17
ON THE MOMENTS OF NORMAL PROBABILITY DISTRIBUTION
by Lucia Căbulea
Abstract: In this paper the author present a method for finding an explicit expression of the
( )
thr
r
1,
2 moments of the two-dimensional random vector having the normal distribution. Also is establish the recurrence relation (12) for the central moments of the order( )
r1,r2 of therandom vector
(
Y1,Y2)
.1.Consider a two-dimensional random vector Y =
(
Y1,Y2)
, and let be(
y1, y2;x1,x2)
F , the probability distribution of
(
Y1,Y2)
, where(
y1,y2)
is any point of the Euclidian space R2 and(
x1,x2)
is a real two-dimensional parameter, varying in a parameter space Ω2, which is a subset of R2.Let f = f
(
y1,y2)
be a real-valued function defined and bounded onR
2 such that the mean value of the random variable f(
Y1,Y2)
exists.As is well known, this mean value can be expressed by the improper Stieltjes integral of
(
y1,y2)
with respect to F(
y1,y2;x1,x2)
.(1)
[
(
)
]
=∫
(
) (
)
2
2 1 2 1 2 1 2
1, , , ; ,
R
x x y y dF y y f Y
Y f E
Assuming that the random vector
(
Y1,Y2)
is of continuous type, having probability densities ρ(
y1,y2;x1,x2)
, then we have(
1 2 1 2)
(
1 2 1 2)
1 21 2
, ; , ,
;
,y x x u u x x du du
y F
y y
∫ ∫
∞− ∞−
= ρ
and the mean value by (1) is
(2)
[
(
1 2)
]
(
1 2) (
1 2 1 2)
1 22
, ; , ,
,Y f y y y y x x dydy
Y f E
R
∫
= ρ
Considering that
(
) (
) (
1)
22 2 1 1 2 1,
r r
a y a y y y
18
where r1,r2 ∈N and
(
y1,y2)
∈R2, we have the moment of order( )
r1,r2 , of the point(
a1,a2)
define if it exists- such the mean value of vectors(
) (
) (
1)
22 2 1 1 2 1,
r r
a Y a Y Y Y
f = − −
(3)
(
) (
[
) (
1)
2]
2
1, 1, 2 1 1 2 2
r r
r
r a a =E Y −a Y −a
ν .
For
(
a1,a2) ( )
= 0,0 , we have the ordinary moment of order( )
r1,r2 of the random vector(
Y1,Y2)
.(4)
( )
[
1 2]
2 1 2
1, 0,0 , 1 2
r r r
r r
r =ν = EY Y
ν
If ν1,0 =E
( )
Y1 and ν0,1=E( )
Y2 we can write expression for the central moment of the order( )
r1,r2 of the random vector(
Y1,Y2)
.(5)
[
(
) (
1)
2]
2
1, 1 1,0 2 0,1
r r
r
r E Y ν Y ν
µ = − − .
2. Let us assume that random variables Y1,Y2 are not independent and the two-dimensional random vector Y having the normal distribution with the probability density
(6)
(
)
(
)
(
)(
)
− + − −
−
− −
− ⋅
⋅ − =
2
2 2 2
2 1
2 2 1 1 2
1 1 1 2
2 2
1 2
1 2 1
2 1
2 1 exp
1 2
1 ,
; ,
σ
σ
σ
ρ
σ
ρ
ρ
σ
πσ
ρ
x y x
y x y x
y x
x y y
where x1,x2 ∈R, σ1 >0,σ2 >0,ρ∈
[ ]
−1,1 , and(
y1,y2)
∈R2. It is easy to see that ρ(
y1,y2;x1,x2)
>0,(
y1,y2)
∈R2 and(
1, 2; 1, 2)
1 2 12
=
∫
y y x x dydyR
ρ , if we change the variables
(7)
+ == 2+ 2 2
1 1 1
x u y
x u y
σσ
19
(
)
( )
0, , 2 1 2 2 1 1 2
1 = >
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = σ σ v y u y v y u y v u D y y D
For r1 =r2 =1, the central moment of the random vector
(
Y1,Y2)
become(
)(
)
[
1 1,0 2 0,1]
(
1 1)(
2 2) (
1 2 1 2)
1 2 1, 1
2
1 E Y Y y x y x y ,y ;x,x dydy
R
∫
− − = − − = ν ν ρ µBy using the formula (6) we get
(
)(
)
(
)
(
)(
)
2 1 2 2 2 2 2 1 2 2 1 1 2 1 1 1 2 2 2 1 1 2 2 1 1 , 1 2 1 2 1 exp 1 2 1 2 dy dy x y x y x y x y x y x y R − + − − − ∫ − − − − − − ⋅ − = σ σ σ ρ σ ρ ρ σ πσ µAccording to the relation (7) we have
( )
( )
∫
∫
− = − − − − R R v u v dv du ue ve 2 2 2 1 2 2 2 2 1 1 , 1 1 2 ρ ρ ρ π σ σ µFor u−ρv=t 1−ρ2 we get (8) µ1,1 = ρσ1σ2
We observe that the parameter ρ is the corelation coefficient of random variables Y1
and Y2.
For the ordinary moment of order (1,1) we have
(
)
(
)(
)
∫ − + − − − − − − ⋅ ⋅ − =2 1 2
2 2 2 2 2 1 2 2 1 1 2 1 1 1 2 2 1 2 2 1 1 , 1 2 1 2 1 exp 1 2 1 R dy dy x y x y x y x y y y σ σ σ ρ σ ρ ρ σ πσ ν
and using relation (7) results
(
u x)(
v x)
v(
u(
v)
)
dudvR − − − − + + −
=
∫
220
If u−ρv =t 1−ρ2 we get(9) ν1,1 = ρσ1σ2 +x1x2.
3. We should remark that in the special case ρ =0 results µ1,1 =0 and the random variables Y1 and Y2 are independent.
In this case (ρ =0) for r1 =r2 =1, the ordinary moment of the random vector
(
Y1,Y2)
become[ ]
∫
(
) (
)
− − − −
= =
2
2 1 2 2
2 2 2 2
1 2 1 1 2
1 2 1 2
1 1 , 1
2 2
exp 2
1
R
dy dy x y x y y
y Y
Y E
σ σ
σ πσ ν
and using relation (7) we have
(10)
(
)(
)
2 2 1 22 2 1 1 1
, 1
2 2
2
2 1
x x dudv e
x v x u
v u
R
= +
+
=
∫
σ σ − −π
ν .
Analogous we have
(
) (
)
(
) (
)
∫
− − − −
− −
=
2
2 1 2 2
2 2 2 2
1 2 1 1 2
2 2 2 1 1 2 1 2
, 2
2 2
exp 2
1
R
dy dy x y x y x
y x y
σ σ
σ πσ µ
and using the relation (7) we get
(11)
(
)
22 1 2 2 2 1 2 ,
2 σ σ σ σ
µ = =
It should be noticed that for r1 or r2 being a non-negative impare integer we have 0
1 2 , 1 2k+ k+ =
µ where k1∈N*,k2∈N* we get recurrence formula for the central moments
(12) ,
(
1)(
2)
12 22 2, 22 1 2
1 r = −1 −1 r − r −
r r r σ σ µ
µ
For the special case r1 = r2 =2k,k∈N* we have
(13) µ2k,2k =
(
2k−1) (
2 2k−3)
2⋅...⋅32⋅12⋅(
σ1σ2)
2k,k∈N*21
(14)( )
(
(
)
)
(
)
− − −
− − −
=
= =
2
2 2 2
1 1 1 2 2
1
2 2
2 1 2 1 2
1
1 2
1 exp
1 2
1
; , ; ,
σ ρ σ
ρ ρ
σ π
ρ ρ ρ
x y x y x
y x x y y y
y
and
(15)
( )
(
(
)
)
(
)
− − −
− − −
=
= =
2
1 1 1
2 2 2 2 2
2
1 1
2 1 2 1 1
2
1 2
1 exp
1 2
1
; , ; ,
σ ρ σ
ρ ρ
σ π
ρ ρ ρ
x y x y x
y x x y y y
y
where ρ
(
y1;x1)
is the probability density of random variable Y1(16)
(
)
(
)
−
−
= 2
1 2 1 1
1 1
1
2 exp 2
1 ;
σ σ
π
ρ y x y x
and
ρ
(
y2;x2)
is the probability density of random variable Y2(17)
(
)
(
)
−
−
= 2
2 2 2 2
2 2
2
2 exp 2
1 ;
σ σ
π
ρ y x y x
We find that
(18)
( )
( )
(
2 2)
2 1 1 1 2 1 1 2
1 y y y y dy x y x
Y E
R
− +
= =
∫
σσ ρ ρ
and
(19)
( )
( )
(
1 1)
1 2 2
2 1 2 2 1
2 y y y y dy x y x
Y E
R
− +
= =
∫
σ σ ρ ρ
It should be noticed that the regresion between the random variables Y1 and Y2 for the two-dimensional random vector Y =
(
Y1,Y2)
it is a liniary function.REFERENCES
22
[3] Feller W., An Introduction to Probability Theory and Its Applications, Wiley, New York, 1968.
[4] Gnedenko B.V. , The Theory of Probability, Mir Publisher, Moskow, 1968. [5] Iosifescu M., Mihoc Gh., Theodorescu R., Teoria probabilităţilor şi staistică matematică, Ed. Tehnică, Bucureşti, 1966.
[6] Onicescu O., Probabilităţi şi procese aleatoare, Ed. Ştiinţificăşi Enciclopedică, Bucureşti, 1977.
[7] Purcaru I., Matematici generale şi elemente de optimizare, Ed. Economică, Bucureşti, 1997.
[8] Stancu D.D., Recurrence relations for the central moments of some discrete probability laws, Studia Univ. Babeş-Bolyai, Ser. Math.-Mech., 15,1970,55-62. [9] Stancu D.D., A method for computing the moments, Ser. Math.-Phys., 1, 1967, 45-54.
[10] Ventsel H., Théorie des probabilités, Ed. Mir Moscow, 1973.
Author:
Lucia Căbulea, „ 1 Decembrie 1918” University of Alba Iulia, Romania,