• Tidak ada hasil yang ditemukan

ANALISA PERFORMANSI PADA MOBIL TOYOTA FORTUNER MESIN DIESEL TIPE 2KD-FTV VN TURBO INTERCOOLER

N/A
N/A
Protected

Academic year: 2021

Membagikan "ANALISA PERFORMANSI PADA MOBIL TOYOTA FORTUNER MESIN DIESEL TIPE 2KD-FTV VN TURBO INTERCOOLER"

Copied!
10
0
0

Teks penuh

(1)

91

ANALISA PERFORMANSI PADA MOBIL TOYOTA FORTUNER

MESIN DIESEL TIPE 2KD-FTV VN TURBO INTERCOOLER

Andi Setiawan Ginting, Mulfi Hazwi

Departemen Teknik Mesin, Falkutas Teknik, Universitas Sumatera Utara

As308@live.com

ABSTARAK

Direct Four Stroke Turbo Commonrail Injection yang dikenal dengan D4D merupakan kemajuan teknologi pada industri otomotif khususnya dalam hal penyempurnaan performansi mesin. D4D adalah teknologi pengaturan laju tekanan bahan bakar dari sisi kuantitas dan waktu penyemprotan bahan bakar secara elektronik.Kelebihan yang dimiliki oleh mesin D4D adalah dengan penggunaan sistem commonrail dimana bahan bakar solar akan dihisap oleh pompa bahan bakar melalui saringan bahan bakar agar dapat menghasilkan kualitas bahan bakar solar dengan tingkat emisi gas buang yang sangat rendah. Disamping itu dengan adanya teknologi ini akselerasi dan performa yang dihasilkan sangat optimal beserta tingkat getaran dan suara mesin yang lebih halus. Tujuannya untuk mengetahui performansi dan kinerja mesin diesel yang berteknologi commonrail VN Turbo Intercooler pada seri Toyota Fortuner tipe 2KD FTV-Vn Turbo Intercooler. Metodologi yang digunakan adalah ruang bakar atau mesin pada Toyota Fortuner tipe 2KD-FTV VN Turbo Intercooler. Motor Diesel memiliki efisiensi termal dan performansi yang lebih baik serta dapat menghasilkan energi yang relatif besar. Efisiensi termal yang merupakan indikasi sesungguhnya dari konversi input termodinamika menjadi kerja mekanis mencapai 84,4 %. Hal ini membuktikan bahwa mobil ini telah mempunyai efisiensi yang sudah bagus. Disamping itu untuk putaran 2800 rpm didapat daya sebesar 100,5218 kW. Hasil analisa secara keseluruhan membuktikan bahwa mobil ini memiliki performa yang baik. Kata kunci: teknologi, kuantitas, akselerasi, emisi, optimal.

1. PENDAHULUAN 1.1 Latar belakang

Toyota fortuner dengan masing-masing pilihan mesin ternyata memiliki kelebihan dan ciri khas masing-masing. Pada seri mesin bensin toyota kijang innova tipe 1TR-FE, mesinya menggunakan teknologi variable valve timing Intellingent atau yang lebih dikenal dengan singkatan VVT-i yang berfungsi mengatur pola bukaan katup sehingga dapat memaksimalkan tenaga mesin pada saat tenaga besar dan sebaliknya dengan pemakaian bahan bakar yang sesuai kondisi. Pada seri mesin diesel Toyota Fortuner tipe

2KD-FTV VNT (Variable Nozzle

Turbocharger) intercooler

menggunakan mesin D-4D yang ternyata juga memiliki keunggulan lebih baik dibandingkan mesin bensin.2KD FTV VN Turbo Intercoller adalah mesin Toyota diesel 4 silinder, dimana

pengertian angka 2 adalah

menunjukkan generasi keberapa dari keluarga mesin tersebut. Mesin seri KD

adalah 4 silinder dengan fitur ber-camshaf ganda namum dihubungkan oleh 1 timing belt, kode F menunjukkan mesin tersebut twincam, juga dilengkapi turbucharger, kode T menunjukkan mesin tersebut bertipe “forced induction” yang berfungsi untuk meningkatkan tenaga mesin dan efisiensi dengan turbocharger dan menggunakan sistem pasokan bahan bakar tipe Common rail,dan V menunjukkan sistem pasokan bahan bakar tipe Common rail [1].

2. TINJAUAN PUSTAKA

2.1Pengertian Dasar

Jika meninjau jenis-jenis mesin, pada umumnya adalah suatu pesawat yang dapat merubah bentuk energi tertentu menjadi kerja mekanik. Misalnya, mesin listrik yang mana adalah sebuah mesin yang kerja mekaniknya diperoleh dari sumber listrik. Sedangkan mesin gas atau mesin bensin yang kerja mekaniknya

(2)

92

diperoleh dari sumber pembakaran gas atau bensin.

Selain dari pada itu, apabila ditinjau dari cara memperoleh sumber energi termal, jenis mesin kalor dapat dibagi menjadi dua bagian, yaitu:

Mesin pembakaran luar (exsternal

combustion engine). Mesin

pembakaran luar adalah mesin dimana proses pembakaran terjadi diluar mesin, energi termal dari hasil pembakaran dipindahkan ke fluida kerja mesin melalui beberapa dinding pemisah. Contohnya adalah mesin uap. Mesin pembakaran dalam (internal

combustion engine). Mesin

pembakaran dalam adalah mesin

dimana proses pembakaran

berlangsung di dalam mesin itusendiri, sehingga gas pembakaran yang terjadi sekaligus berfungsi sebagai fluida kerja. Mesin pembakaran dalam ini umumnya dikenal dengan sebutan motor bakar. Contoh dari mesin kalor pembakaran dalam ini adalah motor bakar torak dan turbin gas [2].

2.2. Prinsip Kerja Motor Bakar Diesel

Ketika gas dikompresikan, suhunya meningkat seperti dinyatakan oleh Hukum Charles; mesin diesel menggunakan sifat ini untuk menyalakn bahan bakar. Udara disedot kedalam silinder mesin diesel dan dikompresikan oleh piston yang merapat, jauh lebih tinggi dari resiko kompresi dari mesin menggunakan busi. Pada saat piston memukul bagian atas, bahan bakar diesel dipompa keruang pembakaran dalam tekanan tinggi, melalui nozzle atomisting. Dicampur dengan udara panas yang bertekanan tinggi. Hasil pencampuran ini menyala dan membakar dengan cepat. Ledakan tertutup ini menyebabkan gas dalam

ruang pembakaran di atas

mengembang,mendorong piston

kebawah dengan tenaga yang kuat dan menghasilkan tenaga dalam arah vertikal [2].

Gambar 2.1. Langkah Kerja Motor Diesel

2.3 Siklus Ideal Diesel

Gambar 2.2 Diagram P-V dan T-S

Proses-proses yang terjadi pada siklus tersebut adalah:

a. Proses 6-1. Tekanan konstan udara hisap pada Po.Katup hisap terbuka dan katup keluar tertutup:

)

(

1 6 0 1 6

P

v

v

W

=

[2]Keterangan: 0

P

= tekanan pada titik 0 (kPa)

V1 = volume pada titik 1 (m3)

V6 = volume pada titik 6 (m 3

) 1

6−

W

= kerja pada titik 6-1 (kJ)

b. Proses 1-2. Langkah kompresi isentropik Semua katup tertutup:

T2=T1(V1 / V2)k-1 = T1(V1 / V2)k-1 =T1 (rc)k-1 P2= P1(V1 / V2)k = P1(V1 / V2)k = P1(rc)k V2 = VTDC = mmRT2 / P2 Q1-2 = 0 W1-2 = mmR(T2 – T1) / 1- k [2] Keterangan: 1

P

= tekanan pada titik 1 (kPa) 2

P

= tekanan pada titik 2 (kPa) 1

T

= temperatur pada titik 1 (K) 2

T

= temperatur pada titik 2 (K) 1

V

= volume pada titik 1 (m3) 2

V

= volume pada titik 2 (m3) 2

1−

(3)

93 R = konstanta gas (kJ/kg.K)

c. Proses 2-3. Tekanan Konstan Panas Masuk (Pembakaran) semua katup tertutup: Q2-3 = Qin = mf QHVηc = mmCp(T3 – T2) = (ma + mf)Cp(T3 – T2) QHVηc = (AF + 1)Cp (T3T2) Q2-3 = Qin = Cp(T3 - T2) = (h3 – h2) W2-3 = Q2-3 – (u3 – u2) = P2(V3 – V2) Cut of Ratio : ß = V3 – V2 = T3 / T2 [2] Keterangan: 3

P

= tekanan pada titik 3 (kPa) 2

P

= tekanan pada titik 2 (kPa) 3

T

= temperatur pada titik 3 (K) 2

T

= temperatur pada titik 2 (K) HV

Q

= heating value (kJ/kg) in

Q

= kalor yang masuk (kJ) c

η

= efisiensi pembakaran m

m

=massa campuran gas di dalam silinder (kg)

p

C

= panas jenis gas pada tekanan konstan (kJ/kg.K)

3 2−

W

= kerja pada titik 2-3 (kJ)

d. Proses 3-4: Langkah Isentropik atau langkah ekspansi isentropik:

Semua katup tertutup:

Q3-4 = 0 T4 = T3(V3 / V4)k-1= T3(V3 / V4)k T4 = T3 = (V3 / V4)k = (V3 / V4)k W3-4 = (P4V4 – P3V4) / (1 – k ) = R(T4 – T3) / (1 – k) = (u3 – u4) = Cv (T3- T4) Keterangan: 4

P

= tekanan pada titik 4 (kPa) 3

P

= tekanan pada titik 3 (kPa) 3

T

= temperatur pada titik 3 (K) 4

T

= temperatur pada titik 4 (K) 3

V

= volume pada titik 3 (m3) 4

V

= volume pada titik 4 (m3) m

m

= massa campuran gas di dalam silinder (kg)

R = konstanta gas (kJ/kg.K) 4

3−

W

= kerja pada titik 3-4 (kJ)

e. Proses 4-5: Rejeksi panas volume

konstan (keluaran berhembus

kebawah)Katup keluar terbuka dan katup hisap tertutup.

V5 = V4 = V1 = vBDC W4-5 = 0 Q4-5 = Qout = mmCv(T5 – T4) = = mmCv(T1 - T4) Q4-5 = Qout = Cv = (T5 – T4) = (u5 – u4) = Cv(T1 – T4) [2] Keterangan: 4

T

= temperatur pada titik 4 (K) 5

T

= temperatur pada titik 5 (K) m

m

= massa campuran gas di dalam silinder (kg)

v

c

= panas jenis gas pada volume konstan (kJ/kg.K)

5 4−

W

= kerja pada titik 4-5 (kJ)

f. Proses 5-6: Tekanan Konstan langkah buang di Po.Katup buang terbuka.

W5-6 = P0 (V6 – V5) = P0(V6 – V1) [2] Keterangan:

0

P

= tekanan pada titik 0 (kPa) 5

v

= volume pada titik 5 (m3) 6

v

= volume pada titik 6 (m3) 6

5−

W

= kerja pada titik 5-6 (kJ)

Effisiensi Thermal Siklus Diesel (Eff. Th):

t )DIESEL = [Wnet] / [Qin] = 1 – ([Qout] /

[Qin])

2.4 Tekanan efektif rata-rata (mep)

Selama siklus berlangsung, temperatur dan tekanannya selalu berubah-ubah. Oleh karena itu sebaiknya dicari harga tekanan tertentu (konstan) yang apabila mendorong torak sepanjang langkahnya dapat menghasilkan kerja persiklus yang sama dengan siklus yang dianalisis. Tekanan tersebut dinamai tekanan efektif rata-rata (mep), yang diformulasikan sebagai:

Mep=

[2]

dimana:

(4)

94

Vd = volume langkah torak (m3) Wnett= kerja netto (kJ)

2.5 Daya Indikator ( Ẃi )

Merupakan daya yang dihasilkan dalam silinder motor sehingga merupakan basis perhitungan atau penentuan efisiensi pembakaran atau

besarnya laju panas akibat

pembakaran di dalam silinder.

Wi=

[2] dimana:

Ẃi = daya indikasi (kW)

N = putaran mesin (putaran/detik) n = jumlah putaran dalam satu siklus, untuk empat tak n = 2 (putaran/siklus)

Wnett = kerja netto (kJ) 2.6 Torsi dan Daya

Daya yang dihasilkan suatu mesin pada poros keluarannya disebut sebagai daya poros (atau bisa dikenal dengan brake power) yang dihitung berdasarkan rumusan: Wb = 2π x N x τ [2] Dimana: Wb = daya poros (kW) N = putaran mesin (putaran/ detik) τ = torsi (Nm) π = 3,14

2.7 Konsumsi bahan bakar (Sfc)

Konsumsi bahan bakar (Sfc) didefenisikan ssebagai jumlah bahan bakar yang dikonsumsikan persatuan unit daya yang dihasilkan perjam operasi. Secara tidak langsung komsumsi bahan bakar spesifik merupakan indikasi efesiansi mesin dalam menghasilkan daya dari pembakaran bahan bakar.

Sfc = mיּf / Wb [2] dimana :

mיּf =

dimana:

sfc = konsumsi bahan bakar spesifik (gr/kwh)

mיּf = laju aliran rata-rata bahan bakar (kg/detik)

mf = massa bahan bakar (kg)

ma = massa udara (kg) Wb = daya poros (kW)

N = putaran mesin (putaran/detik)

2.8Efisiensi mekanis

Besarnya kerugian daya

diperhitungkan dalam efisiensi mekanis yang dirumuskan sebagai berikut: ηm = Ẃb / Ẃi [2] dimana: ηm = efisiensi mekanis Wb = daya poros (kW) Wi = daya indikasi (kW) 2.9Efisiensi volumetrik

Efisiensi ini didefinisikan sebagai perbandingan antara massa udara yang masuk karena dihisap torak pada langkah hisap dan massa udara pada tekanan dan temperatur atmosfer yang dapat dihisap masuk kedalam volume satuan yang sama.

ηv = ma / ( ρa x Vd) [2]

dimana: v

η

= efisiensi volumetrik a

ρ

= massa jenis udara (kg/m3) ma = massa udara (kg) Vd = volume langkah torak (m3)

2.10Efisiensi Thermal Brake

Efisiensi Thermal Brake (brake thermal eficiency) merupakan perbandingan antara daya keluaran aktual terhadap laju aliran panas rata-rata yang dihasilkan dari pembakaran bahan bakar. Efisiensi thermal brake

dihitung dengan menggunakan

persamaan berikut:

3600

.

.

CV

mf

PB

b

=

η

[2] dimana: b

η

= Efisiensi termal brake

CV = nilai kalor bawah bahan bakar (kj/kg)

mיּf = laju aliran rata-rata bahan bakar (kg/detik)

3. METODOLOGI

(5)

95

Data yang diperoleh dalam pengujian ini meliputi :

a. Data primer, merupakan data yang

diperoleh langsung dari

pengukuran dan pembacaan pada unit instrumentasi dan alat ukur pada masing-masing pengujian b. Data sekunder, data mengenai

karakteristik bahan bakar solar dari pertamina.

3.2.Pengamatan dan tahap pengujian

Pada penelitian yang akan diamati adalah :

1. Parameter torsi (T) dan parameter daya (PB)

2. Parameter konsumsi bahan bakar spesifik (sfc)

3. Rasio perbandingan udara bahan bakar (AFR)

4. Effisiensi mekanis (ηm)

5. Effisiensi volumetris (ηv)

6. Effisiensi thermal brake (ηb)

3.3.Prosedur Analisa Performansi Mesin Diesel Tipe 2KD FTV-VN Turbo Intercooler

Analisa yang dilakukan dengan menggunakan mesin Diesel Tipe 2KD- FTV VN Turbo Intercooler dengan sistem bahan bakar commonrail.

3.4. Alat – Alat untuk proses analisa unjuk kerja mesin

1.Four gas analyser:

Berguna untuk mengukur kontribusi gas buang yang keluar dari mobil berbahan bakar solar.

2. Tachometer:

Tachometer adalah alat yang digunakan untuk mengukur kecepatan putaran pada poros engkel / piringan motor atau mesin lainnya. Tachometer dikendalikan oleh putaran kabel dari sebuah unit pengendali yang dimasukkan kedalam mesin (biasanya pada poros engkol) juga ada-biasanya pada sistem mesin diesel sederhana yang menggunakan basis sistem elektris ataupun tanpa sistem elektrik.

3. Universal Dynamometer Module

Sesuai dengan namanya

dynamometer ini menyerap daya yang di ukur kemudian disebarkan kesekelilingnya dalam bentuk panas karena dynamometer ini secara khusus bermanfaat untuk pengukuran tenaga atau daya. Cara menggunakan alat dynamometer ini ialah dengan cara memasang dynamometer di poros transmisi, maka dynamometer ini akan membaca daya dan torsi pada mesin tersebut. Dengan spesifikasi alat ukurnya :GuntHamburg dengan Tipe HM 365, Nominal Power 2,2 Kw dan maksimal 200 Kw.

4. 4,Multimeter

Multimeter berfungsi untuk mengukur tegangan (Voltmeter), arus (Amperemeter), dan resistansi (ohmmeter). Dalam multimeter pemilihan besaran yang ingin diukur dengan mengatur range selector sesuai dengan keinginan, pada proses analisa multimeter digunakan untuk melihat hubungan setiap kabel busi, dan arus listrik yang mengalir ke rotor pada distributor serta kelistrikan lainya.

5. Intelligent tester II:

Intelligent tester II berfungsi Untuk mendeteksi adanya kerusakan pada sistim kontrol electronic ( EFI, ABS, ECT, ITC, Imobilizer, EBD, Airbag, ) Berfungsi sebagai osiloskop Berfungsi sebagai multitester Untuk menghapus memori kesalahan pada sistim kontrol ( ECU ) Untuk membaca kondisi kerja mesin

6. Toolbox

Untuk menyimpan kunci pas, kunci inggris, tang, kunci ring, obeng, kunci L, obeng, dan sebagainya.

4. ANALISA DATA DAN PEMBAHASAN

4.1. Analisa Termodinamika

Proses 6-1 : Langkah hisap, tekanan konstan, katup hisap terbuka dan katup keluar tertutup. Udara dianggap sebagai gas ideal. Udara dihisap masuk ke silinder dengan

(6)

96

tekanan 100 kPa pada temperatur 27oC atau 300 K, maka : P0 = 100 kPa T1 = 320 K rc = 18,5 D = 92 mm S = 93,8 mm R = 0,287 kJ/kg-K Cv = 0,718 kJ/kg-K Cp = 1,005 kJ/kg.K Volume langkah:

Merupakan volume dari langkah torak dari titik mati bawah (TMB) ke titik mati atas ( TMA). Kapasitas 4 silinder adalah 2494 cc, maka volume langkah untuk satu silinder adalah:

4 2494 = Vd Vd = 623,5 cc = 6,235 x 10-4 m3 Volume sisa:

Merupakan volume minimum silinder pada saat torak berada di titik mati atas (TMA). Dengan rasio kompresi sebesar 18,5:1 dan volume langkah sebesar 6,235 x 10-4 m3,maka besarnya volume sisa adalah:

Vc = 3,562 x 10-5m3

Volume pada titik 1:

Merupakan hasil penjumlahan volume langkah (Vd) dengan volume sisa (Vc). c d

V

V

V

1

=

+

V1 = 6,235 x 10-4 m3 + 3,562 x 10-5m3 = 6,5912 x 10-4 m3 massa udara :

dengan tekanan 100 kpa silinder 6,5912 x 10 -4 pada temperatur 320 K, maka massa udara adalah :

mm =

= 7,1768x10-4kg

Massa udara pembakaran (ma) dan massa bahan bakar (mf):

Untuk menentukan massa bahan bakar yang diinjeksikan pada satu siklus () dapat diperoleh dari persamaan Air Fuel Ratio (AF) dibawah ini.

AF =

Berdasarkan data bahan bakar

isooctane pada tabel A-2 Properties Of

Fuels pada lampiran I, Air Fuel Ratio

(AF) = 15,0. Dimana ma + mf = mm = 7,655 x 10-4 kg. Maka, massa bahan bakar yang diinjeksikan (mf) setiap satu siklus adalah:

mf = 4,785x10-5kg

Maka, massa udara (ma) yang masuk dalam silinder adalah:

ma= mm – mf = 7,1768x10-4kg – 4,785x10-5kg = 6,6984x10-4 kg Densitas udara (

ρ

a): P0 = 100 kpa T0 = 320 K

Kerapatan udara masuk ruang bakar :

= 1,088 kg/m3

Sesuai dengan persamaan 2.1. maka kerja yang terjadi pada titik 6-1 adalah dihitung berdasarkan persamaan berikut ini:

)

(

1 6 0 1 6

P

V

V

W

=

... dimana Po = P1 = 0,08235kj

Proses 1-2 : Langkah kompresi isentropik, semua katup tertutup. Torak bergerak dari titik mati bawah (TMB) ke titik mati atas (TMA).

k c

r

P

P

2

=

1

(

)

= 5943,4747 kPa

Temperatur pada titik 2 :

Udara yang dimampatkan oleh torak yang bergerak ke titik mati atas (TMA) juga mengakibatkan suhu dalam silinder naik menjadi T2. Nilai dari T2

dapat kita kita hitung sesuai dengan persamaan 2.2. di bawah ini:

1 1 2

(

)

=

k c

r

T

T

= 1060,1873 K

Volume pada titik 2:

2 2 2

P

RT

m

V

=

m = 3,674 x 10-5 m3 Kerja persiklus 1-2:

Kerja yang diserap selama langkah kompresi isentropik untuk satu silinder dalam satu siklus dapat kita hitung sesuai dengan persamaan 2.6. sebagai berikut:

(7)

97 Proses 2-3: Penambahan kalor

pada tekanan konstan.

Kalor masuk:

QHV merupakan nilai kalor panas dari bahan bakar. Berdasarkan Tabel A-2 pada Lampiran 1, nilai kalor panas dari cetane adalah 43.980 kJ/kg dan diasumsikan terjadi pembakaran sempurna (

η

c

=

1

). Maka, kalor masuk pada kondisi tekanan konstan dapat kita hitung sesuai dengan persamaan 2.7. adalah sebagai berikut:

c HV f in

m

Q

Q

=

η

= 2,1044 kj Volume pada titik 3:

Volume pada titik 3 dapat kita peroleh dengan menggunakan rumus berikut ini (hal. 101 Lit.1):

= 1,3808x10-4 m3

Temperatur pada titik 3:

Sesuai dengan persamaan matematika 2.7. dimana

Q

in

=

m

m

C

p

(

T

3

T

2

)

maka nilai T3 dapat kita hitung sebagai berikut: p m p m in C m T C m Q T3 = + 2 =3235,7428K

Tekanan pada titik 3:

Sesuai dengan Gambar 2.2. (Diagram p-v) jelas terlihat bahwa tidak ada perubahan tekanan mulai titik 2 hingga titik 3 (ekivalen), walaupun terjadi peningkatan temperatur.

Maka P2 = P3 = Pmaks = 5943,4747 kPa. Sesuai dengan persamaan 2.10. maka kerja yang terjadi pada titik 2-3 dapat kita hitung sebagai berikut:

)

(

3 2 2 3 2

P

v

v

W

=

= 0,8023 KJ

Proses 3-4: Langkah isentropik

Volume pada titik 4:

Berdasarkan diagram p-v siklus diesel pada Bab II sebelumnya terlihat jelas bahwa:

V

4

=

V

1

=

6

,

5912

×

10

−4m3

Temperatur pada titik 4

Setelah torak mencapai titik mati bawah (TMB) sejumlah kalor dikeluarkan dari dalam silinder sehingga temperatur fluida kerja akan

turun menjadi T4. Nilai dari T4 dapat kita hitung dengan persamaan 2.14 berikut ini: 1 4 3 3 4 −       = k V V T T = 1779,7374K

Tekanan pada titik 4:

Tekanan pada titik 4 di dalam silinder akan mengalami penurunan setelah titik 3. Nilai dari P4 dapat kita hitung sesuai dengan persamaan 2.15 di bawah ini: k V V P P       = 4 3 3 4 = 666,3052 kpa Kerja persiklus 3-4:

Untuk kerja yang dihasilkan selama langkah ekspansi

(

W

34

)

dapat ditentukan berdasarkan persamaan 2.16 berikut ini:

(

)

k

T

T

R

m

W

m

×

×

=

1

3 4 4 3 = 0,8960 KJ Proses 4-5:

Titik 5 merupakan proses langkah buang atau disebut juga proses exhaust blowdown dimana katup keluar terbuka dan katup hisap tertutup. Sesuai dengan persamaan 2.17 maka volume pada titik 5 (V5) sama dengan volume pada titik 4 ($%=

3 4 1

4

V

V

6

,

5912

10

m

V

=

=

BDC

=

×

− ).

Sedangkan temperatur pada titik 5 (T5) sama dengan temperatur pada titik 1 (T1), ini dibuktikan dari persamaan 2.19 berikut ini.

&'(%=&)= *+(,%− ,')

= (-0,7470)kj

Maka, ,%= ,.= 330 0

Sesuai dengan persamaan 2.18. maka kerja

(

W

45

)

=

0

Proses 5-6:

Titik 6 merupakan proses langkah buang pada tekanan konstan (12= 1.). Untuk kerja yang dihasilkan pada proses 5- 6 (3%(2) dapat dihitung berdasarkan persamaan 2.21 berikut ini:

(8)

98

(

6 5

)

0

(

6 1

)

0 6 5

P

v

v

P

v

v

W

=

×

=

×

V2 = V6 V5 = V1

Sesuai dengan gambar 2.2. diagram p-v, maka nilai Po – P1 = 100 kPa.

)

(

6 1 1 6 5

P

v

v

W

=

×

= (-0,5544)Kj

W nett (Kerja satu siklus):

Kerja yang dihasilkan dalam satu siklus kerja dapat dihitung berdasarkan persamaan dibawah ini:

)

(

)

(

)

(

)

(

)

(

)

(

6−1

+

1−2

+

2−3

+

3−4

+

4−5

+

5−6

=

W

W

W

W

W

W

W

nett = +1,42931kj

Sehingga, kerja yang dihasilkan dalam satu siklus kerja dari Toyota Fortuner Tipe 2KD-FTV VN Turbo adalah 1,1982 kJ.

Untuk effisiensi termal dari satu siklus kerja dari motor diesel 2KD-FTV dapat dihitung berdasarkan persamaan 2.22 dibawah ini: in nett th

Q

W

=

η

= 0,6793 = 67,93%

4.2 Tekanan Efektif Rata-rata

d v Wnett mep=

kPa

m

kJ

mep

81

,

22923

10

235

,

6

42931

,

1

3 4

=

×

=

4.3. Daya indikator Wi

n

N

W

nett

×

=

= 29,77 kW Untuk 4 silinder = 4 x 29,77 kW = 119,08 kW

Gambar 4.1 Grafik Daya Indikator Mesin

Keterangan:

Seiring dengan bertambahnya

putaran mesin,otomatis akan

meningkatkan daya indikator. Hal ini secara terus menerus akan meningkat seiring degan putaran mesin bertambah.

4.4 Torsi dan Daya Wb= 45 26

,

=

4 5 4766 26 x 343Nm = 100521,8 Nm / det = 100,5218 kW

Gambar 4.3 Grafik Daya Mesin

3.57 17.86 23.81 29.77 35.73 41.68 47.63 53.59 59.55 R² = 0.999 0 10 20 30 40 50 60 70 0 2000 4000 6000

Grafik Putaran Vs Daya Indikator Daya Indikator Mesin (kW) Putaran (rpm) D a y a In d ik a to r 49.528 57.441 64.621 71.801 78.981 86.161 93.341 100.52 1 R² = 0.999 0 20 40 60 80 100 120 0 1000 2000 3000

Grafik Daya mesin Vs Putaran Mesin Putaran mesin (rpm) D a y a M es in ( k W )

(9)

99

Keterangan:

Putaran mesin yang meningkat akan membuat daya mesin semakin bertambah.

4.5Konsumsi bahan bakar spesifik Sfc = m´f / ẁb

jam

kW

gram

kW

kg

=

×

=

/

359

,

197

det

/

10

4822

,

5

4

Gambar 4.6 Grafik Konsumsi bahan bakar spesifik

Keterangan:

Putaran mesin yang bertambah otomatis akan meningkatkan konsumsi bahan bakar. 4.6 Efisiensi mekanis

Wi

W

b m

=

η

% 4 , 84 844 , 0 08 , 119 5218 , 100 = = = kW kW 4.7 Efisiensi Volumetrik d a a v

V

m

ρ

η =

% 18 , 80 8018 , 0 10 235 , 6 / 088 , 1 10 6984 , 6 3 4 3 4 = = × × × = m m kg kg

4.8 Efisiensi Thermal Brake 3600 . .CV mf PB b =

η

% 22 , 65 6522 , 0 3600 35 , 55588 785 , 4 528 , 49 = = = x x 5.KESIMPULAN

Beberapa kesimpulan yang dapat ditarik dari analisa ini adalah:

1. Daya yang dihasilkan pada poros output mesin yang sering disebut sebagai daya rem (brake power) adalah 100,521 kW

2. Daya indikator sebagai daya yang dihasilkan dalam silinder motor

sehingga merupakan basis

perhitungan atau penentuan efisiensi pembakaran atau besarnya laju panas akibat pembakaran di dalam silinder adalah 119,08 kW

3. Efisiensi termal yang merupakan indikasi sesungguhnya dari konversi input termodinamika menjadi kerja mekanis adalah 65,22 %.

4. Efisiensi mekanis yang merupakan perbandingan antara (Wb) dengan daya indikator pada mobil Toyota Fortuner mesin diesel type 2KD-FTV VN Turbo ini adalah 84,4 %.

5. Efisiensi volumetrik pada mobil Toyota Fortuner mesin diesel type 2KD-FTV VN Turbo ini adalah 80,18 %. 117.396 128.808 139.176 151.668 163.08 174.528 185.94 197.359 R² = 0.999 0 50 100 150 200 250 0 1000 2000 3000

Grafik Putaran mesin Vs Sfc

Putaran (rpm) S fc ( g ra m /k W -j a m )

(10)

100 DAFTAR PUSTAKA

1. Kuwana, Wowo Sunaryo, Modul Motor Diesel 1 (Mekanisme Motor Diesel ) Jurusan Pendidikan Teknik Mesin, Keahlian Kemampuan Otomotif FPTK Universitas Pendidikan Indonesia.

2. Arismunandar, Wiranto. Motor Diesel Putaran Tinggi. Bandung. Penerbit ITB Bandung, 1975.

3. Darsono, Dody. Simulasi CFD Pada

Mesin Diesel Injeksi Langsung

Dengan Bahan Bakar Biodiesel dan Solar. Tugas Sarjana Mahasiswa Fakultas Teknik Universitas Indonesia, 2010.

Gambar

Gambar 2.1. Langkah Kerja Motor  Diesel
Grafik Putaran Vs Daya  Indikator Daya  Indikator  Mesin  (kW) Putaran (rpm)DayaIndikator 49.528 57.441 64.621 71.801 78.981 86.161 93.341100.521R² = 0.999 020406080100120 0 1000 2000 3000
Gambar 4.6 Grafik Konsumsi bahan  bakar spesifik

Referensi

Dokumen terkait

Berdasarkan Hasil Evaluasi, maka dengan ini ditetapkan pemenang untuk paket-paket pekerjaan pada Dinas Pekerjaan Umum Kabupaten Karo Tahun Anggaran

ayat (1) diserahkan pada masing-masing Satuan Pendidikan bersama-sama dengan Komite Sekolah/ Madrasah dan dilaporkan kepada Pemerintah Daerah atau kantor kementerian

Pada penelitian ini diambil 2 kelas sebagai sampel yang diharapkan dapat mempresentasikan seluruh siswa kelas VII di SMP Negeri 4 Kuningan, 1 kelas sebagai kelas

[r]

Penerapan Model Mind Map Dalam Meningakatkan Hasil Belajar Siswa Pada Mata Pelajaran Teknologi dan Komunikasi1. Universitas Pendidikan Indonesia | repository.upi.edu

As the figure 2 shows, for the same parameters, the flight plan calculated by the software provides two acquisitions to reconstruct the stereoscopic of the area

Dengan demikian hipotesis penelitian yang menyatakan bahwa hasil belajar Bahasa Inggris siswa yang memiliki komunikasi interpersonal tertutup jika menggunakan strategi

[r]