• Tidak ada hasil yang ditemukan

PENGARUH PERLAKUAN FILLER PIROFILIT TERHADAP DAYA SERAP AIR SAPC DAN PENGUJIAN APLIKASINYA

N/A
N/A
Protected

Academic year: 2021

Membagikan "PENGARUH PERLAKUAN FILLER PIROFILIT TERHADAP DAYA SERAP AIR SAPC DAN PENGUJIAN APLIKASINYA"

Copied!
7
0
0

Teks penuh

(1)

Prosiding Pertemuan dan Presentasi Ilmiah ‐ Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir 2015  Pusat Sains dan Teknologi Akselerator  ‐  BATAN 

Yogyakarta,  9 ‐ 10  Juni  2015

PENGARUH PERLAKUAN FILLER PIROFILIT TERHADAP

DAYA SERAP AIR SAPC DAN PENGUJIAN APLIKASINYA

Jadigia Ginting

PSTBM BATAN, Kawasan Puspiptek Serpong

e-mail : j.ginting@yahoo.com ;Jadigia.ginting@yahoo.com

ABSTRAK

PENGARUH PERLAKUAN FILLER PIROFILIT TERHADAP DAYA SERAP AIR SAPC DAN PENGUJIAN APLIKASINYA. Telah dilakukan optimasi berupa beberapa perlakuan pada filler pirofilit untuk sintesis superabsorban polimer komposit (SAPC) denganreaksi kopolimerisasi akrilat. Pirofilit adalah suatu mineral silikat dengan rumus kimia Al2Si4O10(OH)2 mempunyai gugus fungsi reaktif yaitu –OH yang mudah

membentuk ikatan sehingga dapat berfungsi sebagai bahan penyerap air. Filler pirofilit divariasi komposisi beratnya dan ukuran kehalusannya . Untuk mendapatkanukuran filler yanghalus dilakukan penghalusan dengan memvariasi waktu penghalusan menggunakan high energy mechanical milling (HEMM). Metode sintesis mengikuti prosedur kelompok Tehnik Kimia ITB Bandung. Hasil sintesis SAPC–prflt dikarakterisasi dengan spektroskopi Fourier Transform Infra merah (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM).Pengaruh perlakuan filler terhadap daya serap air SAPC-prflt yaitu pada sampel dengan berat filler 0.5 gram diperoleh gradient serapan 1,610; SAPC-prflt dengan waktu penumbukan 9 jam diperoleh gradient sebesar 1,526; SAPC-p dengan perendaman suhu 40oC sebesar 2,241serta gradient serapan SAPC-prflt dengan aplikasi pempers sebesar 1,607. Analisis data XRD menunjukkan terjadinya pelebaran puncak 2θ pada titik 5, sesuai dengan mikrograph SEM yang menunjukkan pola porous pada sampel dengan filler 0,5 gram dan penghalusan HEMM selama 9 jam, menghasilkan peningkatan kekuatan dan stabilitas SAPC sehingga meningkatkan daya serap airnya.

Kata Kunci : SAPC-Pirofilit, filler-HEMM, daya serap air

ABSTRACT

EFFECT OF PYROPHYLLITE FILLER TREATMENT TOWARD WATER ABSORBANCE RATE OF SAPC AND ITS APPLICATION TEST. An optimation treatment to pyrophtllite filler has been done to sintesize superabsorbent polymers composite (SAPC) with copolymerization of acrylic. Pyrophyllite is one of a silicate mineral with chemical formula Al2Si4O10(OH)2 having a reactive functional group –OH that easily making a

bonding and therefore it is suitable for water absorbance materials. The pirophyllite were studied as its weight composition and its powder-size in the SAPC preparation. To obtain the fine-size, the filler- pyrophyllite were milled with high energy mechanical milling (HEMM) into divers hours of milling. The synthese were carried out by using the settle method from Chemicsl Engineering group of ITB Bandung. The samples of SAPC-prflt were then characterized with fourier-transform infra red spectroscopy ( FTIR), X-ray diffraction (XRD) and scanning electron microscopy( SEM). Effect of filler treatment toward water absorbance rate is the prflt with 0.5 gr filler having the highest gradient absorbancy 1,610; SAPC-prflt which milled for 9 hours has gradient absorbancy1,526; SAPC-SAPC-prflt after hot water test at 40oC has gradient absorbancy 2,241 and SAPC-prflt as pempers test has the gradient absorbancy 1,607. XRD data analysis showed a broad peak 2θ at scale 5 w which correspond to the micrographs picture of the sample which has 0.5 gr filler pyrophyllite and sample after milled for 9 hours, that proposed increase the sample strength and stability which induce the increasing of its water absorbancy.

Keywords:SAPC-Pirofilit, filler-HEMM ,water absorbancy

PENDAHULUAN

olimer komposit terdiri atas matriks sebgai fase tetap dan fase terdispersi (pengisi) dan kedua fase tersebut dipisahkan antar muka (interfase). Super Absorban Polimer Komposit ( SAPC ) adalah suatu polimer komposit yang dibuat dari pen-campuran/kopolimerisasi asam akrilat dan akrilamida dengan filler tertentu. Pemanfaatan filler dimaksud-kan untuk meningkatdimaksud-kan daya serap air serta kualitas

super absorban [1-2]. Proses pembuatan SAPC dapat dilakukan dengan menggunakan katalisator yang berfungsi sebagai inisiator yang disertai pemanasan, atau dengan irradiasi [3] dan atau ultrasonik. Sifat SAPC yang dihasilkan tergantung pada bahan matriks dan bahan pengisi yang digunakan, setiap polimer komposit yang dibuat dengan bahan berbeda akan menghasilkan sifat yang berbeda, tergantung dari bahan polimer, bahan pengisi, komposisi dan ukuran pengisi yang digunakan.

(2)

Menurut karakteristiknya SAPC telah banyak digunakan di beberapa bidang aplikasi, seperti : pertanian, hortikultura, higienis, makanan, pemberian obat dan kosmetik [4-5]. Berikut ini aplikasi kapasitas serapan air beberapa material dengan kemampuannya dalam menyerap air sampai ratusan bahkan ribuan kali dari berat awalnya.

Tabel 1. Kapasitas daya serap air beberapa material[1-2].

No. Material Kemampuan

serap air

1 Kertas saring Whatman No.3

180 kali 2 Tissue untuk muka 400 kali 3 Spons lembut PU 1050 kali 4 Serbuk kayu kering 1200 kali 5 Tissue bola 1890 kali 6 SAP A200 20200 kali

Pengembangan teknologi polimer komposit kemudian dilakukan dengan rekayasa material, salah satunya pada pembuatan polimer komposit dilakukan dengan memadukan dua material yang berbeda sehingga dapat meningkatkan sifat mekanik dari material tersebut. Rekayasa material dapat dilakukan dalam variasi ukuran berskala nano. Banyak penelitian menyebutkan bahwa pembuatan komposit dengan filler ukuran nano dapat meningkatkan properties dari material.[10].

Polymer nanoclay composites adalah termasuk

nanokomposit, yang mana terdiri dari partikel filler yang sedikitnya salah satu dimensinya berada pada ranah nano (kurang dari 100 nm), dengan matriksnya yaitu polimer. Inklusi dari nanopartikel dapat memberikan efek peningkatan yang signifikan terhadap sifat polimer komposit. Sedikit persenan berat filler nano yang dicampurkan pada matriks polimer sudah dapat meningkatkan kekuatan mekanik dibanding polimer murni. Partikel nano mempunyai luas permukaan yang besar yang berarti semakin banyak kontak interface antara matriks polimer dan nanoclay itu sendiri. Ikatan yang kuat pada banyak interface tersebut akan membuat sifat komposit yang unggul pada komposit . Polimer – clay nanokomposit biasanya merupakan bahan penggabungan antara polimer dan bahan komposit sebagai penguat (reinforcement), Reinforcement yang digunakan biasanya juga sebagai pengisi (filler) pada matriks polimer seperti silika, zeolit, bentonit, monmorolonit dan lain-lain.

Banyak penelitian dilakukan untuk mening-katkan kualitas SAPC, salah satu teknik untuk meningkatkan kemampuan SAPC, adalah dengan

menggunakan berbagai jenis dan ukuran filler sebagai penguat. Kemampuan SAPC menyerap air ditentukan oleh gugus fungsional polimer yang bersifat hidrofilik seperti akrilat, dengan gugus reaktif seperti -OH, COOH, CONH2, CONH dan

SO3H pada rantai polimer.[10] Dalam penelitian ini

dilakukan optimasi pembuatan SAPC menggunakan filler pirofilit dengan variasi komposisi dan ukuran fillernya. Untuk mendapatkan daya serap air yang lebih baik yaitu mengoptimasi filler yang dihaluskan dengan HEMM dengan putaran 1000 rpm dan variasi waktu penghalusan sampai dengan selama 9 jam sehingga didapat ukuran filler dalam orde nano serta dengan memvariasi komposisinya .

Pirofilit termasuk dalam kategori mineral silikat dengan rumus Al2Si4O10(OH)2 sistem kristal

mono-klinik dan trimono-klinik pada umumnya memperlihatkan lapisan tipis atau merupakan agregat foliasi yang radial berwarna kuning putih, hijau pucat atau hijau coklat. Pada piropilit terdapat gugus fungsi paling reaktif pada permukaan yaitu –OH yang dapat terikat pada Al(III) dan dapat mengembang beberapa kali dari volume awal dengan meningkatkan kekerasan 1,5 X, sehingga dapat berfungsi sebagai bahan penyerap air , bahan adsorben pada proses penurunan bilangan peroksida suatu komoditas kimia dan mengurangi kadar asam lemak bebas pada minyak jelantah.[9].

Pirofilit terjadi di alam secara pengendapan hidrotermal, Gambar 1 contoh gambar batuan pirifilit.

Gambar 1. Beberapa bentuk batuan pirofilit.

Tujuan dari penelitian ini untuk mendapatkan optimasi sintesis SAPC serta melihat pengaruh komposisi berat dan efek ukuran filler terhadap daya serap air SAPC sehingga menghasilkan SAPC dengan kapasitas maximum

TATA KERJA

Alat

dan

Bahan

Bahan

Monomer akrilamida, asam akrilik(AA), ini-siator amonium persulfat (APS), crosslinker N, N'-metilenabisakrilamida (MBA), pirofilit yang

(3)

diper-Prosiding Pertemuan dan Presentasi Ilmiah ‐ Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir 2015  Pusat Sains dan Teknologi Akselerator  ‐  BATAN 

Yogyakarta,  9 ‐ 10  Juni  2015

oleh dari Aldrich dan Kigam (Korean Institute Geoscience).

Alat

Alat pengujian identifikasi dan karakterisasi SAPC dengan FTIR, SEM, XRD serta penghalusan ukuran filler dengan menggunakan HEMM

Tata Kerja

Sintesa SAPC

Filler yang digunakan adalah, pirofilit yang dihaluskan dengan HEMM.dengan variasi waktu penghalusan 1 jam; 3; 5; 7 sampai 9 jam dan membuat variasi komposisi berat sampel yaitu 0,1 ; 0,3; 0,5; 0,7 dan 0,9 gram. Masing masing filler ditambahkan ke dalam 5.5 g AA yang telah dilarutkan dalam air suling 35 ml dan kemudian ditambahkan 11 mL larutan natrium hidroksida (5M) dalam labu leher-tiga yang dilengkapi dengan pengaduk, kondensor, dan termometer. Kemudian 3,3 mg MBA ditambahkan ke dalam campuran larutan dan diaduk pada suhu kamar selama 60 menit. Campuran tersebut kemudian dipanaskan perlahan-lahan sampai 70 oC yaitu setelah

penambah-an 0,06 g initiator APS yaitu untuk memulai reaksi polimerisasi. Reaksi dilanjutkan selama satu jam sampai terbentuk hasil polimerisasi berbentuk gel. Gel kemudian dicuci beberapa kali dengan air suling dan dikeringkan dalam oven pada temperature 70

o

C[1-2]. Gambar 2 diagram alir kerja proses pembuatan Sintesa SAPC

Gambar 2. Diagram alir proses sintesa pem-buatan SAPC [1].

DATA DAN PEMBAHASAN

Indentifikasi dan Karakterisasi

Identifikasi dilakukan untuk menentukan struktur kimia SAPC dengan analisa FTIR, dan penentuan struktur mikro dengan menggunakan XRD dan morfologi dengan SEM.

Pengukuran Daya Serap Air

Sampel SAPC hasil sintesa ditimbang untuk mengetahui berat awalnya (Mo) Kemudian SAPC direndam dalam wadah yang berisi air suling dengan variasi waktu perndaman 5,15, 30, 45 dan 60 menit, Selanjutnya SAPC hasil perendaman diambil dibersihkan dengan kertas tissue sampai permukaan SAPC benar benar kering. SAPC yang telah dikeringkan ditimbang untuk dicatat penambahan massanya(Mt). Laju serapan air ditentukan menurut persamaan berikut: t Mo Mt− = : air penyerapan Laju Mo Mo Mt− = : air penyerapan Kapasitas

dimana : Mo : berat sampel awal/kering dan Mt : berat sampel yang mengembang setelah direndam dalam air selama waktu t.

Hasil Spektra Pengukuran Dengan FTIR

Karakteristik FTIR SAPC dengan filler pirofilit ditunjukkan pada Gambar 3.

C:\Program Files\OPUS 65\MEAS\JG-A.0 JG-A Instrument type and / or accessory

C:\Program Files\OPUS 65\MEAS\JG-B.0 JG-B Instrument type and / or accessory C:\Program Files\OPUS 65\MEAS\JG-B.1 JG-B Instrument type and / or accessory C:\Program Files\OPUS 65\MEAS\JG-D.0 JG-D Instrument type and / or accessory

C:\Program Files\OPUS 65\MEAS\JG-E.0 JG-E Instrument type and / or accessory

03/07/2014 03/07/2014 03/07/2014 03/07/2014 03/07/2014 1000 1500 2000 2500 3000 3500 Wavenumber cm-1 86 88 90 92 94 96 98 100 T ra n s m it tanc e [ % ]

Gambar 3. Spektra FTIR SAPCdengan filler Pirofilit.

Gambar 3 dan 4 disajikan spektra infra merah SAPC-pirofilit yang menunjukkan struktur kimia gugus fungsi polimer komposit : pada panjang gelombang 3429,43 Cm-1 mencirikan karakteristik gugus – OH dan pada panjang gelombang 1637,50 Cm -1 karakteristik ikatan CO dan serapan pada 1037 Cm -1 adalah regangan Si-O dan 685 Cm -1 merupakan getaran ikatan –CH.

(4)

C:\Program Files\OPUS 65\MEAS\JG-A.0 JG-A Instrument type and / or accessory

C:\Program Files\OPUS 65\MEAS\JG-B.0 JG-B Instrument type and / or accessory C:\Program Files\OPUS 65\MEAS\JG-B.1 JG-B Instrument type and / or accessory C:\Program Files\OPUS 65\MEAS\JG-D.0 JG-D Instrument type and / or accessory

C:\Program Files\OPUS 65\MEAS\JG-E.0 JG-E Instrument type and / or accessory

03/07/2014 03/07/2014 03/07/2014 03/07/2014 03/07/2014 1000 1500 2000 2500 3000 3500 86 94 1000 1500 2000 2500 3000 3500 86 94 1000 1500 2000 2500 3000 3500 86 94 1000 1500 2000 2500 3000 3500 86 94 1000 1500 2000 2500 3000 3500 86 94 Wavenumber cm-1 T ra n s m itta n c e [ % ]

Gambar 4. Spektra Pembesaran FTIR SAPC filler pirofilit.

Pengamatan XRD

Gugus aktif – OH dari serbuk pirofilit yang digiling halus sehingga menpunyai ukuran kristal/ butir kristal sangat kecil berkontribusi mencirikan karakteristik hidrofilik dan kekuatan morfologi SAPC-pirflt, hal mana terjadi pada filler bentonit atau zeolit meningkatkan daya serap air secara signifikan[10]. Pada pirofilit gugus ini terinterkalasi ke dalam lapisan polimer yang menyebabkan pelebaran puncak pada 2Ø di titik 18, yang dapat meningkatkan daya serap air SAPC-pirflt (Gambar 4.) Analisis XRD pada kisaran 1o – 30o ini me-nunjukkan status mikrostruktur dari mikrokomposit, yang diharapkan dapat meningkatkan porositas dan laju serapan air SAPC. Analisis ini memastikan pembentukkan nanostruktur SAPC.

Gambar 5. Difraktograph ASPC-pirofilit.

Pengamatan SEM

Hasil pengamatan kehomogenitas struktur SAPC dengan berbagai komposisi filler adalah sebagai berikut :

Mikrograf SAPC dengan berbagai komposisi filler 0,1; 0,3; 0,5; 0,7 dan 0,9 gr ditunjukkan pada Gambar 6. Semua sampel memiliki struktur jaringan yang baik . Gambar 5a. Menunjukkan pola nonporous sementara ke-empat sampel lainnya terlihat porous sehingga mempunyai daya serap air yang lebih besar. Gambar 5b – 5e terlihat adanya pola warna terang/cerah, yaitu pola mikrokristaline yang mendukung kekuatan jaringan SAPC yang stabil dan memberikan serapan air yang baik.

(a) (b) c)

(d) (e)

Gambar 6. SEM mikrograf SAPC piroflite dengan variasi komposisi filler 0.1, 0.3, 0.5, 0.7 and 0.9 gr.

(5)

Prosiding Pertemuan dan Presentasi Ilmiah ‐ Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir 2015  Pusat Sains dan Teknologi Akselerator  ‐  BATAN 

Yogyakarta,  9 ‐ 10  Juni  2015

Penentuan Daya Serap Air

a. Pengujian daya serap air SAPC-P dengan variasi komposisi berat filler dan variasi waktu penghalusan filler dengan HEMM diperoleh hasil sebagai dirtunjukkan Gambar 7.

(a)

(b)

Gambar 7. Grafik daya serap air SAPC-piri-filit dengan variasi berat filler (a) dan variasi waktu penghalusan filler (b).

Dari pengujian daya serap air SAPC-prflt dengan menggunakan variasi komposisi berat filler yaitu 0,1; 0,3; 0,5; 0,7 dan 0,9 gram dapat dilihat dari Gambar 7a menunjukkan bahwa daya serap air sebagai gradient serapan tertinggi didapat pada SAPC- prflt dengan berat filler 0,5 gram yaitu sebesar 1,610 yaitu daya serap yang cukup tinggi sehingga dapat dikatakan bahwa penyerapan air SAPC-prflt dengan 0,5 gram filler daya serapnya terbaik dibandingkan dengan berat sampel yang lain. Hal ini sesuai dengan teori yang mengatakan bahwa sifat SAPC yang dihasilkan tergantung pada bahan matriks dan komposisi bahan pengisi yang digunakan, setiap polimer komposit yang dibuat dengan bahan polimer yang berbeda dan komposisi serta ukuran filler yang berbeda akan menghasilkan sifat dan kualitas yang berbeda.

Dari pengujian daya serap air SAPC-prflt dengan menggunakan variasi waktu penumbukan filler dengan HEMM yaitu 1; 3; 5; 7 dan 9 jam. Hasil dapat dilihat dari grafik Gambar 7b menunjukkan bahwa daya serap air sebagai gradient serapan tertinggi pada SAPC- p dengan waktu penumbukan filler 9 jam yaitu sebesar 1,526 daya serap yang cukup tinggi sehingga dapat dikatakan bahwa penyerapan air SAPC-prflt dengan penumbukkan filler 9 jam maka ukuran filler bisa mencapai orde nano sehingga memiliki daya serap air terbaik dibandingkan dengan SAPC-prflt dengan filler yang waktu penghalusannya dibawah 9 jam. Hal ini dapat dikatakan bahwa partikel nano mempunyai luas permukaan yang besar yang berarti semakin banyak kontak interface antara matriks polimer dan

nanofiller. Ikatan yang kuat pada banyak interface

akan membuat sifat SAPC-prflt semakin memiliki struktur jaringan yang lebih kuat/stabil dan mempunyai daya serap air yang lebih tinggi. Sebagai perbandingan terhadap hasil penelitian sebelumnya yang menggunakan filler bentonit yang dihaluskan dengan MEMM dan fialler yang sama tanpa dihaluskan memiliki hasil yang jauh berbeda jauh, dimana SAPC –ben HEMM 10 jam, gradient serapannya adalah 0.837 dan SAPC-ben-non milling adalah 0.164.

Menurut sebuah studi sebelumnya [3,6-7],,filler

/clay dapat bereaksi dengan PAA untuk meningkatkan jaringan polimer. Dalam penelitian ini, mekanisme jenis dan ukuran filler dapat meningkatkan interaksi berupa ikatan antara gugus -COO dan gugus -OH pada permukaan serbuk bentonit yang digiling halus dapat berinteraksi maksimal karena mempunyai ukuran Kristal / butir Kristal sangat kecil dan dapat meningkatkan serapan air lebih baik

b. Uji kekuatan /stabilitas SAPC-prflt dalam media air panas ( retention test ) dan hasil Spektra FTIR SAPC-prflt pada perendaman dalam media air panas

(6)

Untuk pengujian kekuatan / stabilitas daya serap air SAPC-prflt dalam media air panas, dilakukan pengujian perendaman SAPC-prflt dalam air panas dengan variasi suhu yaitu : 40, 60 and 80 o C selama beberapa jam. Dari grafik Gaambar 8. terlihat hasil kekuatan/stabilitas SAPC menunjukkan kualitas SAPC-prflt yang cukup baik/stabil; pada suhu 40 oC dengan gradient serapan sebesar 2,241 dan terlihat serapan air masih meningkat. Hal ini diindikasikan dengan pengukuran spektra Infra-merah yang telah dilakukan, dimana tidak ada perubahan spektra dari puncak-puncak gugus aktif yang berubah/evolusi, yang bearti SAPC tidak mengalami kerusakan tetapi tetap stabil. Tidak ada perubahan spektra dari puncak-puncak pada suhu pemanasan selama beberapa jam

c. Pengujian daya serap air SAPC-prflt pada apli-kasi bentuk kemasan Pempers

Gambar 9. Grafik daya serap air SAPC-prflt pada aplikasi kemasan Pempers.

Untuk pengujian salah satu aplikasi daya serap SAPC-prflt dalam kemasan pempers telah dilakukan dalam 2 contoh sampel, yaitu untuk melihat kemam-puan daya serap airnya. Hasil pengujian terhadap salah satu contoh sampel terlihat dari grafik Gambar 9. Dimana dapat dinyatakan bahwa SAPC-prflt dalam kemasan pempers dapat menyerap air dengan sangat baik, terlihat dari gradien serapan yang tajam sebesar 1,607 dan masih dapat menyerap air untuk waktu yang lebih lama.

KESIMPULAN

Daya serap air SAPC-prflt secara signifikan sangat dipengaruhi oleh komposisi dan perlakuan pada filler/penguat, sehingga dihasilkan filler yang lebih halus dan memiliki ukuran serbuk mencapai orde nano. Analisis Spektrum FTIR menunjukkan bahwa reaksi kopolimerisasi terjadi pada gugus -COO dan gugus -OH. Analisis XRD menunjukkan

bahwa reaksi polimerisasi terjadi pada permukaan filler yang diindikasikan sebagai pelebaran puncak sudut 2θ. Daya serap air SAPC-prflt tertinggi dibuat dengan berat filler 0,5 gram yaitu sebesar 1,610 dan SAPC-prflt dengan perlakuan/waktu penumbukan filler 9 jam sebesar 1,526 sebagai daya serap yang tertinggi, serta SAPC-prflt dengan perendaman pada suhu 40 oC menunjukkan stabilitas SAPC-prflt yang kuat dengan gradient serapan sebesar 2,241. Hasil pengujian aplikasi pempres menunjukkan menyerap air dengan sangat baik pada gradien serapan yang tajam sebesar 1,607. SAPC-prflt siap dijadikan komoditas industri dengan kelengkapan dokumen Paten/Haki menyusul.

DAFTAR PUSTAKA

1. Ade Rahma Dyah H dan Risca Yanditia,

Optimalisasi Kondisi Reaksi Untuk Mening-katkan Sifat Absorbansi Komposit Polimer Superabsorben, Laporan Penelitian Teknologi

Kimia 2, Teknik Kimia Fakultas Teknologi Industri ITB,2011.

2. A.Zainalabidin, I. Noezar, and Ridhawati,

Synthesis and Characterization of Super-absorbent Polymer Composites Based on Acrylic Acid, Acrylamide and Bentonite, Indonesian

Journal of Material Science, Vol. 12 (2), January, 2011.

3. Deni.Swastomo, Kartini Megasari,Rany Sapta Aji. 2008, Pembuatan Komposit Polimer

Superabsorben dengan Mesin Berkas Elektron,

Seminar Nasional IV SDM Teknologi Nuklir,Yogyakarta ,25-26 Agustus 2008.

4. Ferfera-harrar Hafida at.al, Preparation of Chitosan-g-Poly (acrylamide)/Montmorillonite Superabsorbent Polymer Composites: Studies on Swelling, Thermal, and Antibacterial Properties,

Journal of Applied Polymer Science, 2014, DOI:

10.1002/APP.39747.

5. Gao, Deyu, Superabsorbent Polymer Composite

(SAPC) Materials and their Industrial and High Tech Applications, Dissertation, Der

Technis-chen U ät Bergakademie Fiberg University. 2003.

6. Li an, Wang Aiqin, Synthesis and Properties of

Clay-Based Superabsorbent Composite,

European Polymer Journal 41, 1630-1637, ScienceDirect, Elsevier, 2005.

7. Li an, Zhang Junping, Wang Aiqin, Utilization of

Starch and Clay for the Preparation of Superabsorbent Composite, Bioresource

Tech-nology 98, 327-332, ScienceDirect, Elsevier, 2007.

(7)

Prosiding Pertemuan dan Presentasi Ilmiah ‐ Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir 2015  Pusat Sains dan Teknologi Akselerator  ‐  BATAN 

Yogyakarta,  9 ‐ 10  Juni  2015

8. Pyrophyllite, en.wikipedia.org/wiki/Pyrophyllite 9. Sari Dewi Cahyaning Tyas, Siti Tjahjani,

Pemanfaatan Piropilit Sebelum dan Sesudah Aktivasi Sebagai Adsorben Pada Proses Penurunan Bilangan Peroksida dan Kadar Asam Lemak Bebas Minyak Jelantah, Journal Manusia

dan Lingkungan, Vol. 18, No.3, Nov. 2011: 184 – 190.

10. Sri Yatmani dan Jadigia Ginting, Sintesis dan

Karakterisasi Superabsorban Polimer Komposit Berbasis Nanoclay Montmorillonit, Proseding

Seminar Nasional ke 50 Temu Ilmiah Jaringan Kerjasama Kimia Indonesia dan Seminar Nasional XXI Kimia dalam Industri dan Lingkungan, Yogyakarta , 6 Desember 2012, ISSN: 0854-4778.

11. Spencer,P.,R.Spares, et al., Modelling The Large

Strain Solid Phase Deformation Behavior of Polymer Nanoclay Composite, Mechanics of

time-dependent Materials (2008) 12(4):313-327. 12. Xie huafei, Study and Preparation of

Super-absorbent Composite of Chitosan-g-poly (Acrylic Acid )/Kaolin by In-situ Polymerization,

International Journal of Chemistry,Vol.3, No. 3; August 2011.

TANYA JAWAB

Herry Poernomo

− Jika ditinjau dari aspek ekonomi, bagaimana apabila pembuatan SAPC dikomparasi teknoekonominya melalui proses kimia, iradiasi dengan irradiator (gamma, berkas elektron dan ultra violet).

− Hasil SAPC yang diperoleh apakah sudah dikomparasi dengan hasil penelitian sebelumnya missal dari PAIR dan PSTA.

Jadigia Ginting

− Harapannya dengan teknologi kimia dan

irradiasi bisa lebih murah, tapi sampai saat ini menggunakan irradiasi belum optimal.

− Perbandingan dengan kelompok PAIR, PSTA dan

Teknik Kimia ITB tidak berbeda jauh, sudah dibandingkan.

Iga Trisnawati

− Apa peran teknologi nuklir pada penelitian ini? − Apa alasan pemilihan proses mengacu pada

proses ITB?

Jadigia Ginting

− Belum dipakai/dicoba, tapi Pak Deni (PSTA)

Yogya sudah.

− Sudah seffle dan baik, variasi pengamatannya

Gambar

Tabel 1.  Kapasitas daya serap air beberapa  material[1-2].
Gambar 2.  Diagram alir proses sintesa pem- pem-buatan SAPC [1].
Gambar 4.  Spektra Pembesaran FTIR SAPC  filler pirofilit.
Gambar 7.  Grafik daya serap air SAPC-piri- SAPC-piri-filit dengan variasi berat filler (a)  dan variasi waktu penghalusan  filler (b)
+2

Referensi

Dokumen terkait

Lahan-basah adalah salah satu sumber daya alam di dalam wilayah Provinsi Kalimantan Selatan. Sumber daya alam ini rentan terhadap perubahan, padahal keberadaannya harus

Di samping itu, apabila terdapat perbedaan di masyarakat, konsep yang diajukan oleh pemerintah adalah tasāmuḥ fī al-ikhtilāf / agree in disagreement (toleransi dalam

Dalam penulisan skripsi ini penulis mengambil judul “ Analisis Pengaruh Nilai Tukar Rupiah/US$, Tingkat Suku Bunga SBI Dan PMA Terhadap Indeks Harga Saham Gabungan Di Bursa

Pemerintah Daerah Kabupaten Minahasa Utara sebagai Kabupaten harus dalam upayakan meningkatkan struktur perekonomian Produk Domestik Regional bruto (PDRB) atas

Jadi metode dakwah merupakan sebuah jalan atau cara yang digunakan atau dilakukan dalam melaksanakan aktifitas mengajak manusia kepada jalan yang lurus, yang mana

Hal ini terbukti dengan menggunakan fuzzy logic sebagai metode untuk mengembangkan nilai weight pada tabel Function Point Complexity Weight maka tingkat

(6) Pendidikan Profesi Guru (PPG) sebagaimana dimaksud ayat (1) adalah program pendidikan yang diselenggarakan untuk mempersiapkan lulusan S1 kependidikan dan S1/D4

Dalam tulisannya yang lain, Catherine Lewis (2004) mengemukakan pula tentang ciri-ciri esensial dari lesson study, yang diperolehnya berdasarkan hasil observasi