• Tidak ada hasil yang ditemukan

Index of /FTI/materi_doc_20161

N/A
N/A
Protected

Academic year: 2019

Membagikan "Index of /FTI/materi_doc_20161"

Copied!
55
0
0

Teks penuh

(1)

Aplikasi Algoritma dan

Bilangan Bulat

(2)

 ISBN (International Book Serial Number)  Fungsi hash

 Kriptografi

 Pembangkit bilangan acak-semu  Kode Voucer isi ulang No HP

 Kode Voucer isi ulang Listrik PLN  Nomor Kartu Kredit

 dll

(3)

How Does It Work?

Current ISBN

ISBN-10:

1-55853-234-X

Group Identifier

(4)

1. Increase to 13 Digits – Add “978” and “979” Prefixes

2. Recalculate Check Digit Over First 12

(5)

Back Cover

(6)

October 1, 2004

LC started recording ISBN-13s in CIP and

cataloging records

OCLC started accepting input of 13-digit ISBNs, BUT is parking them temporarily in a non-ISBN field (024)

January 1, 2007

Only ISBN-13 issued

Stop using 10-digit ISBN for transactions979-prefix ISBNs assigned as needed

(7)

Some Recent

(8)

 Kode ISBN terdiri dari 10 karakter, biasanya

dikelompokkan dengan spasi atau garis, misalnya 0– 3015–4561–9.

 ISBN terdiri atas empat bagian kode:

- kode yang mengidentifikasikan bahasa, - kode penerbit,

- kode unik untuk buku tersebut,

- karakter uji (angka atau huruf X (=10)).

(9)
(10)

 Contoh: ISBN 0–3015–4561–8

0 : kode kelompok negara berbahasa Inggris, 3015 : kode penerbit

4561 : kode unik buku yang diterbitkan 8 : karakter uji.

Karakter uji ini didapatkan sebagai berikut:

 1  0 + 2  3 + 3  0 + 4  1 + 5  5 + 6  4 + 7  5 + 8  6 + 9  1 = 151

 Jadi, karakter ujinya adalah 151 mod 11 = 8.

(11)

 Sebuah kode ISBN 0–3015–4560–x  Tentukan x?

Bukan ISBN yg valid

 Sebuah kode ISBN 0–3015–4562–x  Tentukan x?

(12)

 Contoh: ISBN 0–3015–4562–x

0 : kode kelompok negara berbahasa Inggris, 3015 : kode penerbit

4562 : kode unik buku yang diterbitkan x : karakter uji.

Karakter uji ini didapatkan sebagai berikut:

 1  0 + 2  3 + 3  0 + 4  1 + 5  5 + 6  4 + 7  5 + 8  6 + 9  2 = 160

 Jadi, karakter ujinya adalah 160 mod 11 = 6

(13)

/

ISBN 10 (contoh)

Catatlah bahwa untuk kode ISBN ini,

(14)

 For example, the ISBN-13 check digit of

978-0-306-40615-? is calculated as follows:

(15)

 978-0-306-40612-x  978-0-306-40611-x

(16)

 Tujuan: pengalamatan di memori

 Bentuk: h(k) = k mod m

  - m : jumlah lokasi memori yang tersedia - k : kunci (integer)

- h(k) : lokasi memori untuk record dengan kunci k

(17)
(18)

 Kolisi (collision) terjadi jika fungsi hash menghasilkan

nilai h yang sama untuk k yang berbeda.

 Jika terjadi kolisi, cek elemen berikutnya yang kosong.

 Fungsi hash juga digunakan untuk me-locate elemen

(19)

Pesan: data atau informasi yang dapat dibaca dan

dimengerti maknanya.

Nama lain: plainteks (plaintext)

 Pesan dapat berupa: teks, gambar, audio, video.

 Pesan ada yang dikirim atau disimpan di dalam media

penyimpanan.

(20)

Cipherteks (ciphertext): pesan yang telah disandikan

sehingga tidak memiliki makna lagi.

Tujuan: agar pesan tidak dapat dimengerti maknanya oleh pihak lain.

 Cipherteks harus dapat diubah kembali ke plainteks

(21)

Contoh:

Plainteks:

culik anak itu jam 11 siang

(22)

Enkripsi (encryption): proses menyandikan plainteks

menjadi ciphertek.

Dekripsi (decryption): Proses mengembalikan cipherteks

(23)

plainteks chiperteks plainteks semula

enkripsi dekripsi

(24)

Kriptografi (cryptography)

 Dari Bahasa Yunani yang artinya “secret writing”

 Definisi: kriptografi adalah ilmu dan seni untuk menjaga

(25)

Algoritma kriptografi (cipher)

- aturan untuk enkripsi dan dekripsi - fungsi matematika yang digunakan untuk enkripsi dan dekripsi.

Kunci: parameter yang digunakan untuk transformasi

enciphering dan dechipering

(26)

 Sudah digunakan di Yunani 400 BC  Alat yang digunakan: scytale

Sejarah Kriptografi

(27)

1. Pengiriman data melalui saluran komunikasi

(data encryption on motion).

2. Penyimpanan data di dalam disk storage

(data encryption at rest)

(28)

 Data ditransmisikan dalam bentuk chiperteks. Di tempat

penerima chiperteks dikembalikan lagi menjadi plainteks.

 

 Data di dalam media penyimpanan komputer (seperti

hard disk) disimpan dalam bentuk chiperteks. Untuk membacanya, hanya orang yang berhak yang dapat mengembalikan chiperteks menjadi plainteks.

(29)

Contoh enkripsi pada dokumen

Plainteks (plain.txt):

Ketika saya berjalan-jalan di pantai, saya menemukan banyak sekali kepiting yang merangkak menuju laut. Mereka adalah anak-anak kepiting yang baru menetas dari dalam pasir. Naluri mereka mengatakan bahwa laut adalah tempat kehidupan mereka.

Cipherteks (cipher.txt):

Ztâxzp/épêp/qtüyp{p}<yp{p}/sx/ p}âpx;

(30)
(31)

Contoh Data Enkripsi

Cipherteks (siswa2.dbf):

NIM Nama Tinggi Berat

000001 tüp}vzpz/|t}äyä/{äâ |äzp} épêp 000002 |t}tâpé/spüx/sp péxü= ztwxsä 000003 ât| pâ/ztwxsä p}/| }/|tü spüx/ 000004 épêp/|t}t|äzp}/qpêpz qp}êpz wxsä 000005 étzp{x/zt xâx}vêp} päâ/psp étzp{ 000006 spüx/sp{p|/ péxü=/] xâx}v ttüzp/| 000007 Ztâxzp/épêp/qtüypp}< äzp} }äyä/{ 000008 qpwåp/{päâ/psp{pw Ztwxs xâx}v 000009 }t|äzp}/qp}êpz/ép{ qp}êp äzp}/qp

(32)

Misalkan:

C = chiperteks

P = plainteks dilambangkan

Fungsi enkripsi E memetakan P ke C,

E(P) = C

Fungsi dekripsi D memetakan C ke P,   D(C) = P

(33)

Dengan menggunakan kunci K, maka fungsi enkripsi dan dekripsi menjadi

EK(P) = C DK(C) = P

dan kedua fungsi ini memenuhi

DK(EK(P)) = P

(34)

K K

plainteks chiperteks plainteks semula enkripsi dekripsi

(35)

 Jika kunci enkripsi sama dengan kunci dekripsi, maka

sistem kriptografinya disebut sistem simetri atau

sistem konvensional.

 Algoritma kriptografinya disebut algoritma simetri atau

algoritma konvensional .  

 Contoh algoritma simetri:

- DES (Data Encyption Standard)

(36)
(37)

 Jika kunci enkripsi tidak sama dengan kunci dekripsi, maka sistem

kriptografinya disebut sistem nirsimetri (asymmetric system)

 Nama lain: sistem kriptografi kunci-publik

karena, kunci enkripsi bersifat publik (public key) sedangkan kunci dekripsi bersifat rahasia (private key).

 Pengirim pesan menggunakan kunci publik si penerima pesan untuk

mengenkripsi pesan

 Penerima pesan mendekripsi pesan dengan kunci privatnya sendiri.

(38)

 Tiap huruf alfabet digeser 3 huruf ke kanan

pi : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ci : D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Contoh:

Plainteks: AWASI ASTERIX DAN TEMANNYA OBELIX

Cipherteks: DZDVL DVWHULA GDQ WHPDQQBA REHOLA

(39)

 Misalkan A = 0, B = 1, …, Z = 25, maka secara matematis

caesar cipher dirumuskan sebagai berikut:

(40)

p1 = ‘A’ = 0  c1 = E(0) = (0 + 3) mod 26 = 3 = ‘D’

p2 = ‘W’ = 22  c2 = E(22) = (22 + 3) mod 26 = 25 = ‘Z’

p3 = ‘A’ = 0  c3 = E(0) = (0 + 3) mod 26 = 3 = ‘D’

p4 = ‘S’ = 18  c4 = E(18) = (18 + 3) mod 26 = 21 = ‘V’ dst…

(41)

 Jika pergeseran huruf sejauh k, maka:

Enkripsi: ci = E(pi) = (pi + k) mod 26 Dekripsi: pi = D(ci) = (ci – k) mod 26

(42)
(43)

 Ditemukan oleh tiga peneliti dari MIT (Massachussets

Institute of Technology), yaitu Ron Rivest, Adi Shamir, dan

Len Adleman, pada tahun 1976.

 Termasuk algoritma kriptografi nirsimetri.

(44)

 Setiap pengguna mempunya sepasan kunci:

1. Kunci publik: untuk enkripsi 2. Kunci privat: untuk dekripsi

 Kunci publik tidak rahasia (diktehui semua orang), kunci

(45)

Pembangkitan pasangan kunci

1.      Pilih dua bilangan prima, a dan b (rahasia)

2.      Hitung n = a b. Besaran n tidak perlu dirahasiakan. 3.      Hitung m = (a – 1)(b – 1).

4.      Pilih sebuah bilangan bulat untuk kunci publik, sebut namanya e, yang relatif prima terhadap m.

(46)

Enkripsi

1.      Nyatakan pesan menjadi blok-blok plainteks: p1, p2, p3, … (harus dipenuhi persyaratan bahwa nilai pi

harus terletak dalam himpunan nilai 0, 1, 2, …, n – 1 untuk menjamin hasil perhitungan tidak berada di luar himpunan)

2.    Hitung blok cipherteks ci untuk blok plainteks pi

dengan persamaan

ci = pie mod n

(47)

Dekripsi

 Proses dekripsi dilakukan dengan menggunakan persamaan

pi = cid mod n,

(48)

Contoh 21. Misalkan a = 47 dan b = 71 (keduanya

prima), maka dapat dihitung

n = a  b = 3337

m = (a – 1)(b – 1) = 3220.

 

 Pilih kunci publik e = 79 (yang relatif prima dengan 3220

karena pembagi bersama terbesarnya adalah 1).

 Nilai e dan n dapat dipublikasikan ke umum.

(49)

 Selanjutnya akan dihitung kunci dekripsi d dengan

kekongruenan:

  e  d  1 (mod m)

Dengan mencoba nilai-nilai k = 1, 2, 3, …, diperoleh nilai

(50)

 Misalkan plainteks P = HARI INI

 

atau dalam desimal ASCII: 7265827332737873  

Pecah P menjadi blok yang lebih kecil (misal 3 digit):  p1 = 726 p4 = 273

p2 = 582 p5 = 787

(51)

 Enkripsi setiap blok:

c1 = 72679 mod 3337 = 215   c2 = 58279 mod 3337 = 776

  dst untuk sisa blok lainnya

Keluaran: chiperteks C = 215 776 1743

(52)

 Kekuatan algoritma RSA terletak pada tingkat kesulitan

dalam memfaktorkan bilangan non prima menjadi faktor primanya, yang dalam hal ini n = a  b.

 Sekali n berhasil difaktorkan menjadi a dan b, maka m =

(a – 1)(b – 1) dapat dihitung. Selanjutnya, karena kunci

enkripsi e diumumkan (tidak rahasia), maka kunci dekripsi d dapat dihitung dari persamaan e  d  1

(mod m). Ini berarti proses dekripsi dapat dilakukan oleh orang yang tidak berhak.

(53)

 Penemu algoritma RSA menyarankan

(54)

Tentukan angka yang hilang pada ISBN 13 berikut :

1. ISBN 10 : 0-306-40615-?

2. ISBN 13 : 978-979-756-628-? 3. ISBN 13 : 978-602-875-?07-9

(55)

 http://ee.unila.ac.id/hery/madis/algoritma%20dan%20bil.bu

lat.ppt

 http://en.wikipedia.org/wiki/ISBN

Gambar

Gambar 1.2  Scytale
Gambar 1.3   Enkripsi dan dekripsi dengan kunci

Referensi

Dokumen terkait

Berdasarkan tabel di atas menunjukkan bahwa kebanyakan mahasiswa memiliki gaya belajar visual mendapatkan prestasi belajar dengan kategori sangat memuaskan sebesar 61,4 % atau

Mengikut pemahaman saya, pentaksiran dalam Pendidikan Khas adalah untuk memberi maklumat dan gambaran tentang tahap penguasaan murid dalam pelbagai kemahiran seperti membaca,

Landasan pendidikan NU ini berikutnya diturunkan menjadi Anggaran Dasar NU sebagaimana terdapat pada Pasal IX Anggaran Dasar NU sebagai berikut “Di bidang pendidikan, pengajaran

Setelah penulis melakukan langkah-langkah dalam kritik sanad dan kritik redaksi matan hadis tentang larangan membunuh katak yang terdapat pada kitab Abi&gt; D&gt;a&gt;wud

Pada gambar 9 yang menunjukkan grafik hubungan penyerapan energi spesifik terhadap sudut tirus, dapat dilihat bahwa seiring meningkatnya sudut tirus maka penyerapan energi

Dengan demikian semakin banyak tekanan gas dinaikkan, maka atom gas yang dialirkan dalam tabung sputtering semakin meningkat dan energi ion-ion Ar yang menumbuki target juga

Disperindagkop : pengembangan sarana dan prasarana, (seperti : showroom yang representatif, menyediaan situs informasi/ website), mengembangkan layanan informasi bisnis dan

Tabel jenis_objek berfungsi untuk menyimpan data jenis objek pariwisata kabupaten sumba barat daya, kunci utama adalah id_jenis_objek.. Berikut adalah struktur