• Tidak ada hasil yang ditemukan

resumeSpearmanWilliams. 53KB Jun 04 2011 12:07:07 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "resumeSpearmanWilliams. 53KB Jun 04 2011 12:07:07 AM"

Copied!
1
0
0

Teks penuh

(1)

Journal de Th´

eorie des Nombres

de Bordeaux

16

(2004), 215–220

Normal integral bases for Emma Lehmer’s

parametric family of cyclic quintics

par

Blair K. SPEARMAN

et

Kenneth S. WILLIAMS

esum´

e.

Nous donnons des bases normales enti`eres explicites

pour des extensions cycliques quintiques d´efinies par la famille

param´etr´ee de quintiques d’Emma Lehmer.

Abstract.

Explicit normal integral bases are given for some

cyclic quintic fields defined by Emma Lehmer’s parametric family

of quintics.

Blair K.Spearman

Department of Mathematics and Statistics Okanagan University College

Kelowna, B.C. Canada V1V 1V7

E-mail:[email protected]

Kenneth S.Williams

School of Mathematics and Statistics Carleton University

Ottawa, Ontario, Canada K1S 5B6

E-mail:[email protected]

Manuscrit re¸cu le 18 octobre 2002.

Referensi

Dokumen terkait

Witt Equivalence of Function Fields of Real Algebraic

In this paper, we have defined not only S 1 regularity and S 1 normal- ity but also we have defined those strong and weak forms on L-topological

En 1930 dans [4], Lehmer g´en´eralise les r´esultats de Lucas en d´efinissant ses propres suites : une paire de Lehmer est une paire (α, β) d’entiers alg´ebriques, racines

Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree..

In this section we will apply the Young integral and rough path integral of local time defined in sections 2 and 3 to prove a useful extension to Itˆ o’s formula.. Assume the

We end this introduction by resuming the fact that results in this paper light up some explicit examples of conditioned stochastic differential equation locally equivalent to a

We then consider generalized quadratic variations of Gaussian fields with stationary increments under the assumption that their spectral density is asymptotically self-similar and

In particular, when the Markov process in question is a diffusion, we obtain the integral test corresponding to a law of the iterated logarithm due to