• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
6
0
0

Teks penuh

(1)

17

ON THE MOMENTS OF NORMAL PROBABILITY DISTRIBUTION

by Lucia Căbulea

Abstract: In this paper the author present a method for finding an explicit expression of the

( )

th

r

r

1

,

2 moments of the two-dimensional random vector having the normal distribution. Also is establish the recurrence relation (12) for the central moments of the order

( )

r1,r2 of the

random vector

(

Y1,Y2

)

.

1.Consider a two-dimensional random vector Y =

(

Y1,Y2

)

, and let be

(

y1, y2;x1,x2

)

F , the probability distribution of

(

Y1,Y2

)

, where

(

y1,y2

)

is any point of the Euclidian space R2 and

(

x1,x2

)

is a real two-dimensional parameter, varying in a parameter space Ω2, which is a subset of R2.

Let f = f

(

y1,y2

)

be a real-valued function defined and bounded on

R

2 such that the mean value of the random variable f

(

Y1,Y2

)

exists.

As is well known, this mean value can be expressed by the improper Stieltjes integral of

(

y1,y2

)

with respect to F

(

y1,y2;x1,x2

)

.

(1)

[

(

)

]

=

(

) (

)

2

2 1 2 1 2 1 2

1, , , ; ,

R

x x y y dF y y f Y

Y f E

Assuming that the random vector

(

Y1,Y2

)

is of continuous type, having probability densities ρ

(

y1,y2;x1,x2

)

, then we have

(

1 2 1 2

)

(

1 2 1 2

)

1 2

1 2

, ; , ,

;

,y x x u u x x du du

y F

y y

∫ ∫

− ∞−

= ρ

and the mean value by (1) is

(2)

[

(

1 2

)

]

(

1 2

) (

1 2 1 2

)

1 2

2

, ; , ,

,Y f y y y y x x dydy

Y f E

R

= ρ

Considering that

(

) (

) (

1

)

2

2 2 1 1 2 1,

r r

a y a y y y

(2)

18

where r1,r2N and

(

y1,y2

)

R2, we have the moment of order

( )

r1,r2 , of the point

(

a1,a2

)

define if it exists- such the mean value of vectors

(

) (

) (

1

)

2

2 2 1 1 2 1,

r r

a Y a Y Y Y

f = − −

(3)

(

) (

[

) (

1

)

2

]

2

1, 1, 2 1 1 2 2

r r

r

r a a =E Ya Ya

ν .

For

(

a1,a2

) ( )

= 0,0 , we have the ordinary moment of order

( )

r1,r2 of the random vector

(

Y1,Y2

)

.

(4)

( )

[

1 2

]

2 1 2

1, 0,0 , 1 2

r r r

r r

r =ν = EY Y

ν

If ν1,0 =E

( )

Y1 and ν0,1=E

( )

Y2 we can write expression for the central moment of the order

( )

r1,r2 of the random vector

(

Y1,Y2

)

.

(5)

[

(

) (

1

)

2

]

2

1, 1 1,0 2 0,1

r r

r

r E Y ν Y ν

µ = − − .

2. Let us assume that random variables Y1,Y2 are not independent and the two-dimensional random vector Y having the normal distribution with the probability density

(6)

(

)

(

)

(

)(

)



   

    

  

  

 − + − −

−   

 − −

− ⋅

⋅ − =

2

2 2 2

2 1

2 2 1 1 2

1 1 1 2

2 2

1 2

1 2 1

2 1

2 1 exp

1 2

1 ,

; ,

σ

σ

σ

ρ

σ

ρ

ρ

σ

πσ

ρ

x y x

y x y x

y x

x y y

where x1,x2R, σ1 >0,σ2 >0,ρ∈

[ ]

−1,1 , and

(

y1,y2

)

R2. It is easy to see that ρ

(

y1,y2;x1,x2

)

>0,

(

y1,y2

)

R2 and

(

1, 2; 1, 2

)

1 2 1

2

=

y y x x dydy

R

ρ , if we change the variables

(7)   

+ == 2+ 2 2

1 1 1

x u y

x u y

σσ

(3)

19

(

)

( )

0

, , 2 1 2 2 1 1 2

1 = >

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = σ σ v y u y v y u y v u D y y D

For r1 =r2 =1, the central moment of the random vector

(

Y1,Y2

)

become

(

)(

)

[

1 1,0 2 0,1

]

(

1 1

)(

2 2

) (

1 2 1 2

)

1 2 1

, 1

2

1 E Y Y y x y x y ,y ;x,x dydy

R

− − = − − = ν ν ρ µ

By using the formula (6) we get

(

)(

)

(

)

(

)(

)

2 1 2 2 2 2 2 1 2 2 1 1 2 1 1 1 2 2 2 1 1 2 2 1 1 , 1 2 1 2 1 exp 1 2 1 2 dy dy x y x y x y x y x y x y R             − + − − − ∫         −     − − − − − ⋅ − = σ σ σ ρ σ ρ ρ σ πσ µ

According to the relation (7) we have

( )

( )

        − = − − − − R R v u v dv du ue ve 2 2 2 1 2 2 2 2 1 1 , 1 1 2 ρ ρ ρ π σ σ µ

For u−ρv=t 1−ρ2 we get (8) µ1,1 = ρσ1σ2

We observe that the parameter ρ is the corelation coefficient of random variables Y1

and Y2.

For the ordinary moment of order (1,1) we have

(

)

(

)(

)

∫                     − + − − −     − − − ⋅ ⋅ − =

2 1 2

2 2 2 2 2 1 2 2 1 1 2 1 1 1 2 2 1 2 2 1 1 , 1 2 1 2 1 exp 1 2 1 R dy dy x y x y x y x y y y σ σ σ ρ σ ρ ρ σ πσ ν

and using relation (7) results

(

u x

)(

v x

)

v

(

u

(

v

)

)

dudv

R         − − − − + + −

=

2
(4)

20

If u−ρv =t 1−ρ2 we get

(9) ν1,1 = ρσ1σ2 +x1x2.

3. We should remark that in the special case ρ =0 results µ1,1 =0 and the random variables Y1 and Y2 are independent.

In this case (ρ =0) for r1 =r2 =1, the ordinary moment of the random vector

(

Y1,Y2

)

become

[ ]

(

) (

)

    

 

= =

2

2 1 2 2

2 2 2 2

1 2 1 1 2

1 2 1 2

1 1 , 1

2 2

exp 2

1

R

dy dy x y x y y

y Y

Y E

σ σ

σ πσ ν

and using relation (7) we have

(10)

(

)(

)

2 2 1 2

2 2 1 1 1

, 1

2 2

2

2 1

x x dudv e

x v x u

v u

R

= +

+

=

σ σ − −

π

ν .

Analogous we have

(

) (

)

(

) (

)

  

 

− −

=

2

2 1 2 2

2 2 2 2

1 2 1 1 2

2 2 2 1 1 2 1 2

, 2

2 2

exp 2

1

R

dy dy x y x y x

y x y

σ σ

σ πσ µ

and using the relation (7) we get

(11)

(

)

2

2 1 2 2 2 1 2 ,

2 σ σ σ σ

µ = =

It should be noticed that for r1 or r2 being a non-negative impare integer we have 0

1 2 , 1 2k+ k+ =

µ where k1N*,k2N* we get recurrence formula for the central moments

(12) ,

(

1

)(

2

)

12 22 2, 2

2 1 2

1 r = −1 −1 rr

r r r σ σ µ

µ

For the special case r1 = r2 =2k,kN* we have

(13) µ2k,2k =

(

2k−1

) (

2 2k−3

)

2⋅...⋅32⋅12⋅

(

σ1σ2

)

2k,kN*
(5)

21

(14)

( )

(

(

)

)

(

)



 

  

  

 −

− − −

=

= =

2

2 2 2

1 1 1 2 2

1

2 2

2 1 2 1 2

1

1 2

1 exp

1 2

1

; , ; ,

σ ρ σ

ρ ρ

σ π

ρ ρ ρ

x y x y x

y x x y y y

y

and

(15)

( )

(

(

)

)

(

)



 

  

  

 −

− − −

=

= =

2

1 1 1

2 2 2 2 2

2

1 1

2 1 2 1 1

2

1 2

1 exp

1 2

1

; , ; ,

σ ρ σ

ρ ρ

σ π

ρ ρ ρ

x y x y x

y x x y y y

y

where ρ

(

y1;x1

)

is the probability density of random variable Y1

(16)

(

)

(

)

    

 

= 2

1 2 1 1

1 1

1

2 exp 2

1 ;

σ σ

π

ρ y x y x

and

ρ

(

y2;x2

)

is the probability density of random variable Y2

(17)

(

)

(

)

    

 

= 2

2 2 2 2

2 2

2

2 exp 2

1 ;

σ σ

π

ρ y x y x

We find that

(18)

( )

( )

(

2 2

)

2 1 1 1 2 1 1 2

1 y y y y dy x y x

Y E

R

− +

= =

σσ ρ ρ

and

(19)

( )

( )

(

1 1

)

1 2 2

2 1 2 2 1

2 y y y y dy x y x

Y E

R

− +

= =

σ σ ρ ρ

It should be noticed that the regresion between the random variables Y1 and Y2 for the two-dimensional random vector Y =

(

Y1,Y2

)

it is a liniary function.

REFERENCES

(6)

22

[3] Feller W., An Introduction to Probability Theory and Its Applications, Wiley, New York, 1968.

[4] Gnedenko B.V. , The Theory of Probability, Mir Publisher, Moskow, 1968. [5] Iosifescu M., Mihoc Gh., Theodorescu R., Teoria probabilităţilor şi staistică matematică, Ed. Tehnică, Bucureşti, 1966.

[6] Onicescu O., Probabilităţi şi procese aleatoare, Ed. Ştiinţificăşi Enciclopedică, Bucureşti, 1977.

[7] Purcaru I., Matematici generale şi elemente de optimizare, Ed. Economică, Bucureşti, 1997.

[8] Stancu D.D., Recurrence relations for the central moments of some discrete probability laws, Studia Univ. Babeş-Bolyai, Ser. Math.-Mech., 15,1970,55-62. [9] Stancu D.D., A method for computing the moments, Ser. Math.-Phys., 1, 1967, 45-54.

[10] Ventsel H., Théorie des probabilités, Ed. Mir Moscow, 1973.

Author:

Lucia Căbulea, „ 1 Decembrie 1918” University of Alba Iulia, Romania,

Referensi

Dokumen terkait

Abstract: The ordering of the elements of a subset of IN d , d ≥ 1 , with the order relations defined at the beginning of this article and implicitly obtaining some expressions for

The location of all zeros of a nite family of polynomials dened by three term recurrence relations with periodic coecients is analyzed with the help of reference to the

(1998) found that open-container laws, which are expected to increase the probability of being stopped and/or arrested, reduced the number of drivers in alcohol-related fatalities

We assume that the demand and order quantities for the former items can be described by an interval scenario as in Section 4 while the latter items can be described by

A simple proof of the asymptotic formula for the ruin probability of a risk process with a positive constant interest force [derived earlier by Asmussen (Asmussen, S., 1998.. All

In Section 4, we get the simple and explicit expression for the ruin probability, the supremum distribution of the risk process before ruin when ruin occurs and the surplus

Characterization This section contains the characterization results using the recurrence relations for single and product moments and conditional moment of function of generalized

This paper introduces new mathematical properties for Kumaraswamy Lindley distribution such as probability weighted moments, moments of residual life, mean of residual life, reversed