• Tidak ada hasil yang ditemukan

MOLECULAR ANALYSIS OF INDONESIAN LCA PATIENTS AND IN VITRO SPLICE CORRECTION FOR CEP290-ASSOCIATED LCA - Diponegoro University | Institutional Repository (UNDIP-IR)

N/A
N/A
Protected

Academic year: 2017

Membagikan "MOLECULAR ANALYSIS OF INDONESIAN LCA PATIENTS AND IN VITRO SPLICE CORRECTION FOR CEP290-ASSOCIATED LCA - Diponegoro University | Institutional Repository (UNDIP-IR)"

Copied!
20
0
0

Teks penuh

(1)

MOLECULAR ANALYSIS OF INDONESIAN LCA

PATIENTS AND

IN VITRO

SPLICE CORRECTION

FOR CEP290-ASSOCIATED LCA

ANALISIS MOLEKULER PADA PASIEN

LCA

INDONESIA DAN KOREKSI PROSES SPLICING SECARA

IN VITRO

PADA LCA

TERKAIT CEP290

THESIS

Submitted to fulfill the assignment and fit-out requisite in passing Post Graduate Program

Master of Biomedical Science

Widya Eka Nugraha

22010112420049

Supervisors:

Prof. Sultana MH Faradz, MD, Ph.D

Kentar A Sulakso, MD, MSi.Med, Sp.M (K)

FACULTY OF MEDICINE

(2)

THESIS

MOLECULAR ANALYSIS OF INDONESIAN LCA PATIENTS AND

IN VITRO SPLICE CORRECTION FOR CEP290-ASSOCIATED LCA

Arranged by

Head of Master Degree Program in Biomedical Science Faculty of Medicine Diponegoro University

(3)

iii

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge

and belief, it contains no material previously published or written by another person nor

material which to a substantial extent has been accepted for the award of any other degree or

diploma of the university or other institute of higher learning, except where due

acknowledgement is made in the text.

Semarang, March 2015

(4)

iv

ACKNOWLEDGEMENT

It is an honor for me to express my gratitude to everyone who have helped and

supported me to finish this thesis. First of all, I would like to thank to Prof. Dr. Sultana MH

Faradz, Ph.D for her advice, guidance, and support in my master program from the beginning

till the end despite her own tight schedule. Thank you to dr. Kentar A Sulakso, Sp.M,

MSi.Med for his support, clinical advice, and supervision in writing this thesis.

I would also like to express my gratitude to Prof. Rob WJ Collin, head of Blindness

Genetic Therapy research group in the Department of Human Genetics of Radboud

University Medical Centre, The Netherlands, for his kind supervision during my internship

there. I am so thankful to Alex Garanto, Ph.D for his superb teaching and explanation to all

that matters in my research.

It was a great experience to do research in the blindness genetic therapy lab with the

help from Lonneke Duijkers as a technician, Galuh Astuti, Julio CC Serrano, Muriel

Messchaert, as a Ph.D student, Manon Oud as a MSc student, and Arjen Henkes as

bioinformatician.

I would also like to thank all the people from Center for Biomedical Research

(CEBIOR), Semarang, Indonesia, Rita Indriati, Inthus Apriasa, Evi Nurwulan, Lusi Suwarsi,

Wiwik Lestari, and Dwi Kustiani for their assistance during my master study.

I will always be grateful to be a part of Batch 7 of Masters in Biomedical Science

Majoring in Genetic Counseling together with my beloved wife, Iffa Mutmainah, Mitayani,

Catharina Endah W, Nura Eky V, Cinta C Rudianto, and Rendy R Pohan. Your warm

companion supports me to complete my study.

My utmost gratitude and sincere thanks goes to my beloved parents, Eko Bambang

Setyawan, S.E, and Dyah Adiati Warsitosiwi for all the genuine love and limitless support

throughout the study. I will never be able to redeem everything you have done for me.

The opportunity to be a part of Master Student in CEBIOR and to have my research

done In The Netherlands would not have been possible without the scholarship from Biro

Perencanaan Kerja Sama Luar Negeri (BPKLN), Ministry of Education, Indonesia, especially

(5)

v

thank all of the Master’s degree and Fellowship coordinators, especially Prof. Dr. Sultana MH

(6)

vi

CURRICULUM VITAE

Name : Widya Eka Nugraha

Sex : Male

Place & Date of birth : Bekasi, November 2nd, 1988

Latest Degree : Medical Doctor

Address : Poncol Jaya Block C3 No.2 RT/RW 003/019, Jaka Sampurna,

Bekasi Barat P.O.BOX 17145

Phone : +62856 8042 164

E-mail : [email protected]

Educational Background

2006-2010 : Diponegoro University, Medical Faculty (Bachelor degree)

2010-2012 : Diponegoro University, Medical Faculty (Medical Doctor)

2013-Present : Post Graduate Program Diponegoro University, Master in Biomedical Science

Majoring in Genetic Counseling (Twinning Program with Radboud

University Medical Centre Nijmegen, The Netherlands

Experience

2013-2014 : Department of Human Genetics, Radboud University Medical Centre,

Nijmegen, The Netherlands: Internship Master Student

Trainings and Courses

2013 : 11th Medical Genetic Course: From Basic to Clinic, Semarang

2013 : Cardiogenetics and Its Clinical Management, Semarang

2013 : Workshop on Writing International Research Grants and Publication,

Semarang

2013 : Molecular Biology: A Recent Update, Semarang

2013 : Gene Therapy Seminar, Semarang

(7)

vii

2014 : Novel Therapies for Inherited Retinal Dystrophies, Nijmegen The

Netherlands

2014 : Clinical Master Class for Inherited Retinal Dystrophies, Nijmegen

2014 : Technical Master Class for Inherited Retinal Dystrophies, Nijmegen

2015 : Hands-on workshop on cytogenetic and molecular genetics. Semarang

Scientific Paper

2010 : Correlation Between Intracranial Pressure Based On CT-Scan Imaging and

Blood Glucosae Level in Head Injury Patient. Undergraduate thesis. Medical

Faculty of Diponegoro University, Semarang.

Scholarship

2013 : Excellent Scholarship Program of The Bureau of Planning and International

Cooperation, Ministry of National Education, Government of Indonesia.

TOEFL score

(8)

viii

1.3.2 Specific Research Purpose………. 2

1.4 Research Benefits……… 2

1.5 Research Originality……… 2

CHAPTER 2 LITERATURE REVIEW ... 3

2.1 Leber Congenital Amaurosis……….. 4

2.1.1 Clinical Characteristics……….. 4

2.1.2 Genetic Causes and Heritability of Leber Congenital Amaurosis………. 6

2.1.3 CEP290……….. 8

2.2 Therapeutic Strategies………. 10

(9)

ix

2.2.1.1 Lentiviral Vector………... 10

2.2.1.2 Adeno-associated Viral Vector………... 10

2.2.1.3 Nanoparticles……… 12

2.2.2 Antisense Oligonucleotide Based Therapy………... 12

2.2.2.1 AON sequences………. 13

2.2.2.2 Chemical Structure of AON……….. 13

CHAPTER 3 RESEARCH METHODS ... 14

3.7 Diagnostic Study: Mutational Analysis of Indonesian LCA Patients……….. 15

3.7.1 DNA Isolation………... 15

3.7.2 Primer Design………... 16

3.7.3 Polymerase Chain Reaction (PCR)………... 16

3.7.3.1 ARMS-PCR………... 16

3.7.3.2 Regular PCR……….. 16

3.7.4 Sanger Sequencing……….. 17

(10)

x

3.8 Functional Studies: Optimization of Antisense Oligonucleotide (AON) Therapeutic

Approach for LCA……… 17

3.8.1 Cell Culture………. 17

3.8.2 Transfection………. 17

3.8.3 RNA Isolation and Reverse Transcription PCR……... 18

3.8.4 Western Blot……… 18

3.8.5 Immunocytochemistry………. 18

3.8.6 Statistical Analysis……….. 19

3.9 Research Flow……….. 19

3.9.1 Diagnostic Study Workflow……… 20

3.9.2 Functional Study Workflow……… 21

3.10 Data Analysis……… 22

3.11 Research Ethics………. 22

CHAPTER 4 RESULTS ... 23

4.1 Molecular Genetic Analysis of Indonesian LCA Patients……… 23

4.1.1 Clinical Findings………... 24

4.1.2 Molecular Findings………... 24

4.2 AON Optimization of CEP290-associated LCA Treatment……… 26

4.2.1 Transcriptional Analysis………... 26

4.2.2 Western Blot and Protein Quantification……… 28

4.2.3 Immunocytochemistry………. 29

CHAPTER 5 DISCUSSION ... 31

5.1 Molecular Genetic Analysis of Indonesian LCA Patients……... 32

5.2 AON Optimization for CEP290-associated LCA Patients……… 32

5.3 Progress of Gene Therapy in Retinal Dystrophies………... 33

5.3.1 RPE65-associated LCA………... 34

(11)

xi

5.4 Therapeutic Possibilities for CEP290-associated LCA……….. . 34

CHAPTER 6 CONCLUSION AND FUTURE DIRECTIONS ... 36

6.1 Conclusion……… 36

6.2 Future Directions………... 36

CHAPTER 7 SUMMARY ... 37

REFERENCES ... 39

(12)

xii

ABBREVIATIONS

2’-MOE 2’Methoxy-Ethoxy

2’-OMe 2’-O-Methyl

AAV/rAAV Adeno-Associated Virus / Recombinant AAV

ABCA4 Adenosine Triphosphate-Binding Cassette, Sub-Family A, Member 4

ACTB Actin Beta

ACHM Achromatopsia

AIPL1 Aryl Hydrocarbon Receptor Interacting Protein-like 1

AON Antisense Oligonucleotide

ARMS-PCR Amplification Refractory Mutation System - PCR

BBS4 Bardet-Biedl Syndrome 4

BCA Bicinchonic Acid

BSA Bovine Serum Albumin

CABP4 Calcium Binding Protein 4

Cap Capsid

CB Chicken Beta actin

CEP290 Centrosomal Protein 290 kDa

CD Cone Dystrophy

CEBIOR Centre for Biomedical Research

cGMP Cyclic Guanosine Monophosphate

CHM Choroderemia

CK30PEG-NP CK30 Polyethylene Glycol-Nano Particles

CORS Cerebello-Oculo-Renal Syndrome

CRB1 Crumbs Family Member 1

(13)

xiii

CRX Cone-Rod Homeobox

DAPI 4’, 6-diaminidino-2-phenylindole

DMEM Dulbecco’s Modified Eagle Medium

DNA/cDNA Deoxyribo Nucleic Acid / Complementary DNA

DTHD1 Death Domain Containing 1

EDTA Ethylendiaminetetraacetic acid

EIAV Equine Infectious Anemia Virus

ERG Electroretinogram

ESE-Finder Exonic Splicing Enhancer-Finder

GDF6 Growth Differentiation Factor 6

GT Gene Therapy

GUCY2D Guanylate Cyclase 2D

hRPE65 Human RPE65

IBD Identity by Descent

IMPDH1 Inosine 5’-Monophosphate Dehydrogenase 1

iPSCs Induced Pluripotent Stem Cells

IRD Inherited Retinal Dystrophies

ITRs Inverted Terminal Repeats

IQCB1 IQ Motif Containing B1

JSRD Joubert Syndrome and Related Disorders

kDa Kilodalton

KCNJI13 Potassium Inwardly-Rectifying Channel, Subfamily J, Member 13

LCA Leber Congenital Amaurosis

LCA5 Leber Congenital Amaurosis 5

LINE Long Interspersed Nuclear Elements

LP Light Perception

(14)

xiv

LV Lentivirus

MEM Minimum Essential Media

MERTK c-mer Proto-Oncogen Tyrosine Kinase

MIPs Molecular Inversion Probes

MKS Meckel-Gruber Syndrome

MYO7A Myosin VIIA

NaCl Natrium Chloride

NMNAT1 Nicotinamide Nucleotide Adenylyltransferase 1

NP Nano Particles

NUB1 NEDD8 Ultimate Buster 1

OMIM Online Mendelian Inheritance in Man

OTX2 Orthodenticle Homeobox 2

PBS Phosphate-Buffered Saline

POD Peptide Ocular Delivery

PPRPE Preserved Para-arteriolar Retinal Pigment Epithelium

PVDF Polyvinylidine Difluorida

RD3 Retinal Degeneration 3

RDH12 Retinol Dehydrogenase 12

Rep Replication

REP1 Rab Escort Protein 1

RFLP Restriction Fragment Length Polymorphism

RIPA Radio Immunoprecipitation Assay

RNA/mRNA Ribo Nucleic Acid / Messenger RNA

RP Retiniti Pigmentosa

RPE Retinal Pigment Epithelium

RPE65 Retinal Pigment Epithelium-Specific Protein 65 kDa

(15)

xv

RT-PCR Reverse Transcription - PCR

sFLT01 Soluble Fms-Like Tyrosine Kinase 1 Receptor

siRNA Small Interference RNA

SLS Senior-Loken Syndrome

SNc Substantia Nigra pars Compacta

SPATA7 Spermatogenesis Associated 7

SRp55 Serine-Arginine rich Protein 55 kDa

SRp40 Serine-Arginine rich Protein 40 kDa

STGD Stargardt’s Disease

TPR Tetratricopeptide Repeat

TULP1 Tubby-like Protein 1

VMD2 Vitelliform Macular Dystrophy 2

(16)

xvi

LIST OF TABLES

Table 1. Fundus photography results of LCA patients with known mutations in causative

genes ... 5

Table 2. Mutation identification strategy. ... 6

Table 3. Prevalence of LCA causative genes. ... 7

Table 4. Vectors used in clinical trial for various retinal diseases. ... 11

Table 5. AAV serotype and target tissue. ... 12

Table 6. Molecular findings of Indonesian LCA patients. ... 24

(17)

xvii

LIST OF FIGURES

Figure 1. Anatomy of the eye and retinal structure. ... 3

Figure 2. Classification of IRDs according to age progression and cell involvement. ... 4

Figure 3. Mutation spectrum in CEP290. ... 9

Figure 4. Chemical structure of AON. ... 13

Figure 5. Schematic representation of diagnostic study workflow. ... 20

Figure 6. Workflow for functional studies to optimize the potential of AON-based approach. 21 Figure 7. Pedigrees of the families analyzed in this study. ... 23

Figure 8. Splicing prediction for c.33G>C variant in AIPL1. ... 25

Figure 9. Splicing prediction for c.970C>A variant in AIPL1. ... 25

Figure 10. Schematic representation of AONs. ... 26

Figure 11. Transcriptional Analysis. ... 28

Figure 12. Immunodetection and protein quantification of GT2, GT4, and GT22. ... 29

Figure 13. Immunocytochemistry and statistical analysis of GT2, GT4, GT22. ... 30

(18)

xviii

GLOSSARY

PCR Polymerase Chain Reaction. Molecular technique to amplify a

single or multiple copies of a piece of DNA over several orders of

magnitude.

RFLP Restriction Fragment Length Polymorphism. A variation in the

length of restriction fragments formed from a certain restriction

enzyme in a sample of DNA

AON Antisense Oligonucleotide. A synthetic polymers which are created

from 15-20 chemically-modified deoxynucleotides or

ribonucleotides in an antisense sequence (3′ → 5′), complementary

to the sense sequence of an mRNA.

Centrosome An organelle close to the nucleus of a cell that consist of the

centrioles and from which the spindle fibers develop in cell

division.

LCA Leber Congenital Amaurosis. A genetic disorder that mainly affects

(19)

xix

ABSTRACT

Background: Leber congenital amaurosis (LCA) is an autosomal recessive retinal disorder,

characterized by an early-onset visual loss, amaurotic pupils, and retinal degeneration. Only a

few studies have been described about Indonesian LCA patients. Pre-clinical studies have

shown that antisense oligonucleotide (AON) restored the aberrant splicing caused by a

recurrent intronic mutation in the CEP290 gene. This study combined diagnostic study in

Indonesian LCA patients and in-vitro AON-based therapy for LCA.

Methods: CEP290, CRB1, GUCY2D, and AIPL1 genes were screened in 4 LCA patients from 3 unrelated families by amplification refractory mutation system (ARMS) PCR or Sanger

sequencing. Meanwhile, 29 different AONs (GT1 to GT29) with two chemistries were

designed and tested by RT-PCR, Western blot, and immunocytochemistry.

Results: Three variants were found in AIPL1 gene: p.E318G, p.R324R, and p.G11G. Interestingly, p.E318G was predicted as a disease causing mutation by MutationTaster

program while p.R324R and p.G11G were predicted to cause a splicing alteration by

ESE-finder splicing prediction. On the other hand, from 29 AON tested in this study, 4 AONs

worked efficiently in correcting the aberrant splicing, increasing the CEP290 protein, and

restoring the cilium length, at low concentrations.

Conclusions: The molecular genetic analysis of Indonesian LCA patients in this study

revealed three new candidate variants as a LCA causative mutation in AIPL1: p.E318G,

p.R324R, and p.G11G. From 29 AONs tested in this study, GT2, GT3, and GT4 were the

most efficient. Remarkably, these AONs shared the same chemical modification.

(20)

xx

ANALISIS MOLEKULER PADA PASIEN LCA INDONESIA DAN

KOREKSI PROSES

SPLICING

SECARA

IN VITRO

UNTUK LCA

TERKAIT

CEP290

WIDYA EKA NUGRAHA ABSTRAK

Latar Belakang: Leber Congenital Amaurosis (LCA) adalah suatu penyakit genetic yang

diturunkan secara autosomal resesif dan ditandai dengan hilang penglihatan sejak dini, pupil

yang amaurotik, dan degenerasi retina. Penelitian tentang pasien LCA di Indonesia masih

terbatas. Sementara, studi pre-klinis menunjukkan bahwa penggunaan antisense

oligonucleotide (AON) dapat mengembalikan transkrip abnormal pada mutasi gen CEP290

yang menjadi penyebab tersering penyakit LCA. Penelitian ini menggabungkan studi

diagnostik pada pasien LCA Indonesia sekaligus koreksi proses splicing secara in vitro

menggunakan AON.

Metode: Strategi identifikasi mutasi melibatkan gen CEP290, CRB1, GUCY2D, dan AIPL1

pada 4 pasien dari 3 keluarga yang berbeda. Teknik molekuler yang digunakan yaitu

amplification refractory mutation system (ARMS) PCR atau Sanger sequencing. Sementara

itu, 29 molekul AON yang berbeda (GT1-GT29) diuji-coba menggunakan teknik reverse

transcriptase (RT) PCR, Western blot, dan immunocytochemistry.

Hasil: Ditemukan tiga varian pada gen AIPL1: p.E318G, p.R324R, dan p.G11G. Varian

p.E318G diprediksi sebagai mutasi penyebab penyakit dengan program MutationTaster

sementara varian p.R324R dan p.G11G diprediksi menyebabkan gangguan proses splicing

oleh program ESE-finder splicing prediction. Studi fungsional menunjukkan bahwa dari 29

AON yang diuji-cobakan. GT2, GT3, dan GT4 merupakan AON yang paling efisien dalam

mengoreksi proses splicing, meningkatkan protein CEP290, dan mengembalikan panjang

cilium pada konsentrasi minimum.

Kesimpulan: Analisis molekuler pada studi ini mengungkapkan tiga kandidat varian baru

sebagai mutasi penyebab LCA untuk gen AIPL1: p.E318G, p.R324R, dan p.G11G. Dari 29

AON yang diuji, GT2, GT3, GT4 adalah yang paling efisien. Ketiga AON memiliki kerangka

molekul yang sama.

Referensi

Dokumen terkait

SEGMEN BERITA REPORTER B Hikmah Limbah Kertas

Hasil penelitian ini menunjukkan bahwa ekosistem E-Repository USU terdiri dari user secara global yang tidak terbatas pada civitas akademis USU, terdapat pustakawan Perpustakaan

Setelah dilakukan analisis tentang pengelolaan Bank Sampah Sidomulyo dengan fenomena aspek teknis operasional, aspek pembiayaan, aspek kelembagaan, aspek peraturan

Hasil penelitian ini menunjukkan bahwa ekosistem E-Repository USU terdiri dari user secara global yang tidak terbatas pada civitas akademis USU, terdapat pustakawan Perpustakaan

MENINGKATKAN KEMAMPUAN PRA MENULIS ANAK USIA DINI MELALUI KEGIATAN MENGGAMBAR Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu..

ekosistem juga merupakan salah satu faktor yang dapat dipandang dalam.. membahas masa depan

Dengan kata lain, ekologi adalah hubungan ataupun interaksi antara sesama organisme maupun dengan lingkungannya.Ekologi sebagai bagian dari ekosistem merupakan analogi yang

SEGMEN BERITA REPORTER C kotoran sapi adalah