• Tidak ada hasil yang ditemukan

8. Sistem Partikel Berinteraksi

N/A
N/A
Protected

Academic year: 2021

Membagikan "8. Sistem Partikel Berinteraksi"

Copied!
16
0
0

Teks penuh

(1)

8. Sistem Partikel Berinteraksi

Sejauh ini baru kita pelajari sistem partikel yang “saling bebas” tanpa interaksi. Sistem sederhana ini dapat dipenuhi hanya pada kondisi fisis khusus (metal pada suhu rendah, gas pada suhu tinggi tekanan rendah etc.)

Pada kondisi real yang lain, banyak dijumpai partikel-partikel dalam sistem akan berinteraksi.

• Zat padat

• Gas klassik non-ideal • Ferromagnetisme 8.1. Zat Padat/Solid

8.1.1. Vibrasi Kisi dan Mode Normal Zat pada yang terdiri dari N atom:

Katakanlah variabel ξmerupakan pergeseran dari titik setimbang,

) 0 ( α α α ξi = xixi

Maka energi kinetik vibrasi:

∑ ∑ = ∑ ∑ = = = = = N i i i N i i i k m x m E 1 3 1 2 1 3 1 2 2 1 2 1 α α α &α ξ&

disini x&i2α =ξ&i2α merupakan kecepatan atom ke-i.

x

iα setimbang ) 0 ( α i x

(2)

Energi potensial: ... 2 1 , 2 0 ∑ + ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ∂ ∂ ∂ + ∑ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ + = α γ γ α α γ α α ξα i j i j ξi ξj i i i x x V x V V V

jumlah i,j dari 1 s/d N; sedangkan α,γ dari 1 s/d 3.

Kalau dalam keseimbangan V minimum, maka =0 ∂ ∂ α i x V . Kalau disingkat α γ γ α j i j i A x x V , 2 = ∂ ∂ ∂

dan abaikan suku-suku tinggi, maka:

∑ + = γ α j α γ ξαξ γ i i j i j A V V , 0 , 2 1

Sehingga Hamiltonian total pada zat padat menjadi:

∑ + ∑ ∑ + = = α= ξα iα jγ α γξαξ γ j i j i N i i i A m V H , 1 3 1 2 0 , 2 1 2 1 &

Pada bagian potensial Æ atom saling berinteraksi, jadi tidak saling independen.

Untuk penyederhanaan, transformasikasikan koordinat:

∑ = = N r i r r i B q 3 1 α, α

ξ (Trik mekanika klassik)

Hal ini akan menjadikan:

∑ + + = = N r r r r q q V H 3 1 2 2 2 0 ( ) 2 1 ω &

Suku qr disebut “koordinat normal”, dengan frekuensi “mode normal” ωr Sekarang kita lihat kasus satu dimensi terlebih dahulu:

) ( 2 1 2 2 2 r r r r q q H = & +ω Kinetik Potensial Cukup sederhana, satu koordinat Complicated, hasil kali koordinat

(3)

Keadaan kuantum yang mungkin kita beri label:

nr = 0,1,2,3,…. berkaitan dengan energi:

r r r n ω ε ( )h 2 1 + =

Kalau sekarang diperluas dengan 3N osilator harmonik independen, maka keadaan kuantum Æ [n1, n2, n3, … n3N ] Energi total: ∑ + + = = N r r r n n n n V n E N 3 1 2 1 0 ,..., , , 2 3 3 ( ) 1 hω

Kalau ditulis sedikit lain:

∑ + − = = N r r r n n n n N n E N 3 1 ,..., , , 2 3 3 ( ) 1 η hω dengan − = + ∑ = N r r V N 3 1 2 1 0 ω

η h Æ konstan tidak tergantung nr

Terlihat bahwa −Nη energi terkecil yang mungkin.

Kita tahu bahwa ∑

= N r r 3 1 2 1 ω

h adalah “energi titik nol”.

Æ η energi ikat per-atom dalam solid pada suhu nol mutlak. Fungsi partisi dengan mudah dapat dihitung:

Z = ∑ − − + + + ,... , ) ... ( 2 1 3 3 2 2 1 1 n n n n n N N N e β η hω hω hω = ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∑ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∑ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∑ ∞ = − ∞ = − ∞ = − 0 ) ( 0 ) ( 0 ) ( 3 3 3 2 2 2 1 1 1 ... N N N n n n n n n N e e e eβ η β hω β hω β hω = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −eeeN e N 3 2 1 1 1 ... 1 1 1 1 ω β ω β ω β η β h h h atau ∑ − − = = − N r r e N 3 1 ) 1 ln( ln Z β η βhω

Frekuensi mode normal yang mungkin ωr bernilai berdekatan, sehingga cukup menguntungkan kalau didefinisikan besaran

(4)

Seterusnya: ω ω σ η β βω d e N Z ln(1 ) ( ) ln 0

∞ − − − = h

Jadi energi rata-rata:

ω ω σ ω η β βω d e N Z E ( ) 1 ln 0

∞ − + − = ∂ ∂ − = hh

Kapasitas panas pada volume konstan menjadi:

V V V E k T E C ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ − = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ = β β2

∞ − = 0 2 2 ( ) ( ) ) 1 ( β ω β ω σ ω ω ω β d e e k CV h h h

Terlihat disini bahwa problem statistik sangat sederhana. Yang terlihat sulit adalah transformasi Hamiltonian, yakni problem mekanika untuk mencari frekuensi mode normal.

Pada suhu tinggi (yakni kT >>hωmax) diperoleh: ω β ω β h h =1+ e sehingga:

∞ = = 0 3 ) ( d Nk k CV σ ω ω

Hasil sudah didapat sebelumnya (kaidah Dulong dan Petit)

σ

(

ω

)

(5)

Pada suhu lainnya, secara umum:

∞ − = 0 2 2( ) ( ) ) 1 ( β ω β ω σ ω ω ω β d e e k CV h h h

evaluasi integral ini membutuhkan beberapa pendekatan.

8.1.2. Pendekatan Debye

Perhitungan σ(ω) jumlah frekuensi mode normal cukup menyulitkan (complicated). Debye melakukan asumsi bahwa perambatan gelombang di solid seperti suara: ω= cs k, sehingga: ω ω π π π ω ω σ d c V dk k V d s c 2 3 2 2 3 2 3 ) 4 ( ) 2 ( 3 ) ( = =

disini csmerupakan kecepatan gelombang dan angka 3 muncul dari kemungkinan tiga arah polarisasi.

Pendekatan Debye selanjutnya:

D D D D ω ω ω ω ω σ ω σ > < ⎩ ⎨ ⎧ = untuk untuk 0 ) ( ) (

Disini ωD disebut frekuensi Debye (batas atas).

N d d D c D( ) ( ) 3 0 0 = =

∞ ω ω ω σ ω ω σ kalau dimasukkan ω ω π ω ω σ d c V d s c 2 3 2 2 3 ) ( = , akan diperoleh: 3 1 2 6 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = V N cs D π ω

apabila dihitung secara numerik, didapat ωD≈ 1014 det-1 (pada daerah inframerah).

Sekarang kalau kita evaluasi kapasitas panas:

∞ − = 0 2 2( ) ( ) ) 1 ( β ω β ω σ ω ω ω β d e e k CV h h h

∞ − = 0 2 3 2 2 2 2 3 ) ( ) 1 ( β ω β ω π ω ω ω β d c V e e k C s V h h h dapat ditulis: ) ( 3 T Nkf C D D V θ =

(6)

dalam hal ini dx x e e y y f y x x D 4 0 2 3 ) 1 ( 3 ) (

− = Æ fungsi Debye

dan temperatur Debye didefinisikan: kθD =hωD

Sekarang kita tinjau kondisi-kondisi ekstrim:

Ó Pada suhu sangat tinggi, kT >>>hωD maka x << 1 dan

( ) 3 1 0 2 3 = →

y D x dx y y f

lalu CV = 3Nk, kembali ke kasus lama Dulong-Petit

Ó Pada suhu rendah, kasus ini lebih menarik.

Evaluasi integral menghasilkan CV ∝ β-3∝T 3

Æ hasil terakhir ini sesuai dengan kenyataan eksperimen.

8.2. Gas Klassik Non-Ideal

Ingat kembali pengertian “gas ideal”:

) Tidak ada interaksi antar molekul-molekul gas.

Energi potensial antar molekul pada kasus ini diabaikan.

Sekarang kita lihat apabila interaksi ini dimasukkan dalam perhitungan (gas klassik non-ideal).

8.2.1. Perhitungan Fungsi Partisi untuk Kerapatan Rendah

Tinjau gas monatomik dengan jumlah partikel N, volume V dan temperatur T.

C

V

T

(7)

n = N/V

Energi sistem atau Hamiltonian: H = Ek + U dengan Ek = m 2 1

= N j j p 1 2

Untuk energi potensial, lihat gambar:

U = u1,2 + u1,3 + u1,4 ….+ u2,3 + u2,4 +…..+ uN-1, N atau U = ∑ = ∑ = < N k N j k j 1 1 ujk = ½ ∑ = ∑ = ≠ N k N j k j 1 1 ujk

Secara umum hubungan antara energi potensial dan jarak terlihat pada gambar berikut:

N

V

T

Energi kinetik Energi potensial

1

2

3

4

u(R) R Ro

(8)

Dirumuskan secara semi-empiris (potensial Lennard-Jones): u(R) = uo ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ 12 6 2 R R R Ro o

Untuk penyerdahanaan matematik, potensial sering dituliskan sebagai:

u(R) = ⎪⎩ ⎪ ⎨ ⎧ > < ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ∞ o o s o o R R R R R R u untuk untuk nilai s biasanya = 6

Dari hal ini fungsi partisi (klassik) menjadi:

Z =

∫∫∫ ∫

− + N N N k h r d r d p d p d p d p d U E e N 3 3 1 3 3 3 3 2 3 1 3 ... .... ) ( ... ! 1 β =

∫∫∫ ∫

k N p d p d p d p d E N e N h 3 3 3 2 3 1 3 ... 3 ... ! 1 β

∫∫∫ ∫

N r d r d U e 3 1 3 .... ... β

Integral kedua kita tulis:

ZU =

∫∫∫ ∫

d r d rN U e 3 1 3 .... ... β

Maka fungsi partisi keseluruhan menjadi:

U N Z h m N Z 2 3 2 2 ! 1 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = β π

Evaluasi ZU cukup susah karena melibatkan semua ri pada seluruh volume V. → Problem sentral mengapa diskusi gas non-ideal sangat susah.

(Pada limit gas ideal U → 0 atau pada suhu tinggi β→0 dengan mudah dilihat bahwa ZU = VN).

Apabila kerapatan gas n tidak begitu besar, prosedur pendekatan secara sistematik untuk mencari ZU dapat dilakukan.

Rata-rata energi potensial:

U N U N U Z r d r d e r d r Ud e U ln .... .... 3 1 3 3 1 3 β β β ∂ ∂ − = =

− − sehingga: ln ZU (β) = N ln V

β 0

U

) dβ

(9)

Dari U = ∑ = ∑ = < N k N j k j 1 1 ujk = ½ ∑ = ∑ = ≠ N k N j k j 1 1

ujk, energi potensial rata-rata dapat ditulis:

U = ½ N(N−1)u ≈ ½ N2 u

Disini

u

merupakan energi potensial rata-rata antara dua molekul.

u =

− − R d e R ud e u u 3 3 β β = − β ∂ ∂ ln

e−βud3R

Integral dapat ditulis dalam bentuk:

R d e βu 3 =

[1+(e−βu −1)]d3R = V + I = V ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + V I 1 dengan I(β) =

(e−βu −1)d3R =

∞ − 0 ) 1

(e βuR2dR yang bernilai cukup kecil dibandingkan VI/V <<1

Dari hal ini:

u

=− β ∂ ∂ [ ln V + ln ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + V I 1 ] ≈ 0 − β ∂ ∂ ( V I +...) atau u = − V 1 β ∂ ∂I

Akhirnya energi potensial rata-rata sistem menjadi:

U = − 2 1 V N2 β ∂ ∂I

Fungsi partisi dapat ditulis: ln ZU (β) = N ln V + 2 1 V N2 β ∂ ∂I

8.2.2. Persamaan Keadaan dan Teorema Virial Dari hasil terakhir, persamaan keadaan dapat ditulis:

p = β 1 V Z ∂ ∂ln = β 1 V ZU ∂ ∂ln Ingat kembali:

Pada gas ideal ZU = VN

Sehingga persamaan keadaan menjadi p =

V N

(10)

Untuk gas non-ideal: p = β 1 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − I V N V N 2 2 2 1

dalam bentuk umum

kT p

= n + B2(T) n2 + B3(T) n3 + B4(T) n4 +...

Disebut koefisien virial

n = N/V Tampak bahwa: B2(T) = −½ I = −2π

∞ − 0 ) 1 (e βu R2dR

Pada pendekatan suhu cukup tinggi e−βu≈ 1 − βu, persamaan keadaan akan mendekati persamaan gas Van der Waals:

(p+ 2

v a

)(vb) = RT

(See complete proof in Reif page 424-427)

8.3. Ferromagnetisme

Ferromagnet :

Material yang masih memperlihatkan gejala magnetisme meskipun medan luar sudah tidak ada.

8.3.1. Interaksi antar spin

(11)

Untuk satu atom:

Net spin elektronik: S

Momen magnetik atom: μ

Hubungan antara momen magnetik dan spin: μ = gμoS

disini μo merupakan magneton Bohr.

Bila ada medan eksternal Ho sepanjang sumbu z maka Hamiltonian yang

mencerminkan interaksi atom dan medan ini:

Hamiltonan (Ho) =

= = − = • − N j jz N j S H g g 1 0 0 1 0 0 μ μ S H

sedangkan interaksi antar atom: Hjk = −2J SjSk

biasa disebut “exchange interaction”.

Dalam bentuk yang lebih sederhana (“Ising model”):

Hjk = −2J SjzSkz

Simplifikasi ini untuk menghindari komplikasi karena besaran vektor. Hamiltonian H′ yang merujuk pada energi interaksi antar atom:

⎭ ⎬ ⎫ ⎩ ⎨ ⎧ − =

∑∑

= = N j kz N k jzS S J 1 1 2 2 1 H'

dengan J merupakan konstanta pertukaran (‘exchange constant’).

Hamiltonian total: H’ = H’o + H’′

M = ???

H

o

T

Problem fisika pada kasus ini adalah menghitung besaran termodinamika, misalnya momen

magnetik rata-rata M sebagai fungsi temperatur dan medan luar Ho.

(12)

Tantangan di bidang teori magnetik!! Persamaan H’′ =

∑∑

= = − N j N k kz jzS S J 1 1 2 1 ) 2

( dapat selesaikan secara eksak ketika Ho = 0 pada dua dimensi. Untuk problem tiga dimensi, sampai saat ini belum ada solusi yang memuaskan.

Tetapi beberapa pendekatan sederhana dapat dilakukan seperti dengan teori medan molekular dari Pierre Weiss.

8.3.2. Pendekatan Medan Molekular Weiss

Pada model ini perhatian utama pada suatu atom tertentu j (sebut saja sebagai ‘atom pusat’).

Interaksi atom ini dapat dijabarkan oleh Hamiltonian:

Hj =

= − − n k kz jz jz JS S S H g 1 0 0 2 μ

Sebagai pendekatan, kita ganti jumlah dengan harga rata-rata:

m n k kz g H S J 0 1 2

= μ =

Suku ini merupakan interaksi atom sentral dengan n

tetangga terdekatnya

Medan molekular/Internal

j

(13)

Sehingga persamaan asal menjadi: Hj = −gμo(Ho + Hm)Sjz

Jadi efek tetangga secara sederhana diganti “medan efektif” Hm. Level energi pada atom pusat ke-j menjadi:

Em = −gμo(Ho + Hm)ms, ms = −S, (−S+1),..., S Dari hal ini, kita dapat menghitung spin rata-rata pada komponen z

dari atom tersebut: ) (η s jz SB S = dengan η= βgμo(Ho + Hm)

dan Bs(η) merupakan fungsi Brillouin untuk spin S.

Pada persamaan Sjz =SBs(η) terlihat ada satu parameter Hm yang tidak diketahui. Untuk penyelesaiannya digunakan cara konsistensi-diri (self-consistent) dengan

mengingat kedudukan atom-atom adalah setara (tidak ada atom pusat).

Supaya self-consistent maka persamaan m n k kz g H S J 0 1 2

= μ = menjadi: 2J n S Bs(η) = gμoHm

Kita masukkan definisi η= βgμo(Ho + Hm) diperoleh: ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = kT H g nJS kT B o o s μ η η 2 ) (

yang menentukan η dan juga Hm

Bila tidak ada medan luar Ho= 0, maka

η η nJS kT Bs 2 ) ( =

Solusi kedua persamaan tersebut dapat diperoleh dengan cara grafik, gambar y = Bs(η) dan garis lurus.

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = kT H g nJS kT y η μo o 2

(14)

Kalau parameter medan molekular dapat ditentukan, maka momen magnetik total juga dapat dicari:

M = gμo

j jz

S = Ngμo S Bs(η)

Kalau medan luar Ho = 0, maka η= 0 merupakan salah satu solusi. sehingga Hm juga tidak ada.

Tetapi ada kemungkinan η≠ 0, sehingga Hm juga memiliki harga tertentu Æ momen magnetik total juga tidak nol.

Æ fenomena ferromagnetisme. Supaya solusi η≠ 0 terjadi maka:

0 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ η η d dBs > nJS kT 2

tetapi ketika η <<1, BS memiliki bentuk sederhana:

Bs(η) ≈

3

1

(S+1)η y = nJS kT 2 ⎟⎠ ⎞ ⎜ ⎝ ⎛ − kT H gμo o η y = Bs(η)

η

y

nJS kT 2 kT H gμo o

η’

(slope inisial Bs harus lebih besar dari garis lurus)

(15)

sehingga

3

1

(S+1)> nJS kT 2 atau T < Tc disini: kTc≡ 3 ) 1 ( 2nJS S+ Fisis??

Dimungkinan terjadi fenomena ferromagnetisme pada suhu di bawah Tc (temperatur Curie).

Keadaan ferromagnet ini terjadi karena interaksi mutual antar spin sehingga keadaan spin paralel memiliki energi paling rendah.

Sekarang kita lihat suseptibilitas magnetik untuk solid yang mengalami medan magnet luar kecil di atas Tc.

Karena η kecil maka:

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − kT H g nJS kT η μo o η 2 = 1) + (S 3 1

Penyelesaian untuk η memberikan: ) ( o o o T T k H g − = μ η

Momen magnetik total menjadi:

M =

3

1

Ngμo S(S+1)η sehingga: ) ( 3 ) 1 ( 2 2 c o o k T T S S Ng H M − + = ≡ μ

χ merupakan suseptibilitas magnetik Persamaan terakhir ini disebut hukum Curie-Weiss.

Hukum Curie-Weiss berbeda dengan hukum Curie dengan adanya faktor Tc pada penyebut.

T > Tc

(16)

Suseptibilitas magnetik χ menjadi tak berhingga ketika TTc yaitu pada temperatur Curie, ketika zat menjadi ferromagnetik.

Secara eksperimen, hukum Curie-Weiss ini terekam dengan baik di atas suhu Curie. Namun tidak begitu tepat pada saat material menjadi ferromagnetik pada suhu Curie.

Mengingat kembali istilah-istilah ferromagnetik, diamagnetik dan paramagnetik

The attraction between the unlike poles of two iron bar magnets is a consequence of the interaction of the magnetic moments of the atoms in each magnet with the field produced by atoms in the other magnet. The bar magnet, or horseshoe magnet, has the property of permanent magnetism and is an example of ferromagnetism.

In addition to the ferromagnetism of permanent magnets, other types of magnetism became known after the middle of the 19th century. In 1845 Michael Faraday found that bismuth and glass are repelled from magnetic fields. He classified this behavior as diamagnetism. Faraday also discovered that some substances clearly not permanent magnets are nevertheless attracted by magnetic fields, a behavior he called

paramagnetism.

¾ Ferromagnetism is characterized by a spontaneous magnetism that exists in the absence of a magnetic field. The retention of magnetism distinguishes

ferromagnetism from the induced magnetisms of diamagnetism and paramagnetism. When ferromagnets are heated above a critical temperature, the ability to possess permanent magnetism disappears.

¾ A paramagnetic substance is characterized by a positive susceptibility. Like a diamagnet, it can acquire a magnetization only from induction by an external

magnetic field. The magnetization, however, is in the same direction as the inducing field, and a sample will be attracted toward the strongest part of a field.

¾ A substance is diamagnetic if its magnetic susceptibility is negative. This property is displayed by a repulsion of the sample from a magnetic field. The theory of

diamagnetism explains it as a consequence of an induced magnetization set up when lines of magnetic flux penetrate the electron loops around atoms. The direction of this induced magnetization is opposite to that of the external field, in accordance with Lenz's law. This makes the susceptibility negative.

Referensi

Dokumen terkait

Jumlah Saham yang ditawarkan 889.434.000 Saham Biasa Atas Nama dengan Nilai Nominal Rp..

menyelesaikan suatu tugas atau soal dengan diaktifkan dan dibimbing oleh dosenlguru yang bersangkutan. Latihan terbimbing bertujuan supaya mahalsiswa dapat melatih diri

ƒ Bila tanah pendukung pondasi terletak pada kedalaman 3-10 meter di bawah permukaan tanah, maka disarankan menggunakan pondasi dangkal dengan perbaikan tanah atau

Faktor-faktor yang menyebabkan minyak goreng teroksidasi dengan cepat diantaranya yaitu pemanasan berulang, cahaya, katalis logam seperti besi dan tembaga, senyawa

Jika pada periode berikutnya, jumlah penurunan nilai atas investasi tersedia untuk dijual berkurang dan penurunan dapat dikaitkan secara obyektif dengan peristiwa yang terjadi

1) Pemeriksaan kesehatan sebelum kerja ditujukan agar tenaga kerja yang diterima berada dalam kondisi kesehatan yang setinggi-tingginya, tidak mempunyai

Penelitian ini bertujuan untuk mengetahui kelayakan produk video sebagai media pembelajaran yang efektif agar meningkatkan hasil belajar dan pengetahuan siswa

Secara mandiri zat pengatur tumbuh giberelin (GA3) konsentrasi 200 ppm (g2) memberikan pengaruh nyata terhadap tinggi tanaman dan jumlah daun, sedangkan pupuk bohasi