & K #& #' P
%+?
3.50 !0 5%8& H B
G $,0 #' 3a4 & $6 !76 3b4 &
& $6 !76 1 & 3a4 *6 1- 3b4 ,+ 1
3.51 H F ' 6%0 #' 5%8 8
! <% 1 & ! F # ! #' # 3a4 H
3b4 %?, !76P & 3a4 %6$ 01- 3b4 %66 01
3.52 !0 6,8& H 5%0 #0
6%0 #0 # ! "!
6%0 #0 & 6% ! 1 & 6* !
3.53 #! 5,6 K #& #0 %6% & %?@ !
3.54 H 6%% 1 G $,0 #0 6%8 &
6, !76 B 3a4 #0 3b4 K & 3a4 %$5
01-3b4 %+,
3.55 B #0 B 56% #
!P & 55 !76 $5 1
3.56 #! 5,, K 0 #& #0 # %5%
& %5* !76 $5 1
3.57 & F B 56$ +%0 #0 & $,% !76
K %@%P & @< 1
" 5O 1:8;1=9 9 @,
3.58 B 566 & F #0 5% !76 K 0 #& #0 # %6%P & $,%0 #0 '
6%0 #0P & 66 1 $, 1
3.59 3a4 ! 5?8 0 $%%1 & ! &
K 0 # %5%P 3b4 G 0
& ! P 3c4 *@ 1 & & #
#(P 3d4 #( 3c4 ! & & ! $% P
& 3a4 5+ 1- 3b4 <@ 1- 3c4 %*< !76 - 3d4 @* !
3.60 ,%0 #0 5%8 8 K #& #0
%6% & H ! #0 #0 # 3a4
3b4 & P & 3a4 @5 1- 3b4 $++ 1
3.61 8 #0 & ! +% 0 *% 0 $% 0 & B 565 8 K
#& # $%0 #0 %6% B 3a4 ! 3b4
& 3a4 %5* !76- 3b4 +$ 1 <, 1
3.62 8 := # +5?% 0! #( ! 6% 0 0 $+% 0!
# := 3a4 #(= ! P 3b4 & ! #( &
3 & ' 4 P & 3a4 6% 0- 3b4 %$* 01
3.63 8 : # +5?% 0! & # 5@@% 0! #( & 6%% 1
: & & & & & # P 8 !
%$$ : & ?, 1 5? !76
@+ 1:8;1=9 9 N" 5
Fig. 3-21 Fig. 3-22
Chapter 4
Equilibrium Under the Action of Concurrent Forces
CONCURRENT FORCES & !! 8 #( # ! #(
AN OBJECT IS IN EQUILIBRIUM
THE FIRST CONDITION FOR EQUILIBRIUM G! ~F% ! !
FxFy Fz%
8 ' #( ! # H 8 K G#! & ' ! # . #( # G#! - " ,
PROBLEM SOLUTION METHOD (CONCURRENT FORCES):
3$4 #(
364 9& #( ! 33) ,4
354 B !
3@4 . G#! G ! 3,4 9 G G
THE WEIGHT OF AN OBJECT ~FW & & &&
THE TENSILE FORCE ~FT # 3 !!#4 8 !
FT
THE FRICTION FORCE ~F #( #( ( & & 8 ! ! !
THE NORMAL FORCE ~FN #( # # !
@?
Solved Problems
4.1 B @$3a4 H 5% 1 & B & #(
8 $ G & #( ! 8FT$FW &
& .FT$FW
1 0& FT$ 0& 5% 1 # 0 P
!0 0 P #( 8 # ! &
0 & B @$3b4 8 ! &
' & . G#! 0 B! # !
!Fx% #! 5% 1 FT6 @%8%
"Fy% #! FT6 @%8 FW %
9 . G FT6FT65*:6 1 9# G