ANALISIS PENYEBAB DEFECT KAPAL MOTOR KM

10 

Teks penuh

(1)

1

ANALISIS PENYEBAB

DEF ECT

KAPAL MOTOR (KM) PAGERUNGAN PADA

BAGIAN

HULL CONSTRUCTION

(HC) DENGAN METODE

FAILURE MODE

AND EF F ECT

(FMEA) DAN

FAULT TREE ANALYSIS

(FTA)

(Studi Kasus di PT. PAL INDONESIA)

DEFECT CAUSE ANALYSIS ON HULL CONSTRUCTION (HC) OF KM. PAGERUNGAN WITH FAILURE MODE AND EFFECT ANALYSIS (FMEA) AND FAULT TREE ANALYSIS

(FTA) (Case Study in PT. PAL INDONESIA)

Muhammad Nur Mulianto Putra1), Ishardita Pambudi Tama, ST., MT., Ph.D2),

Zefry Darmawan, ST., MT3)

Jurusan Teknik Industri, Universitas Brawijaya Jl. Mayjen Haryono 167, Malang 65145, Indonesia

E-mail: winteron.summer20@gmail.com1), kangdith@ti.ub.ac.id2), zefry_gue@yahoo.com3)

Abstrak

Hasil inspeksi class/Owner Surveyor pada proses assembly di KM. Pagerungan menunjukkan jumlah cacat terbesar ada pada HC dengan jumlah cacat sebanyak 129, kemudian HO 60 cacat, lalu MO 32 cacat dan EO 22 cacat. Dilakukanlah analisis mengenai jenis-jenis cacat yang paling berpengaruh terhadap tingginya jumlah cacat di bagian HC sehingga menghasilkan solusi perbaikan yang implementatif. Metode FMEA menunjukkan cacat dengan nilai RPN paling berpengaruh yang menjadi fokus utama untuk diolah dengan menggunakan metode FTA. Hasil metode FMEA menunjukkan tiga jenis cacat dengan nilai RPN tertinggi, yaitu missing bracket dengan nilai RPN 384, missed weld dengan nilai RPN 240, dan misalignment dengan nilai RPN 224. Metode FTA menunjukkan ketiga jenis cacat ini memiliki keterkaitan, yaitu karena kesalahan manusia dan proses kontrol yang belum optimal. Dirancanglah beberapa saran perbaikan, yaitu perbaikan check sheet serta perancangan SOP, penandaan daerah la s, pengawasan terhadap perekrutan welder, pengaturan arus pengelasan, dan kontrol penyimpanan elektroda .

Kata kunci: KM. Pagerungan, caca t pada HC, mengurangi cacat, FMEA dan FTA

1. Pendahuluan

Penelitian ini dilakukan di PT. PAL INDONESIA, tepatnya di departemen QA dan Standarisasi. Obyek penelitian ini merupakan kapal tanker pesanan PT. PERTAMINA INDONESIA (Persero) yang bernama Kapal Motor (KM). Pagerungan dengan kapasitas 17.500 DWT. Adapun proses produksi sampai dengan delivery KM Pagerungan memakan waktu dua tahun, yaitu mulai tahun 2012 – 2014. Proses produksi kapal ini tentu telah melalui proses penjaminan kualitas dari divisi QA dan Standarisasi PT. PAL INDONESIA, dimana proses inspeksi yang diterapkan oleh divisi QA dan Standarisasi memiliki empat bagian inspeksi yaitu Hull Construction (HC),

Hull Outfitting (HO), Machinery Outfitting

(MO), dan Electrical Outfitting (EO).

Data yang digunakan adalah hasil inspeksi class/Owner Surveyor (OS) terhadap proses assembly KM. Pagerungan. Dengan jangka waktu dua tahun, yaitu mulai tahun 2012–2014. Berdasarkan hasil rekapitulasi menunjukkan bahwa jumlah cacat terbesar ada

pada bagian Hull Construction (HC) dengan jumlah cacat sebanyak 129, kemudian diikuti dengan Hull Outfitting (HO) 60 cacat, lalu

Machinery Outfitting (MO) sebanyak 32 cacat dan Electrical Outfitting (EO) sebanyak 22 cacat. Dengan berlandaskan data tersebut, maka perlu dilakukan analisis secara mendalam mengenai jenis-jenis cacat yang paling berpengaruh terhadap tingginya jumlah cacat di bagian HC sehingga dapat menghasilkan solusi perbaikan yang bersifat implementatif.

(2)

2

Metode yang digunakan pada penelitian

ini adalah Failure Mode and Effect Analysis

(FMEA) dan Fault Tree Analysis (FTA). Menurut Yumaida (2011) FMEA adalah sebuah teknik yang digunakan untuk mendefinisikan, mengidentifikasikan, dan menghilangkan kegagalan serta masalah pada proses produksi, baik permasalahan yang telah diketahui maupun yang yang berpotensi terjadi pada sistem. Sedangkan menurut Vesely (2002) FTA adalah sebuah proses secara bertahap yang bertujuan untuk menyelesaikan sebuah kejadian yang tidak diinginkan langsung pada penyebab utamanya. Kelebihan FTA adalah dapat menganalisa kegagalan sistem, dapat mencari aspek-aspek dari sistem yang terlibat dalam kegagalan utama, dan menemukan penyebab terjadinya kecacatan produk pada proses produksi.

Pada penelitian ini terdapat beberapa penelitian terdahulu yang digunanakan sebagai rujukan serta pembanding terhadap penelitian yang dilakukan. Penelitian yang dilakukan oleh Hanliang et al (2013), dan Ocavia (2010) hanya menggunakan metode FMEA. Sedangkan Gharahasanlou et al (2014) menggunakan metode FTA dan Setyadi (2013) menggunakan kombinasi metode FMEA dan FTA. Dari pemaparan di atas penelitian yang dilakukan oleh peneliti memiliki beberapa kelebihan apabila dibandingkan dengan penelitian terdahulu. Penelitian yang dilakukan oleh Gharahasanlou et al (2014) yang menggunakan metode FTA hanya menghasilkan output berupa probabilitas kemungkinan kemunculan kegagalan untuk mesin crushing. Hal ini sangat berbeda dengan yang dilakukan oleh peneliti dimana peneliti menggunakan FTA untuk dapat mengetahui penyebab dasar terjadi cacat berdasarkan nilai RPN paling berpengaruh. Sedangkan penelitian yang dilakukan oleh Setyadi (2013) merupakan penelitian dengan kombinasi metode yang sama dengan peneliti, yaitu mengkombinasikan FMEA dan FTA. Namun, saran perbaikan yang dihasilkan oleh Setyadi (2013) masih bersifat normatif dan cenderung tidak fokus dalam memecahkan masalah yang ada. Hal ini tentu sangat berbeda dengan saran perbaikan yang dihasilkan oleh peneliti dimana setiap saran yang dihasilkan sudah melalui persetujuan dari perusahaan tempat dilakukannya penelitian. Sedangkan untuk penelitian yang dilakukan oleh Hanliang

et al (2013) dan Ocavia (2010) menjadi gambaran dasar bagi peneliti dalam hal

penggunaan FMEA untuk dapat memecahkan masalah yang ada secara efektif dan efisien.

2. Pembahasan

Pada tahap ini akan dibahas mengenai hasil pengolahan data yang dilakukan dan rekomendasi yang diberikan untuk perusahaan

2.1 Metode Penelitian

Penelitian ini termasuk ke dalam penelitian kuantitatif. Penelitian kuantitatif adalah penelitian yang mengharuskan peneliti untuk dapat melakukan pengukuran, komparasi, dan evaluasi sebagai bahan pengambilan keputusan bagi yang berwenang. Tujuan dari penelitian ini adalah mencari penjelasan atas suatu fakta atau kejadian yang terjadi, berdasarkan pada pengukuran terhadap kejadian tersebut misalnya kondisi atau hubungan yang ada, akibat atau efek yang terjadi, atau kecenderungan yang sedang berlangsung.

Langkah-langkah yang dilakukan dalam penelitian ini adalah sebagai berikut:

1. Observasi Lapangan

observasi lapangan dilakukan untuk dapat mengetahui kondisi nyata di lapangan sehingga dapat memudahkan dalam proses identifikasi masalah yang hendak diteliti. 2. Identifikasikan Permasalahan

Identifikasi masalah merupakan tahap pemahaman terhadap suatu permasalahan yang terjadi di perusahaan dan untuk mencari solusi permasalahan tersebut. Tahap ini mengkaji permasalahan yang ada di PT. PAL INDONESIA. Masalah tersebut adalah mengevaluasi penyebab cacat di bagian HC yang memiliki tingkat penerimaan paling rendah dibandingkan dengan bagian yang lainnya.

3. Studi Pustaka

Studi pustaka dilakukan untuk memberikan landasan teori dalam melakukan penelitian. Pada tahap ini dilakukan usaha untuk menggali konsep-konsep maupun teori-teori yang dapat mendukung usaha penelitian. Studi pustaka dalam penelitian ini menggunakan literatur buku, skripsi, jurnal, dan juga internet serta pustaka yang lainnya, dengan materi yang berhubungan dengan analisis penyebab cacat.

4. Perumusan Masalah Penelitian

(3)

3

5. Penentuan Tujuan Penelitian

Tujuan penelitian ditentukan berdasarkan perumusan masalah yang telah ditetapkan sebelumnya. Hal ini ditujukan agar mempermudah peneliti untuk menentukan batasan-batasan yang perlu dalam pengolahan dan analisis data selanjutnya.

6. Pengumpulan Data

Data yang dikumpulkan dalam langkah ini dapat dilakukan dengan dua cara sebagai berikut:

a. Pengumpulan data primer dilakukan dengan wawancara dan brainstorming

dilakukan dengan manager pabrik maupun operator yang berhubungan dengan permasalahan yang diteliti.

b. Pengumpulan data sekunder dilakukan dengan dokumentasi, pada tahap ini dilakukan dengan mengambil data-data perusahaan berupa profil PT. PAL INDONESIA, visi dan misi perusahaan, struktur organisasi, dan data historis proses inspeksi KM. Pagerungan.

7. Pengolahan Data

Setelah melakukan identifikasi awal dan studi literatur, maka dilakukan pengumpulan data kemudian dari data-data yang telah diperoleh dilakukan pengolahan data. Adapun keterkaitan FMEA dan FTA pada penelitian ini terletak pada analisis yang telah dibuat dengan menghitung nilai severity, occurance, dan

detection pada tabel FMEA, yang kemudian diikuti dengan pembobotan nilai dan pengurutan berdasarkan Risk Priorty Number

(RPN) untuk seluruh cacat yang terjadi pada HC. Kemudian FTA digunakan untuk mencari penyebab terjadinya cacat pada jenis cacat yang memiliki nilai RPN paling berpengaruh. Berikut ini adalah tahapan dalam proses pengolahan data:

a. Identifikasi Hasil Proses Inspeksi KM. Pagerungan

Merupakan sebuah tahap yang bertujuan mengetahui bagian yang memiliki jumlah cacat tertinggi dari proses assembly KM. Pagerungan.

b. Rekapitulasi Data Jenis dan Jumlah Cacat di bagian HC

Pada tahap ini dilakukan rekapitulasi data mengenai jenis-jenis dan jumlah cacat yang terjadi pada bagian HC.

c. Perancangan FMEA

Tahap ini dilakukan pengukuran terhadap seluruh proses penyebab cacat. Adapun

tahapan pengerjaannya adalah seperti berikut:

1)Mengidentifikasi potensi dampak dan penyebab cacat di bagian HC

2)Mengidentifikasi proses kontrol perusahaan

3)Menentukan rating terhadap severity, occurance, detection,dan RPN 7. Pembuatan FTA

Dengan berdasarkan penentuan rating RPN yang telah dilakukan sebelumnya maka dapat dilanjutkan dengan pembuatan FTA.

Output dari FTA sendiri berupa penyebab cacat. 8. Saran Perbaikan

Merancang saran perbaikan dengan berdasarkan nilai RPN yang didapat dari jenis cacat yang telah dianalisis menggunakan FTA dan FMEA.

9. Kesimpulan dan saran

Kesimpulan dibuat berdasarkan seluruh tahapan yang dilalui dalam penelitian dimana peneliti melakukan penarikan kesimpulan berhubungan dengan tujuan penelitian yang ingin dicapai, sedangkan saran merupakan masukan yang berhubungan dengan penelitian yang dilakukan. Saran diperlukan untuk kepentingan pada masa akan datang untuk kesempurnaan penelitian. Pengajuan saran diharapkan dapat bermanfaat bagi perusahaan dan peneliti yang lain ketika akan melakukan penelitian dengan tema serupa.

2.2 Pengolahan Data

Sebelum dilakukan pengolahan data perlu diketahui bahwa dalam pengujian hasil las di PT. PAL INDONESIA menggunakan tiga metode yaitu, visual inspection, radiographic test dan ultrasonic test. Dimana pada visual inspection PT. PAL INDONESIA menggunakan alat bantu berupa senter, welding gauge, dan palu.

(4)

4

Tabel 1. Pemilihan Sumber Radiasi Gamma

Material Tebal Material

Ir – 192 CO – 60

Baja Karbon 7.5 mm 15 mm

Nikel/Cooper 6.5 mm 13 mm

Alumunium 25 mm -

Gambar 1 menunjukkan ilustrasi cara kerja dari sinar X ketika ditembakkan pada obyek yang telah ditentukan.

Gambar 1. Radiographic Test

Ultrasonic test Menurut Biro Klasifikasi Indonesia (2000) merupakan sebuah uji yang memanfaatkan gelombang ultrasonik untuk mendeteksi kerusakan las di bagian dalam. Frekuensi gelombang ultrasonik yang digunakan untuk mendeteksi kerusakan pada logam secara umum adalah antara 0,5 sampai 10 MHz. Namun di lapangan frekuensi yang digunakan adalah 2 sampai 5 MHz.

Metode uji ultrasonik dapat diklasifikasi menjadi dua yaitu, metode sinar normal dan metode sinar sudut. Pada metode sinar normal, gelombang ultrasonik disebarkan dengan arah vetikal ke permukaan spesimen yang akan dikenai pancaran gelombang satelit, seperti pada Gambar 2.

Gambar 2. Metode Sinar Normal

Untuk metode sinar sudut, gelombang ultrasonik disebarkan pada suatu sudut permukaan spesimen yang telah dikenai pencaran gelombang, seperti pada Gambar 3. Apabila gelombang yang telah dibangkitkan oleh oskilator menimpa bagian las yang mengalami kerusakan maka gelombang tersebut akan dipantulkan kembali.

Gambar 3. Metode Sinar Sudut

Dalam penggunaan UT terdapat beberapa hal yang perlu diperhatikan, salah satu yang terpenting adalah mengenai ketebalan pelat. Menurut Biro Klasifikasi Indonesia (2000), berikut ini adalah standar penggunaan diameter reflektor berdasarkan pada frekuensi gelombang dengan tebal pelat yang hendak diinspeksi.

Tabel 2. Standar Diameter of Disc-Shaped Reflector

Wa ll Thickness (Weld Thickness)

Diameter of Disc-Shaped Reflector 4 MHz 2 MHz From 10 up to

15 mm

1.0 mm 1.5 mm

Over 15 up to 20 mm

1.5 mm 2.0 mm

Over 20 up to 40 mm

2.0 mm 3.0 mm

Over 40 up to 60 mm

3.0 mm 4.0 mm

(5)

5

sebagai kelompok cacat konstruksi. Kemudian

porosity sebanyak 8 kali, blow hole sebanyak 11 kali, spatter sebanyak 10 kali, slag sebanyak 11 kali, round weld sebanyak 11 kali, undercut

sebanyak 7 kali, overlap sebanyak 2 kali,

unfinished fusion sebanyak 1 kali, dan sharp edge sebanyak 9 kali sebagai kelompok cacat pengelasan. Untuk lebih jelasnya hasil rekapitulasi data cacat pada HC di KM. Pagerungan ditunjukkan pada Tabel 3.

Tabel 3. Hasil Rekapitulasi Data cacat pada HC di KM. Pagerungan

Jenis Cacat Konstruksi Jumlah Missing bracket 18

Missed weld 13

Misalignment 23

Design error 5

Jenis cacat Pengelasan Jumlah

Porosity 8

Blow hole 11

Spatter 10

Slag 11

Return weld 11

Undercut 7

Overlap 2

Incomplete fusion 1

Sharp edge 9

Total 129

Berdasarkan hasil rekapitulasi di atas, maka proses pengolahan data dilanjutkan dengan metode FMEA untuk setiap jenis cacat yang ada pada HC.

a.

Misalignment

Pada Lampiran 1. merupakan hasil pengolahan FMEA misalignment. Misalignment

sendiri merupakan jenis cacat geometrik yang pada umumnya disebabkan oleh kesalahan fit up, deformasi akibat pengelasan, dan perbedaan tebal pelat. Adapun dampak dari cacat ini adalah berupa kekuatan konstruksi menjadi berkurang dan dapat menimbulkan

displacement stress yang dapat berpotensi menyebabkan retak. Nilai RPN yang didapat untuk cacat ini adalah sebesar 224.

b. Missing Bracket

Pada Lampiran 2. Missing bracket

merupakan salah satu jenis cacat yang terjadi sebanyak 18 kali selama proses assembly KM. Pagerungan. Cacat ini disebabkan oleh kesalahan yang dilakukan oleh fitter dan karena controlling dari group leader yang belum optimal. Adapun dampak dari cacat ini adalah menyebabkan terjadinya stress berlebih pada sambungan yang menyebabkan terjadinya

keretakan, menurunnya kekuatan konstruksi, dan akibat terburuk adalah terjadinya kegagalan konstruksi.

c. Missed Weld

Pada Lampiran 4 Missed weld

disebabkan karena kesalahan welder dan

controlling dari group leader belum optimal.

Missed weld sendiri merupakan cacat dengan jumlah terbesar ketiga dengan jumlah kejadian sebanyak 13 kali. Adapun dampak dari cacat ini adalah dapat menyebabkan terjadinya stress

berlebih pada sambungan yang dapat menyebabkan terjadinya keretakan, menurunnya kekuatan konstruksi, dan akibat terburuk adalah dapat menyebabkan terjadinya kegagalan pada konstruksi. Adapun jumlah nilai RPN yang didapat adalah sebesar 240.

Berdasarkan pengolahan data dengan FMEA. Dilakukan rekapitulasi pada Tabel 4 untuk seluruh nilai RPN setiap jenis cacat.

Tabel 4. Rekapituasi Nilai RPN Pada Jenis Cacat Jenis Cacat RPN Missing bracket 384

Missed weld 240

Misalignment 224

Incomplete fusion 192

Design error 180

Return weld 150

Slag inclusion 140

Undercut 126

Porosity 105

Overlap 100

Sharp edge 84

Blow hole 80

Spatter 72

Total 2063

Sesuai dengan permintaan dari PT. PAL INDONESIA pengolahan data dengan metode FTA difokuskan pada missing bracket, missed weld, dan misalignment yang merupakan tiga jenis cacat dengan nilai RPNterbesar yaitu 384, 240, dan 224. Disamping memiliki nilai RPN tertinggi ketiga jenis cacat ini merupakan jenis cacat yang menjadi fokus pembenahan dari departemen QA dan Standarisasi. Pertimbangan lain yang menjadi dasaran untuk memilih ketiga jenis cacat ini adalah tingginya nilai dari

Severity dan Occurence untuk ketiga jenis cacat ini, dimana missing bracket memiliki nilai

severity 8 dan occurence 6, kemudian missed weld memiliki nilai severity 8 dan occurence 6, dan misalignment dengan nilai severity 7 dan

(6)

6

Oleh karena itu proses analisis penyebab

cacatpada HC di KM. Pangerungan difokuskan kepada tiga jenis cacat yaitu, misalignment, missing bracket, dan missed weld. Berikut ini adalah rancangan FTA untuk ketiga jenis cacat tersebut.

Gambar 4. FTA Misalignment

Penyebab kegagalan misalignment pada bagian HC di KM. Pagerungandisebabkan oleh tiga faktor yaitu, kesalahan fit up atau deformasi akibat pengelasan atau perbedaan tebal pelat. Faktor kesalahan fit up dapat terjadi apabila terjadi kesalahan pemasangan yang disebabkan oleh kesalahan marking pada pelat yang hendak dilas. Kesalahan marking dapat terjadi karena fitter bekerja dengan ceroboh, dimana penyebab hal tersebut adalah kontrol dari group leader yang lemah. Sedangkan untuk faktor deformasi akibat pengelasan dapat terjadi karena adanya kesalahan pengelasan oleh

welder, yang mana faktor ini dipengaruhi oleh dua penyebab. Penyebab pertama disebabkan karena welder tidak konsentrasi. Adapun penyebab hal tersebut karena terjadinya beban kerja berlebih (overload) pada welder tersebut. Untuk penyebab kedua disebabkan oleh penandaan daerah las yang tidak jelas. Untuk faktor perbedaan tebal pelat dapat menyebabkan misalignment apabila peletakan pelat tidak tepat. Hal ini disebabkan karena

fitter bekerja secara ceroboh, dimana penyebab hal tersebut adalah kontrol dari group leader

yang lemah.

b. FTA Missing Bracket

Missing Br a cket

Gambar 5. FTA Missing Bracket

Penyebab kegagalan missing bracket

adalah kesalahan fitter atau controlling dari

group leader yang belum optimal. Penyebab

controlling group leader yang belum optimal adalah tidak adanya check sheet yang dapat membantu proses pengawasan dan penyebab terjadinya kesalahan fitter dipengaruhi oleh dua penyebab. Dimana untuk penyebab pertama disebabkan oleh fitter tidak konsentrasi yang disebabkan karena beban kerja berlebih (overload). Untuk penyebab kedua disebabkan karena fitter tidak membaca gambar atau desain dari kapal KM. Pagerungan secara menyeluruh.

c. FTA Missed Weld

penyebab kegagalan missed weld

dipengaruhi oleh dua faktor, yaitu kesalahan

welder atau controlling dari group leader yang belum optimal. Penyebab controlling group leader yang belum optimal adalah tidak adanya

check sheet yang dapat membantu proses

(7)

7

(overload). Untuk penyebab kedua disebabkan

karena welder tidak membaca gambar atau desain sebelum melakukan pengelasan pada bagian HC di KM. Pagerungan.

2.3 Saran Perbaikan

Setelah melakukan pengolahan data dengan menggunakan metode FTA maka didapatkan tiga jenis cacat yang membutuhkan prioritas penanganan tertinggi. Dimulai dengan

missing bracket, missed weld, dan

misalignment. Oleh karena itu pada tahap ini dilakukan sebuah perancangan saran perbaikan yang bertujuan untuk dapat meminimalisir terjadinya cacat di masa depan. Berikut ini adalah saran perbaikan yang perlu dilakukan, yaitu:

1. Perbaikan check sheet

Selama ini proses kontrol terhadap cacat yang dilakukan oleh PT. PAL INDONESIA adalah berupa check sheet yang berfokus pada jenis cacat pada welding/pengelasan dan pada proses fit up. Kedua check sheet ini memiliki

grade tingkat keparahan yang berbeda untuk cacat pengelasan memiliki skala A sampai dengan D, dimana grade A memiliki tingkat keparahan tertinggi dan terus menurun sampai dengan grade terendah yaitu D dan terdapat pula keterangan jenis cacat dan jumlah cacat yang terjadi. Sedangkan untuk fit up memiliki

grade tingkat keparahan dari A sampai dengan B, dimana grade A merupakan tingkat keparahan tertinggi dan terus menurun sampai dengan grade terendah yaitu B dan terdapat pula keterangan jenis cacat dan jumlah cacat yang terjadi. Model check sheet seperti ini memiliki beberapa kekurangan antara lain: a. Informasi yang ditampilkan hanya terbatas

pada jenis cacat dan jumlah cacat yang terjadi.

b. Check sheet ini hanya dapat digunakan oleh inspektor dari departemen QA dan Standarisasi.

c. Check sheet ini tidak dapat digunakan sebagai tindakan preventif agar dapat meminimalisir terjadinya cacat.

Oleh karena itu dirancanglah sebuah solusi yang bertujuan untuk melengkapi proses kontrol yang telah diterapkan oleh PT. PAL INDONESIA. Solusi yang dirancang adalah berupa check sheet namun check sheet ini berbeda dengan yang sudah ada. Adapun check sheet yang telah dirancang hanya terbatas pada

double bottom construction dan wing tank construction. Rancangan check seheet dapat

dilihat pada Lampiran 3 check sheet ini memiliki beberapa kelebihan antara lain:

a. Dalam rancangan check sheet ini dilakukan penjabaran pada setiap tahap penyatuan komponen pada double bottom structure

dan wing tank construction. Hal ini sangat berbeda apabila dibandingkan dengan

check sheet yang lama. Penjabaran pada setiap tahap penyatuan komponen diharapkan dapat mempermudah proses pengawasan baik dari pihak bengkel ataupun dari QA.

b. Check Sheet ini dapat berperan sebagai tindakan preventif untuk mencegah terjadi cacat. Karena dengan dilakukan penjabaran untuk setiap komponen dapat mempermudah welder ataupun fitter dalam melakukan self checking atau pemeriksaan kembali hasil dari pengelasan yang telah dilakukan. Sehingga jumlah cacat ataupun

missing component segera dapat diminimalisir.

c. Group leader dapat dengan mudah melakukan pengecekan ulang terhadap hasil pengelasan yang telah dilakukan oleh

welder ataupun hasil fit up yang telah dilakukan oleh fitter. Cukup dengan membaca check sheet mengenai nama komponen yang hendak di cek akan langsung dapat mengetahui hasil pengelasannya atau hasil fit up yang telah dilakukan.

pada check sheet tersebut terdapat lima kolom dimana setiap kolom memiliki fungsi masing-masing. Berikut adalah penjelasan dari masing-masing kolom tersebut:

a. Kolom (1) Description, berfungsi untuk menunjukkan keterangan komponen yang harus disatukan dalam proses pengelasan ataupun proses fit up. Pada kolom ini setiap komponen yang telah ditentukan diikuti dengan keterangan tebal pelat komponen tersebut.

b. Kolom (2) Welder/Fitter Approval, pada kolom ini welder/fitter yang mengerjakan proses pengelasan ataupun fit up pada komponen tersebut harus memberikan tanda yang menunjukkan bahwa komponen tersebut telah dilas ataupun telah melalui proses fit up.

(8)

8

termasuk ke dalam Inspection Summary

yang terdiri dari Accepted dan Rejected.

d. Kolom (5) Note, pada kolom ini inspector

dapat memberikan cacatan terhadap setiap hasil pengerjaan sambungan antar komponen yang telah ditentukan. Dimana pada kolom ini catatan yang diberikan oleh

inspector

dapat

berupa

cacatan

mengenai jenis cacat yang terjadi

ataupun kondisi hasil pengerjaan yang telah dilakukan.

e. Kolom (6) merupakan kolom Inspector Comment, dimana pada kolom ini

inspector dapat memberikan komentar mengenai deadline perbaikan apabila terjadi cacat.

Untuk menemani check sheet yang sudah dirancang, maka dibuatlah SOP penggunaan

check sheet. Rancangan flow chart SOP dapat dilihat pada Lampiran 5.

2. Penandaan area las

Dilakukan proses tagging atau penandaan pada daerah yang dilas berdasarkan komponennya. Jadi untuk melengkapi saran

check list di atas maka sebelum pengelasan atau

fit up dimulai, hendaknya group leader

melakukan penandaan pada setiap komponen yang hendak dilas dengan menggunakan cat semprot atau kapur sehingga dapat meminimalisir terjadinya missing pada pengelasan atau fit up komponen.

3. Pengawasan terhadap mekanisme perekrutan welder

Berdasarkan hasil analisis menggunakan FMEA menunjukkan bahwa salah satu penyebab cacat yang sering terjadi adalah travel speed yang terlalu cepat ataupun terlalu lambat. Oleh karena itu diperlukan pengawasan yang lebih ketika melakukan perekrutan welder yang baru. Adapun bentuk pengawasan yang dapat dilakukan adalah dengan melakukan simulasi pengelasan, dimana simulasi pengelasan ini bertujuan untuk mengetahui kualitas dari welder tersebut, meskipun welder tersebut telah memenuhi standar sertifikasi yang telah ditentukan. Dengan dilakukan simulasi secara langsung ini diharapkan dapat mengetahui kondisi nyata dari kemampuan welder tersebut sehingga masalah

travel speed pada pengelasan tidak akan terjadi di masa mendatang. Penentuan travel speed

sangat tergantung dengan ukuran elektroda, dan panjang elektroda. Tabel 5 menunjukkan standar travel speed pada proses pengelasan.

Tabel 5. Travel Speed

4. Pengaturan penggunaan arus pengelasan Penggunaan arus pengelasan yang tepat merupakan faktor yang terpenting dalam proses pengelasan. Apabila arus yang digunakan terlalu rendah dapat dipastikan elektroda akan cenderung menempel pada pelat, dan penetrasi yang dihasilkan sangat buruk. Sedangkan apabila arus yang digunakan terlalu besar dapat dipastikan akan diiringi dengan elektroda yang terlalu panas (overheat). Hal ini dapat menyebabkan undercut, material yang terbakar, dan akan muncul spatter yang berlebih. Oleh karena itu diperlukan sebuah standar terhadap arus pengelasan yang ideal berdasarkan pada ukuran dari elektroda yang digunakan.Tabel 6 akan menunjukkan rekomendasi kuat arus yang dapat digunakan dalam proses pengelasan.

Tabel 6. Rekomendasi Kuat Arus

Elektroda yang lembab ataupun basah dapat dipastikan akan menjadi penyebab cacat. Hal ini dapat dibuktikan dari hasil FMEA yang menunjukkan bahwa salah satu penyebab terjadinya cacat pengelasan adalah elektroda yang lembab. Oleh karena itu ada beberapa hal yang perlu diperhatikan dalam penyimpanan elektroda menurut world of welding (2007), berikut ini adalah penjelasannya:

a. Penyimpanan elektroda hendaknya jangan langsung bersentuhan dengan lantai. Sehingga pada umumnya dapat diletakkan di rak yang memiliki sirkulasi udara di bagian bawah.

b. Temperatur udara tempat penyimpanan minimal 5 derajat di atas rata-rata suhu udara luar.

(9)

9

d. Apabila elektroda tidak disimpan pada

tempat yang memenuhi syarat, maka sebaiknya diberi bahan pengikat kelembapan, seperti silica gel pada tempat penyimpanan tersebut.

3. Kesimpulan

1. Berdasarkan hasil dari pengolahan data yang telah dilakukan di bab IV didapatkan tiga jenis cacat yang paling berpengaruh terhadap rendahnya tingginya jumlah cacat di bagian HC pada KM. Pagerungan. Adapun tiga jenis cacat tersebut adalah

missing bracket dengan nilai RPN sebesar 384, kemudian missed weld dengan nilai RPN sebesar 240 dan misalignment dengan nilai RPN sebesar 224. Ketiga cacat ini memiliki keterkaitan dalam hal penyebab cacat, yaitu ketiganya disebabkan oleh kesalahan manusia dan proses kontrol yang belum optimal.

2. Saran perbaikan yang disarankan oleh peneliti adalah berikut ini:

a. Perbaikan check sheet

Perbaikan check sheet ini merupakan salah satu upaya dalam meningkatkan proses kontrol yang telah diterapkan di PT. PAL INDONESIA, dimana proses kontrol yang terdapat pada saat ini hanya terbatas pada welding check sheet dan fit up check sheet. Check sheet yang dirancang merupakan check sheet berbasis komponen pada wing tank construction dan double bottom construction. Disamping pembuatan

check sheet juga dilakukan perancangan SOP penggunaan check sheet yang telah dirancang.

b. Penandaan area las

Dilakukan proses tagging atau penandaan pada daerah yang dilas berdasarkan komponennya. Jadi untuk melengkapi saran check list di atas maka sebelum pengelasan atau fit up

dimulai, hendaknya group leader

melakukan penandaan pada setiap komponen yang hendak dilas dengan menggunakan cat semprot atau kapur sehingga dapat meminimalisir terjadinya missing pada pengelasan atau

fit up komponen.

c. Pengawasan terhadap mekanisme perekrutan welder

Berdasarkan hasil analisis

menggunakan FMEA menunjukkan bahwa salah satu penyebab cacat yang sering terjadi adalah travel speed yang terlalu cepat ataupun terlalu lambat. Oleh karena itu diperlukan pengawasan yang lebih ketika PT. PAL INDONESIA hendak melakukan perekrutan welder yang baru. Adapun bentuk pengawasan yang dapat dilakukan adalah dengan melakukan simulasi pengelasan, dimana simulasi pengelasan ini bertujuan untuk mengetahui kualitas dari welder

tersebut, meskipun welder tersebut telah memenuhi standar sertifikasi yang telah ditentukan.

d. Pengaturan penggunaan arus pengelasan

Penggunaan arus pengelasan yang tepat merupakan faktor yang terpenting dalam proses pengelasan. Oleh karena itu dirancanglah rekomendasi terhadap arus pengelasan yang ideal berdasarkan pada ukuran dari elektroda yang digunakan.

e. Penyimpanan elektroda

Penyimpanan elektroda memegang peranan penting dalam keberhasilan dari pengelasan. Oleh karena itu dirancanglah rekomendasi terhadap penyimpanan elektroda.

Daftar Pustaka

Biro Klasifikasi Indonesia. (2000). Rules For The Classification and Construction Of Seagoing Steel Ships. PT. Biro Klasifikasi Indonesia. Jakarta.

Gharahasanlou, Ali Nouri, Ashkan Mokhtarei, Aliasqar Khodayarei, Mohammad Ataei. (2014). Fault Tree Analysis of Failure Cause of Crushing Plant and Mixing Bed Hall at Khoy cement factory in Iran.. www.elsevier.com/locate/csefa. Diakses pada hari Minggu, 1 September 2014 Pk. 12.00 WIB.

(10)

10

Octavia (2010). Aplikasi Metode Failure Mode

and Effect Analysis (FMEA) Untuk Pengendalian Kualitas Pada Proses Heat Treatment PT.Mitsuba Indonesia.Jakarta: Program Studi Teknik Industri Universitas

Mercu Buana.

http://digilib.mercubuana.ac.id/manager/file_sk ripsi/Isi_cover_434074231268.pdf. Diakses pada hari Senin, 2 September 2014 Pk. 10.00 WIB.

Setyadi, (2013). Analisis Penyebab Kecacatan Produk Celana Jeans dengan Menggunakan Metode Fault tree analysis (FTA) dan Failure Mode and Effect Analysis (FMEA) di CV. Fragile Din Co. Bandung: Teknik Industri

Universitas Widyatama.

repository.widyatama.ac.id.

Diakses pada

hari Senin, 2 September 2014 Pk. 11.00.

Vesely, Bill. (2002). Fault tree analysis (FTA): Concepts and Application. NASA.

Yumaida. 2011. Analisis Resiko Kegagalan Pemeliharaan Pada Pabrik Pengolahan Pupuk NPK Granular di PT. Pupuk Kujang, Cikampek.Jakarta: Program Studi Teknik Industri. Universitas indonesia.

lontar.ui.ac.id/file?file=digital/20281099-S658-Analisis%20risiko.pdf.

Diakses pada

Figur

Tabel 1. Pemilihan Sumber Radiasi GammaMaterial Tebal Material
Tabel 1 Pemilihan Sumber Radiasi GammaMaterial Tebal Material . View in document p.4
Gambar 1. Radiographic Test
Gambar 1 Radiographic Test . View in document p.4
Tabel 2                  Reflector . Standar Diameter of Disc-Shaped  Wall Thickness Diameter of Disc-Shaped
Tabel 2 Reflector Standar Diameter of Disc Shaped Wall Thickness Diameter of Disc Shaped . View in document p.4
Gambar 3. Metode Sinar Sudut
Gambar 3 Metode Sinar Sudut . View in document p.4
Gambar 2. Metode Sinar Normal
Gambar 2 Metode Sinar Normal . View in document p.4
Tabel 3                       HC di KM. Pagerungan . Hasil Rekapitulasi Data cacat pada        Jenis Cacat Konstruksi Jumlah
Tabel 3 HC di KM Pagerungan Hasil Rekapitulasi Data cacat pada Jenis Cacat Konstruksi Jumlah . View in document p.5
Gambar 4. FTA Misalignment
Gambar 4 FTA Misalignment . View in document p.6
Gambar 5. FTA Missing Bracket
Gambar 5 FTA Missing Bracket . View in document p.6
Tabel 5. Panjang Travel SpeedTravel Speed
Tabel 5 Panjang Travel SpeedTravel Speed . View in document p.8

Referensi

Memperbarui...