• Tidak ada hasil yang ditemukan

Tincu Ioan. 199KB Jun 04 2011 12:09:37 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Tincu Ioan. 199KB Jun 04 2011 12:09:37 AM"

Copied!
6
0
0

Teks penuh

(1)

SOME SUMABILITY METHODS

by

Ioan Tincu

Let A =‖ρk(n)‖n N, k=0, …, n be a matrix with ρk(n) R. A sequence s = {sn}n N is

said to be A-summable to ρ if

ρ ⋅ =ρ

= ∞ →

n

k

k k

n n s

0

) (

lim .

A sequence a = (an)n≥0 is called p, q-convex if

an+2 – (p + q)an+1 + pqan ≥ 0 , ( ) n ≥ 0.

Let K be set of all real sequences, K+ the set of all real sequences positive, Kp, q

the set of all p, q-convex sequences and T : Kp, q → K be a linear operator, defined as:

T(a; n) =

= ⋅ +

n

k

k s k n a 0

) (

ρ

where ρk(n) R (n N) and s N are arbitrary.

The purpose of this work is to determine sufficient conditions for a real triangular matrix ‖ρk(n)‖n N, k=0, …, nsuch that T(Kp, q) K+.

Theorem 1

Let a = (an)n≥0 Kp, q be given arbitrary. T(a; n) K+ if

i)

      

= ⋅

= ⋅

= =

0 )

(

0 ) (

0 0 n

i

i i n

i

i i

p n

q n

ρ ρ

pq , p≠0 , q≠0

or

      

= ⋅ ⋅

= ⋅

= =

0 )

(

0 ) (

0 0 n

i

i i

n

i

i i

p i n

q n

ρ ρ

(2)

ii)

0 )

( 1

0 0

1  ≥

   ⋅ ⋅

= =

+

i k

r

r k

i

i i

k q

p p

n p

q ρ , k=0,n−2

Proof. For the computations we need the following notation: ρk(n) = ρk, ( )k =0,n, n N. Consider

T(a; n) =

= ⋅ + + − + + + + ⋅ +

2

0

1

2 ( ) ]

[ n

k

k s k

s k

s

k a p q a p qa

c ,

T(a; n) =

= + −

= + + −

= ⋅ + + − + ⋅ ⋅ + ⋅ ⋅ ⋅

2

0 2

0

1 2

0

2 ( )

n

k

k s k n

k

k s k n

k

k s

k a p q c a p q c a

c

T(a; n) =

= + ⋅ − − + − + ⋅ ⋅

2

0

1

2 ( ) ]

[ n

k

k k

k k

s c p q c p q c

a + as+n-1⋅[cn-3 - (p+q)cn-2] +

+ cn-2as+n +as+1⋅[pqc₁-(p+q)⋅c0]+pqc0as. Therefore

       

=

= +

= +

+ −

= + −

=

− − −

− −

n n

n n n

k k k

k

c

c q p c

pqc c

q p c

c q p pqc pqc

ρ

ρ ρ

ρ ρ

2

1 2 3

1 2

1 0 1

0 0

) (

) (

) (

, k=2,n−2 (1)

From (1), it follows:

r r r

r p q c pqc

c 2 −( + ) 1+ =ρ , r=2,n−2 r

r r

r

r pc q c pc

c )− ( − )=ρ

( 2 1 1

2 1

1 1

2

2( ) ( )

− − −

= r

r r r

r r

r

r c pc q c pc q

q ρ

(3)

c0 pc-qk-1⋅(ck-1 - pck) =

= − ⋅ k r r r q 2 2

ρ , k=2,n−2

pck - ck-1 = 1 0 1 − − k q c pc

+ k11

q

=

− ⋅ k r r r q 2 2 ρ ,

pkck - p

k-1

ck-1 = (pc₁-c0)⋅

1 −     k q p + 1 −     k q p

=k r r r q 2 2 ρ ,

pici p

i-1

ci-1 = (pc₁-c0)⋅

1 −     i q p + 1 −     i q p

=i

r r r q 2 2 ρ .

Let add those equalities for i = 2, …, k. We obtain:

pkck - pc₁ = (pc₁-c0)

= −     k i i q p 2 1 + ⋅    

=k

i i q p 2 1

=i

r r r q 2 2 ρ

ck = 1 +

1 k q c k p c

pc10

= −





k i i

q

p

2 1 + 1 1 − k

qp  ⋅

  

=k

i i

q p

2

=

i r r r q 2 ρ

By the formula

=

k

i i

a

2

= i r r b 2 =

⋅ = k i i b

2

= k

i r

r

a we can write:

ck = 1 +

1 k p c k p c

pc10

= −





k i i

q

p

2 1 + 1 1 − k

qp

=

k i i i q 2 ρ

=     k i r r q p

ck = 1 +

1 k p c k p c

pc10

= −





k i i

q

p

2 1 + 1 1 − k

qp

=

k i i i q 2 ρ

− = +     i k r i r q p 0

, k=2,n−2

(4)

c0 = q p

0

ρ , c 1 =

q p⋅ 1 ρ + 0 2 2 ⋅ρ

+ q p q p Therefore

ck = +

pk

q

1

ρ

0 1 2 ⋅ρ

+ + k p q q p + k p 1         −     ⋅ ⋅ + + pq q p q p pq

p 0 0

2 2

1 ρ ρ

ρ

= −     k i i q p 2 1 + + 1 1 + k

qp

=

k i i i q 2 ρ

− = +     i k r i r q p 0 ,

ck = 1 1

+

k

qp

= ⋅ ⋅

k i i i q 0 ρ

− = +     i k r i r q p 0

, k=2,n−2 (1’)

From (1) and (1’) it follows that:

       + + =     ⋅ = =     ⋅ =

− − = − + − = − − − − = + − = − − n i n r n i r n i i i n n i n r n i r n i i i n n q p q p q qp c q p q qp c ρ ρ ρ ρ ρ ) ( 1 1 3 0 1 3 0 2 3 2 0 2 0 1 2 (1’’) Because n i n n i i i n

n q w

qp

c = ρ ⋅ ⋅

= −

1

2 0 1 2 1 where

( )

      = ≠ − − = q p j q p w q p j q p j , , 1 1
(5)

it results:

n q

p p q

n n n i n n

i

i i n

n

qp p w

p qp

c ρ ρ =ρ

− − ⋅ −

⋅ ⋅

= −−

= −

1 1 1

1 1

0 1

2 .

Thus:

0 1 0

= ⋅

⋅ −− =

n i

n

i

i i p w

ρ (2)

Because

n n

i n i n

i i n

n p w p q

qp

c 1 ρ 2 ρ 1 ( )ρ

3

0 2

3= ⋅ − − = − + +

= −

it results also

1 1 1

1

1 2

2

2 1

2 0

2 3

− − ⋅ −

− − ⋅ −

= −

− − =

q p p q

n

q p p q n i n n

i i i n

n

q p q

p w

p qp

c ρ ρ ρ

and thus:

0 2 0

= ⋅

⋅ − −

=

n i

n

i

i i p w

ρ (3)

From (2) and (3) we obtain:

      

= ⋅

= ⋅

= =

0 0

0 0 n

i

i i n

i

i i

p q

ρ ρ

pq

or

      

= ⋅ ⋅

= ⋅

= =

0 0

0 0 n

i

i i n

i

i i

p i q

ρ ρ

(6)

this means i).

From condition ck ≥ 0 for all k from 0 to n-2 we obtain ii).

References

[1] Hard, G. H., Divergent Series, Oxford, 1949. [2] Popoviciu T., Let functions convexes, Paris, 1944.

[3] I. Z. Milovanović, J. E. Pecárić, Gh. Toader, On p,q-convex sequences, Itinerant seminar on functional equations, approximation and convexity, Cluj Napoca, 1985.

Author:

Referensi

Dokumen terkait

business processes dan learning and growth maka balanced scorecard dapat diterapkan pada berbagai perusahaan, baik perusahaan swasta maupun perusahaan milik negara,

(Persero) yang dikukuhkan melalui keputusan Menteri Keuangan No. Sebagai salah satu BUMN terkemuka di Indonesia, seluruh saham Asuransi Jasindo dimiliki oleh Negara

Aplikasi SPSE di portal LPSE Kementerian Sosial RI melalui alamat Website LPSE http://lpse.kemsos.go.id, sesuai dengan Peraturan Presiden RI No.70 Tahun 2012

[r]

[r]

Pada bakteri Gram negatif, flavonoid harus dapat menembus membran luar dan ruang periplasmik kemudian berinteraksi dengan protein pengikat pada membran sitoplasma untuk

[r]

[r]