• Tidak ada hasil yang ditemukan

BAB II MOTOR INDUKSI SATU PHASA II.1. KONSTRUKSI MOTOR INDUKSI SATU PHASA

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II MOTOR INDUKSI SATU PHASA II.1. KONSTRUKSI MOTOR INDUKSI SATU PHASA"

Copied!
24
0
0

Teks penuh

(1)

BAB II

MOTOR INDUKSI SATU PHASA

II.1. KONSTRUKSI MOTOR INDUKSI SATU PHASA

Konstruksi motor induksi satu phasa hampir sama dengan motor induksi phasa banyak, yaitu terdiri dari dua bagian utama yaitu stator dan rotor. Keduanya merupakan rangkaian magnetik yang berbentuk silinder dan simetris. Di antara rotor dan stator ini terdapat celah udara yang sempit.

Gambar 2.1 Komponen dasar Motor Induksi Satu Phasa

Stator merupakan bagian yang diam sebagai rangka tempat kumparan stator terpasang. Bagian ini terdiri atas: inti stator, kumparan stator, dan alur stator. Motor induksi satu phasa dilengkapi dengan dua kumparan stator yang dipasang terpisah,

(2)

yaitu kumparan utama (mind winding) atau sering disebut dengan kumparan berputar dan kumparan bantu (auxiliary winding) yang sering disebut dengan kumparan start.

Rotor merupakan bagian yang berputar. Bagian ini terdiri atas inti rotor, kumparan rotor dan alur rotor. Terdapat dua jenis rotor yaitu rotor kumparan (wound rotor) dan rotor sangkar (squirrel cage rotor).

II.2. JENIS – JENIS MOTOR INDUKSI SATU PHASA

Motor induksi satu phasa dikenal dengan beberapa jenis. Jenis-jenis motor induksi satu phasa ini dibagi berdasarkan cara yang dipakai untuk menghasilkan perbedaan phasa antara arus yang mengalir pada kumparan utama dan arus yang mengalir pada kumparan bantu.

II.2.1. Motor Phasa Terpisah

Diagram rangkaian dari motor induksi phasa terpisah ditunjukkan pada gambar 2.2.a. Kumparan bantu memiliki nilai impedansi yang lebih besar daripada kumparan utama, sehingga kedua arus akan berbeda phasa seperti yang ditunjukkan pada gambar 2.2.b. Nilai impedansi yang lebih besar ini diperoleh dengan menggunakan kawat yang lebih murni pada kumparan bantu. Hal ini diperbolehkan karena kumparan bantu hanya dipakai pada saat start, kemudian saklar sentrifugal akan memutus rangkaian kumparan bantu segera setelah mencapai kecepatan sinkron sebesar sekitar 70 sampai 80 persen kecepatan sinkron.

(3)

Karakteristik torsi induksi vs kecepatan dari motor ini ditunjukkan pada gambar 2.2.c. Gambar ini memperlihatkan nilai torsi induksi untuk masing-masing kecepatan motor, mulai dari posisi diam sampai kecepatan nominal, dan seterusnya sampai kecepatan sinkron. Torsi induksi start adalah torsi yang tersedia bila motor mulai berputar dari posisi diam. Torsi induksi beban penuh adalah torsi yang dihasilkan bila motor berputar pada keluaran nominal, dan kecepatan motor pada keluaran itu disebut dengan kecepatan nominal.

Rotor Kumparan

Bantu

Kumparan Utama

I Ia

Im V

Im

V Ia

I

α

(a) (b)

100 200 300

25 50 75 100

Persen Torsi

Persen Kecepatan Sinkron Operasi Saklar Sentrifugal Kumparan Utama Kumparan Bantu

dan Kumparan Utama

0

Torsi Start

Titik Operasi Torsi Beban Penuh

Kecepatan Beban Penuh Torsi Maksimum

Kecepatan Sinkron

(c)

Gambar 2.2 Motor Phasa Terpisah

(4)

II.2.2. Motor Kapasitor Start

Torsi induksi start yang lebih tinggi dapat diperoleh dengan menghubungkan sebuah kapasitor yang dipasang secara seri dengan kumparan bantu seperti yang ditunjukkan pada gambar 2.3.a. Hal ini akan menaikkan sudut phasa antar arus kumparan seperti yang ditunjukkan pada gambar 2.3.b. Karakteristik momen putar – kecepatan dari motor ini dapat ditunjukkan pada gambar 2.3.c. Karena kapasitor dipakai hanya pada saat start, maka jenis kapasitor yang dipakai adalah kapasitor elektrolit. Motor ini menghasilkan momen putar start yang lebih tinggi.

Saklar Sentrifugal Kapasitor

Start Rotor

Kumparan Bantu

Kumparan Utama

I Ia

Im V

V Ia

Im

α

I

(a) (b)

Persen Kecepatan Sinkron

25 50 75 100

Persen Torsi

0

Operasi Saklar Sentrifugal

Tstart Tmax

Kec. Beban Penuh T Beban Penuh

(c)

Gambar 2.3 Motor Kapasitor Start

(5)

II.2.3. Motor Kapasitor Run

Pada motor kapasitor run (seperti yang ditunjukkan pada gambar 2.4.a) kapasitor dihubungkan seri dengan kumparan bantu dan tidak dilepas setelah pengasutan dilakukan. Hal ini menyederhanakan konstruksi dan mengurangi biaya serta memperbaiki ketahanan motor karena saklar sentrifugal tidak digunakan. Faktor kerja, torsi, dan efisiensi akan lebih baik karena motor berputar seperti motor dua phasa. Sudut phasa antar kumparan ditunjukkan pada gambar 2.4.b. Jenis kapasitor yang digunakan adalah kapasitor kertas. Karakteristik torsi induksi – kecepatan dari motor ini ditunjukkan pada gambar 2.4.c.

C Rotor

Kumparan Bantu

Kumparan Utama

I Ia

Im V

V Ia

I Im

α

(a) (b)

100 200 300

Persen Kecepatan Sinkron

25 50 75 100

Persen Torsi

0

Tmax

T start

Kecepatan Beban Penuh

(c)

Gambar 2.4 Motor Kapasitor Permanen

(6)

II.2.4. Motor Kapasitor Start – Kapasitor Run

Motor ini mempunyai dua buah kapasitor, satu digunakan pada saat start dan satu lagi digunakan pada saat berputar, seperti yang ditunjukkan pada gambar 2.5.a.

Secara praktis keadaan start dan berputar yang optimal dapat diperoleh dengan menggunakan dua buah kapasitor elektrolit. Kapasitor running-nya secara permanen dihubungkan seri dengan kumparan bantu dengan nilai yang lebih kecil dari kapasitor start-nya. Sudut phasa antar kumparan sama seperti pada motor kapasitor permanen seperti pada gambar 2.5.b. Karakteristik torsi induksi – kecepatan dari motor ini ditunjukkan pada gambar 2.5.c.

Rotor Kumparan

Bantu

Kumparan Utama

I Ia

Im

C Run C Start

V S

V Ia

I Im

α

(a) (b)

Persen Kecepatan Sinkron

25 50 75 100

Persen Torsi

Operasi Saklar Sentrifugal Tmax

Tstart

T Beban Penuh

Kec. Beban Penuh

(b)

Gambar 2.5 Motor Kapasitor Start – Kapasitor Run

(7)

II.2.5. Motor Kutub Terarsir ( Shaded Pole )

Motor ini mempunyai kutub tonjol dan sebagian dari masing – masing kutub dikelilingi oleh lilitan rangkaian terhubung singkat yang terbuat dari tembaga yang disebut kumparan terarsir seperti pada gambar 2.6.a. Arus imbas yang terdapat pada kumparan yang terarsir menyebabkan fluksi pada bagian lain, dan menghasilkan medan putar yang bergerak dari daerah kutub yang tidak terarsir ke bagian kutub yang terarsir dan menimbulkan torsi induksi saat dihidupkan. Karakteristik torsi induksi – kecepatan motor kutub terarsir ditunjukkan pada gambar 2.6.b.

Rotor

Kumparan Utama

Kutub Terarsir

T start 100 200

Persen Kecepatan Sinkron

25 50 75 100

PersenTorsi

0

Tmax T Beban Penuh

Kec. Beban Penuh

(a) (b) Gambar 2.6 Motor Kutub Terarsir

II.3. PRINSIP KERJA MOTOR INDUKSI SATU PHASA II.3.1 Umum

Ketika kumparan stator disuplai dengan sumber tegangan satu phasa maka akan mengalir arus, dan arus tersebut akan menimbulkan fluks. Fluks ini tidak berputar (tidak menimbulkan medan putar) seperti yang diakibatkan oleh suplai dua atau 3 phasa. Itulah sebabnya motor satu phasa tidak dapat start sendiri. Akan tetapi, jika rotor diputar dengan tangan atau dengan cara lain akan menimbulkan torsi dan

(8)

berputar. Maka untuk menimbulkan medan putar yang akan memutar rotor, ditambahkan satu kumparan bantu. Oleh karena itu, prinsip kerja motor induksi satu phasa dapat dijelaskan dalam dua cara, yaitu dengan teori medan putar silang dan teori medan putar ganda.

II.3.2 Teori Medan Putar Silang

Prinsip kerja motor induksi satu phasa dapat dijelaskan dengan menggunakan teori medan putar silang (cross-field theory). Jika suatu motor induksi satu phasa diberikan tegangan ac satu phasa maka arus sinusiodal terhadap waktu akan mengalir pada kumparan tersebut. Arus stator ini akan menghasilkan medan magnet seperti yang ditunjukkan oleh garis putus-putus pada gambar 2.7.

C

Belitan rotor A Belitan stator

Gambar 2.7 Medan magnet stator berpulsa sepanjang garis AC.

Arus stator yang mengalir pada setengah periode pertama akan membentuk kutub utara di A dan kutub selatan di C pada permukaan stator. Pada setengah periode berikutnya, arah kutub-kutub stator menjadi terbalik. Meskipun kuat medan magnet stator selalu berubah-ubah, yaitu maksimum pada saat arus maksimum dan nol pada saat arus nol serta polaritasnya berbalik secara periodik, aksi ini hanya

(9)

terjadi sepanjang sumbu AC. Dengan demikian, medan magnet ini tidak berputar tetapi hanya merupakan sebuah medan magnet berpulsa pada posisi yang tetap (stationary).

Seperti halnya pada transformator, tegangan terinduksi pada kumparan sekunder, dalam hal ini kumparan rotor. Karena rotor dari motor induksi satu phasa adalah rotor sangkar dimana kumparannya telah terhubung singkat, maka arus akan mengalir. Sesuai dengan hukum Lenz, arah dari arus ini (seperti yang ditunjukkan pada gambar 2.7) sedemikian rupa sehingga medan magnet yang dihasilkannya menentang medan magnet yang menghasilkannya. Arus rotor ini akan menghasilkan medan magnet rotor dan membentuk kutub-kutub pada permukaan rotor. Karena kutub-kutub ini juga berada pada sumbu AC dengan arah yang berlawanan terhadap kutub-kutub stator, maka tidak ada torsi induksi yang dihasilkan pada kedua arah, rotor tetap diam. Dengan demikian, motor induksi satu phasa tidak dapat diasut sendiri dan membutuhkan rangkaian bantu untuk menjalankannya.

Arah putaran

D B

C A

Gambar 2.8 Motor dalam keadaan berputar

Motor dapat berputar karena adanya rangkaian bantu. Pada gambar 2.8, konduktor-konduktor rotor memotong medan magnet stator sehingga menimbulkan gaya gerak listrik pada konduktor-konduktor tersebut.

(10)

Jika fluks stator seperti yang diperlihatkan pada gambar 2.8 mengarah ke atas, maka sesuai dengan kaidah tangan kanan, arah gaya gerak listrik rotor akan mengarah keluar kertas pada setengah bagian atas rotor dan mengarah ke dalam kertas pada setengah bagian bawah rotor. Pada setengah periode berikutnya arah dari gaya gerak listrik yang dibangkitkan akan terbalik. Gaya gerak listrik yang diinduksikan ke rotor berbeda dengan arus dan fluks stator. Karena konduktor- konduktor rotor terbuat dari bahan dengan tahanan rendah dan induktansi tinggi, maka arus rotor yang dihasilkan akan tertinggal mendekati 90o listrik terhadap gaya gerak listrik rotor. Gambar 2.9 menunjukkan hubungan phasa dari fluks dan arus stator, fluks dan arus rotor, serta tegangan induksi rotor.

90

Tegangan induksi rotor Fluks dan arus stator

Fluks dan arus rotor I, V,φ

ωt

Gambar 2.9 Fluks rotor tertinggal terhadap fluks stator sebesar 90°

Sesuai dengan kaidah tangan kanan, arus rotor ini akan menghasilkan medan magnet (seperti yang ditunjukkan gambar 2.10). Karena medan rotor ini terpisah sebesar 90o dari medan stator, maka disebut sebagai medan silang (cross field). Nilai maksimum dari medan ini (seperti yang ditunjukkan oleh gambar 2.10) terjadi pada saat ¼ periode setelah gaya gerak listrik rotor yang dibangkitkan telah mencapai nilai

(11)

maksimumnya. Karena arus rotor yang mengalir disebabkan oleh suatu gaya gerak listrik bolak-balik maka medan magnet yang dihasilkan oleh arus ini juga bolak- balik, dan aksi ini terjadi sepanjang sumbu DB (lihat gambar 2.10).

Arah putaran

D B

C A

Gambar 2.10 Medan silang yang dibangkitkan arus-arus stator

Karena medan silang beraksi pada sudut 90o terhadap medan magnet stator dengan sudut phasa yang juga tertinggal 90o terhadap medan stator, kedua medan bersatu untuk membentuk sebuah medan putar resultan yang berputar dengan kecepatan sinkron seperti yang ditunjukkan pada gambar 2.11.

a b c d e f g h i

φ

ωt φs φr

a b c d e

R r =Φ Φ

R s =Φ

s Φ Φ

Φs

Φs

Φs

R r=Φ Φ

R r=Φ Φ

ΦR

ΦR

ΦR

ΦR

Φr Φr

Φr

R s =Φ Φ

f g h i

Gambar 2.11 Phasor medan putar yang dihasilkan oleh kumparan stator dan rotor

(12)

II.3.3 Teori Medan Putar Ganda.

Teori medan putar ganda (double revolving-field theory) adalah suatu metode untuk menganalisa prinsip perputaran motor induksi satu phasa disamping teori medan putar silang. Menurut teori ini, medan magnet yang berpulsa terhadap waktu dan diam terhadap ruang dapat dibagi menjadi dua medan magnet, yang besarnya sama dan berputar berlawanan arah. Dengan kata lain, suatu fluks sinusoidal bolak- balik dapat diwakili oleh dua fluks (yang masing-masing besarnya sama dengan setengah dari nilai fluks bolak-balik tersebut) yang berputar secara sinkron dengan arah saling berlawanan.

Gambar 2.12.a, menunjukkan suatu fluks bolak-balik yang mempunyai nilai maksimum φm. Komponen-komponen fluksnya A dan B mempunyai nilai yang sama yaitu φm/2, berputar dengan arah yang berlawanan dan searah perputaran jarum jam, seperti ditunjukkan anak panah.

A= m/2 B= m/2

+ m

y y

y

y A

B

m sin -

+

y

y A

B

m/2

m/2

(a) (b) (c)

- m

y y

A B

y

y

A B

(d) (e)

Gambar 2.12 Konsep medan putar ganda

(13)

Pada beberapa saat ketika A dan B telah berputar dengan sudut +θ dan -θ seperti pada gambar 2.12.b, maka besar fluks resultannya adalah :

φ θ φ φ

φ φ cos 2

2 . 2 2 4

2 2

2 m m m m

r + −

= ...(2.1)

θ φ

φr = msin ...(2.2) dimana :

` φr = fluks resultan φ = fluks maksimum m

θ = sudut ruang

Setelah seperempat periode putaran, fluks A dan B akan berlawanan arah seperti yang ditunjukkan pada gambar 2.12.c, sehingga resultan fluksnya sama dengan nol. Setelah setengah periode putaran, fluks A dan B akan mempunyai resultan sebesar –2 x φm/2 = -φm, seperti yang ditunjukkan oleh gambar 2.12.d.

Setelah tiga perempat putaran, resultannya akan kembali nol seperti yang ditunjukkan pada gambar 2.12.e demikian seterusnya. Jika nilai-nilai dari fluks resultan digambarkan terhadap θ diantara θ = 0o sampai θ = 360o, maka akan didapat suatu kurva seperti yang ditunjukkan pada gambar 2.13.

.

0o 90o 180o 270o 360o

Fluks

Gambar 2.13 Kurva fluks resultan terhadap θ

(14)

Pada saat rotor berputar sesuai dengan arah momen putar medan maju dengan kecepatan tertentu, maka besar slip terhadap momen putar medan maju (Sf) yang terjadi adalah :

n s n S n

s r s

f − =

= ………...….(2.3)

dimana : n = kecepatan sinkron s n = kecepatan putaran rotor r

Sedangkan slip terhadap momen putar medan mundur (Sb) dengan rotor menentang arah momen putar mundur adalah :

( ) ( )

s r s s s

r s

b n

n n n n

n

S n − −

− =

= − 2

s

Sb = 2− ………...………….(2.4)

Masing-masing dari kedua komponen fluks tersebut memotong konduktor rotor sehingga menginduksikan ggl dan pada akhirnya menghasilkan torsi tersendiri.

Kedua torsi mempunyai arah yang saling berlawanan seperti yang ditunjukkan pada gambar 2.14. Pada keadaan diam kedua komponen torsi tersebut sama besarnya, sehingga torsi resultan asut adalah nol. Pada saat motor berputar, besar kedua komponen torsi tesebut tidaklah sama sehingga torsi resultan membuat motor tetap berputar pada putarannya.

(15)

Kecepatan Torsi

0 ns

-ns

Torsi arah maju

Torsi arah mundur

Torsi resultan

Gambar 2.14 Karakteristik torsi induksi - kecepatan motor induksi satu phasa

II. 4. RANGKAIAN EKIVALEN MOTOR KAPASITOR RUN

Jika kedua kumparan utama dan kumparan bantu pada motor induksi satu phasa kapasitor run dieksitasi, maka kedua kumparan akan menghasilkan sepasang medan putar arah maju dan arah mundur. Pada gambar 2.15.a terlihat bahwa kumparan bantu dan utama paralel. Kapasitor terhubung seri dengan kumparan bantu. Selama motor beroperasi kapasitor tidak dilepas dengan kumparan bantunya.

Dari gambar tersebut didapat rangkaian ekivalen seperti pada gambar 2.15.b.

Sehingga tiap-tiap kumparan dapat ditunjukkan dengan suatu rangkaian ekivalen dengan dua percabangan paralel, satu untuk medan arah maju, dan satu lagi untuk medan arah mundur. Suatu medan putar (tanpa memperhatikan dari kumparan mana medan tersebut dihasilkan) akan menghasilkan tegangan pada kedua kumparan.

Dapat diasumsikan bahwa kumparan bantu tertinggal sebesar 90o listrik terhadap kumparan utama. Kemudian medan arah maju yang dihasilkan oleh kumparan bantu akan menginduksikan tegangan pada kumparan utama, dan akan tertinggal 90o listrik dari tegangan yang dihasilkan oleh medan yang sama dalam kumparan bantu.

Rangkaian ekivalen dari motor kapasitor run diperlihatkan pada gambar 2.15.

(16)

(a)

(b)

Gambar 2.15 Rangkaian ekivalen stator motor kapasitor run dimana :

V~1

= tegangan jala-jala masukan motor.

r1 , x1 = resistensi dan reaktansi bocor kumparan utama stator.

Xm = reaktansi magnetisasi.

r2 , x2 = resistansi dan reaktansi rotor dilihat dari sisi stator.

Xc = reaktansi kapasitor permanen.

ra = resistansi kumparan bantu stator.

+ -

+ -1

E~

2

E~

+ -

+ - +

-3

E~

4

E~

+ -

1 2x ja

s r a22 5 . 0

2

2

Xm

ja

2

2 2x ja

2

2

Xm

ja

2

2 2x ja

s r a

2

5 . 0 22

jXc

ra

a

s r2 5 . 0

2 jx2

2 jXm

s r

2

5 . 0 2

2 jx2

2 jXm

jx1

r1

1

V~

1

V~

Kumparan Utama

Kumparan Bantu Cabang arah

mundur Cabang arah

maju

{

C Rotor

Kumparan Bantu

Kumparan Utama

I Ia

Im V

(17)

a = konstanta perbandingan kumparan kumparan bantu dengan kumparan kumparan utama.

1

E~ = tegangan yang diinduksikan dalam cabang arah maju dari kumparan utama oleh medan putar arah maju dari kumparan bantu.

2

E~ = tegangan yang diinduksikan dalam cabang arah mundur dari kumparan utama oleh medan putar arah mundur dari kumparan bantu.

3

E~ = tegangan yang diinduksikan dalam cabang arah maju dari kumparan bantu

oleh medan putar arah maju dari kumparan utama.

4

E~ = tegangan yang diinduksikan dalam cabang arah mundur dari kumparan

bantu oleh medan putar arah mundur dari kumparan utama.

Rugi – rugi inti Rc dari motor tidak ditunjukkan dan akan digabungkan dengan rugi-rugi putaran motor. Impedansi arah maju dari kumparan utama adalah :

) (

) / (

] ) / 5 [(

. ˆ 0

2 2

2 2

m m

f f

f r s j x X

jx s r jX jX

R

Z + +

= + +

= ……...….(2.5)

Impedansi arah mundur dari kumparan utama adalah :

) (

) 2 /(

(

] ) 2 /(

5 [(

. ˆ 0

2 2

2 2

m m

b b

b r s j x X

jx s r

jX jX R

Z − + +

+

= − +

= …...…..(2.6)

Pada gambar 2.16. diperlihatkan rangkaian ekivalen dengan Zˆ dan f b. dimana : I~1 = arus pada kumparan utama

I~2 = arus pada kumparan bantu.

a= resistansi kumparan bantu dan reaktansi ekivalen dari kapasitor.

(18)

+ -

+ - 1

E~

2

E~

+ -

+ - +

- 3

E~

4

E~

+ -

1 2x

ja a

jx1

r1

1

V~ ~1

V

Kumparan

Utama Kumparan

Bantu

jXf

Rf

Rb

jXb

Rf

a2

Xf

ja2

Rb

a2

Xb

ja2

1

~I ~2

I

Gambar 2.16 Bentuk sederhana rangkaian ekivalen stator motor kapasitor run Tegangan yang diinduksikan dalam kumparan utama oleh medan putar arah maju adalah :

f

fm I Z

E~ ~ ˆ

= 1 ………...…..(2.7) Tegangan yang diinduksikan dalam kumparan utama oleh medan putar arah mundur adalah :

b

bm I Z

E~ ~ ˆ

= 1 ………...……(2.8) Tegangan yang diinduksikan dalam kumparan bantu oleh medan putar arah maju adalah :

f

fa I a Z

E~ ~ 2 ˆ

= 2 ………...…….(2.9) Tegangan yang diinduksikan dalam kumparan bantu oleh medan putar arah mundur adalah :

b

ba I a Z

E~ ~ 2 ˆ

= 2 ………...…….(2.10)

(19)

Karena kumparan utama ditempatkan mendahului 90o listrik dari kumparan bantu, tegangan yang diinduksikan dalam kumparan utama oleh medan putar arah maju dari kumparan bantu harus tertinggal 90o listrik dari tegangan yang diinduksikan oleh medan yang sama dalam kumparan bantu. Tegangan yang diinduksikan dalam kumparan utama harus sebesar 1/a kali dari tegangan yang diinduksikan dalam kumparan bantu, yaitu :

f

fa jaI Z

aE j

E~ 1 ~ ~ ˆ

2

1 =− =− ………...……(2.11) Dengan cara yang sama, tegangan yang diinduksikan dalam kumparan utama oleh medan putar arah maju yang dihasilkan oleh kumparan bantu harus mendahului sebesar 90o listrik dari tegangan yang diinduksikan dalam kumparan bantu, yaitu :

b

ba jaI Z

aE j

E~ 1 ~ ~ ˆ

2

2 = = ...(2.12) Dengan cara yang sama, tegangan yang diinduks ikan dalam cabang arah maju dari kumparan bantu oleh medan putar arah maju dari kumparan utama adalah :

Zf

I ja E~ ~ ˆ

1

3 = ………...………(2.13) Dan, tegangan yang diinduksikan dalam kumparan bantu oleh medan arah mundur dari kumparan utama adalah :

Zb

I ja E~ ~ ˆ

1

4 =− ………...………(2.14) Maka persamaan untuk kedua cabang adalah :

1 2 1 1

1 1

~

~

~

~ ) ~

~(

V E E E E jx r

I + + fm + bm + + = ……...……(2.15)

dan 2 2 1 ~ ~ ~3 ~4 ~1

ˆ )

~(

V E E E E x ja Z

I a + + fa + ba + + = ………...…(2.16)

(20)

Persamaan-persamaan di atas dapat ditulis kembali menjadi :

1 12 2 11 1

ˆ ~ ˆ ~

~Z I Z V

I + = ………...…(2.17)

1 22 2 21 1

ˆ ~ ˆ ~

~Z I Z V

I + = ………...……(2.18)

dimana : Zˆ11 =r1 +Zˆf +Zˆb + jx1 ………...………(2.19) ˆ )

ˆ12 ja Zf Zb

Z =− − ………...………(2.20) ˆ )

ˆ21 ja Zf Zb

Z = − ………...…………(2.21)

ˆ ) (ˆ ˆ

ˆ 1

2

22 Z a Z Z jx

Z = a + f + b + …………...………(2.22) Dari persamaan-persamaan di atas, maka dapat dihitung besar arus dalam kedua cabang, yaitu :

21 12 22 11

12 22 1

1 ˆ ˆ ˆ ˆ

ˆ ) (ˆ

~ ~

Z Z Z Z

Z Z I V

= − ………...…….(2.23)

21 12 22 11

21 11 1

2 ˆ ˆ ˆ ˆ

ˆ ) (ˆ

~ ~

Z Z Z Z

Z Z I V

= − ………...…….(2.24)

Arus masukan adalah :

2 1

~

~

~ I I

IL = + ………...…….(2.25)

II. 5. DAYA DAN RUGI-RUGI MOTOR KAPASITOR RUN Daya masukan motor induksi satu phasa kapasitor run adalah :

ϕ

1 Lcos

in V I

P = ………...…….(2.26)

Dimana φ adalah sudut faktor daya arus masukan dari tegangan suplai.

(21)

Tegangan pada kapasitor running adalah:

2

~I jX

Vc =− c ………...….(2.27) Rugi-rugi tembaga stator adalah :

a

SCL I r I r

P = 12 1 + 22 ………...…….(2.28) Jika rugi-rugi tembaga stator dikurangi dari daya masukan, maka daya yang melalui celah udara dapat diperoleh, dan dibagi dua antara medan putar arah maju dan medan putar arah mundur. Namun, persamaan daya melalui celah udara yang dihasilkan berdasarkan pada medan putar arah maju dari kumparan utama adalah :

~ ]

~ ) Re[(E~ E1 I1*

Pgfm = fm + ………...…….(2.29) dimana : Re = Komponen Real.

Tanda bintang pada ~I1*

adalah menandakan konjugate dari ~I1 .

Daya yang melalui celah udara arah maju berdasarkan pada kumparan bantu adalah :

~ ]

~ ) Re[(E~ E3 I2*

Pgfa = fa + ………...…..(2.30) Sehingga, daya yang mengalir melalui celah udara total berdasarkan pada medan putar arah maju dari kedua kumparan utama dan kumparan bantu adalah :

~ ]

~ ) (~

)~

~

Re[(E~ E1 I1* E E3 I2*

Pgf = fm + + fa + …...……..(2.31) Daya yang mengalir melalui celah udara total berdasarkan pada medan putar arah mundur dari kedua kumparan utama dan kumparan bantu adalah :

~ ]

~ ) (~

)~

~

Re[(E~ E2 I1* E E4 I2*

Pgb = bm + + ba + ……...…...(2.32) Persamaan arus pada kumparan utama dan kumparan bantu sebagai :

1 1 1

~ = I ∠θ

I ………...…...(2.33)

(22)

dan I~2 = I2∠θ2 ………...……...(2.34) Dimana θ1 dan θ2 adalah sudut phasa dari arus pada kumparan utama dan kumparan bantu. Jadi, daya yang melalui celah udara berdasarkan pada medan arah maju dapat ditulis kembali menjadi :

~ ]

ˆ ) ˆ ~

(~ )~

~ ˆ

~ ˆ

Re[(I1Z jaI2Z I1* I2a2Z jaI1Z I2*

Pgf = ff + f + f

= ~ ~ )]

ˆ ( )ˆ

Re[(I12 +a2I22 ZfjaZf I2I1*I1I*2

= (I12 +a2I22)Rf +2aI1I2Rf sinθ21 ………..(2.35) dimana θ21 = θ2 - θ1.

Dengan cara yang sama, persamaan dari daya yang melalui celah udara berdasarkan pada medan arah maju dapat ditulis menjadi :

gb =

P (I12 +a2I22)Rb −2aI1I2Rbsinθ21 ……….….(2.36) Daya bersih yang melalui celah udara adalah :

gb gf

g P P

P = −

21 2 1 2

2 2 2

1 )( ) 2 ( ) sin

(I a I R R a R R I I θ

Pg = + fb + f + b ………...(2.37)

Dalam keadaan diam (seperti kondisi saat rotor tertahan), slip motor sama dengan satu, dan impedansi rotor dalam cabang arah maju dan mundur sama. Maka daya bersih yang melalui celah udara pada saat motor tidak berputar (pada saat start) adalah :

21 2

1 sin

4 f θ

gs aI I R

P = ………...(2.38)

Daya yang dihasilkan maksimum ketika sudutnya sebesar 90o. Akan tetapi dalam motor phasa terpisah, sudutnya antara 30o sampai 45o. Hal ini menjadi alasan

(23)

mengapa motor kapasitor dengan ukuran yang sama dapat menimbulkan torsi start yang lebih besar dibandingkan dengan motor phasa terpisah.

Torsi induksi motor adalah perbedaan antara torsi induksi arah maju dengan torsi induksi arah mundur, yang dirumuskan sebagai berikut :

b

f d

d

d T T

T = − ………..………...……...……...(2.39) Dan,

s g d

T P

=ω atau PgsTd ..………..……..……...(2.40)

60 2 s

s

πn

ω = ...(2.41)

Pada saat start slip = 1, dan Rf = Rb. Dari persamaan 2.38 dan persamaan 2.40, maka torsi induksi start motor adalah :

s b f d

I I R R T a

start ω

θ21

2

1 sin

) (

2 +

= .……….(2.42)

Daya mekanis yang dihasilkan motor adalah :

g

m s P

P =(1− ) ……….……….(2.43)

Dan daya keluaran dari motor adalah:

Pout = Pm – Prot ……….….(2.44)

Untuk lebih jelasnya, dapat dilihat pada gambar diagram aliran daya motor berikut ini :

(24)

Rugi - rugi tembaga stator

Celah udara

Konversi Daya

Rugi - rugi tembaga rotor

Rugi - rugi mekanis

Rugi - rugi gesek dan angin Rugi - rugi

inti

Rugi - rugi putaran θ

=VI cos Pin 1L

21 2 1 b f b f 2 2 2 2 1

g (I a I )(R R ) 2a(R R )II sin

P = + + + θ

T ) s 1 ( Pm= ωsyn

Pout = Pm - Prot

) r 25 . 0 r ( I P

P 2nL 1 2

nL

rot = +

Gambar 2.17 Diagram aliran daya motor induksi satu phasa kapasitor run

Efisiensi motor adalah :

%

×100

=

in out

P

η P ……….………..(2.45)

Referensi

Dokumen terkait

Langkah strategis agar industri batik tetap berkembang, dan produk batik tetap diminati pasar serta dapat bersaing di era global, salah satu caranya adalah dengan

Pada bab ini dipelajari aritmatika modular yaitu aritmatika tentang kelas-kelas ekuiv- alensi, dimana permasalahan dalam teori bilangan disederhanakan dengan cara meng- ganti

Tahap ini adalah bagian yang penting pada penelitian pemerolehan bahasa kedua karena dalam tahap ini peneliti berupaya menjelaskan proses pemerolehan B2 (Corder

Kumpulan Karangan Buku Ketiga, (Jakarta: Lembaga Kriminologi UI, 1994), h.. Menggunakan metode pendekatan yuridis normatif atau penelitian hukum kepustakaan atau penelitian

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Kehutanan pada Fakultas Kehutanan Institut Pertanian Bogor, penulis melakukan penelitian dengan judul Pemetaan Pohon Plus

Trips pita merah, Selenothrips rubrocinctus Giard (Thysanoptera: Thripidae), merupakan salah satu hama pada tanaman jarak pagar (Jatropha curcas L.).. Penelitian

Berdasarkan pengalaman penulis saat Program Latihan Profesi (PLP) di SMK 3 Bandung. Kegiatan Ektrakurikuler futsal merupakan materi yang kurang diminati oleh siswa, hal

Penelitian menggunakan teknik analisis deskriptif kualitatif , yaitu suatu metode penelitian yang bersifat menggambarkan kenyataan atau fakta sesuai dengan data yang