• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:BJGA:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:BJGA:"

Copied!
8
0
0

Teks penuh

(1)

Iulia Elena Hiric˘

a

Abstract. Let (M, g) be a Riemannian manifold. It is called pseudo-symmetric if at every point ofM the tensorR·Rand the Tachibana tensor

Q(g, R) are linearly dependent. Any semi-symmetric manifold (R·R= 0) is pseudo-symmetric. This general notion arose during the study of totally umbilical submanifolds of semi-symmetric spaces, as well as during the consideration of geodesic mappings.

We continue the study in this direction, considering subgeodesic map-pings, which are a natural generalization of geodesic mappings on Rie-mannian manifolds. We study ξ-subgeodesically related spaces, extend-ing some known results concernextend-ing pseudo-symmetric spaces admittextend-ing geodesic mappings. Conharmonic semi-symmetric spaces geodesically re-lated are also characterized.

M.S.C. 2000: 53B20, 53C25.

Key words: subgeodesic mappings, geodesic mappings, pseudo-symmetric spaces, conharmonic tensor.

1

Classes of Riemannian manifolds

Let (M, g) be a Riemann manifold. The notion of pseudo-symmetry [10] is a natural generalization of semi-symmetry [14], [2] along the line of spaces of constant sectional curvature and locally symmetric spaces.

R0 ⊂ R1 ⊂ R2 ⊂ R3,

whereR0 is the class of constant sectional curvature Riemann spaces,

R1 is the class of locally symmetric Riemann spaces (i.e.∇R= 0),

R2 is the class of semi-symmetric Riemann spaces (i.e.R·R= 0),

R3 is the class of pseudo-symmetric Riemann spaces (i.e.R·R=LQ(g, R)).

Remark A.LetT ∈ T0,kM.We defineR·T, Q(g, T)∈ T0,k+2M,by (R·T)(X1, . . . , Xk;X, Y) = (R(X, Y)·T)(X1, . . . , Xk) =

=−T(R(X, Y)X1, . . . , Xk)− · · · −T(X1, . . . , R(X, Y)Xk).

Balkan Journal of Geometry and Its Applications, Vol.14, No.2, 2009, pp. 42-49. c

(2)

Q(g, T)(X1, . . . , Xk;X, Y) =−((X∧Y)·T)(X1, . . . , Xk) =

=T((X∧Y)X1, . . . , Xk) +· · ·+T(X1, . . . ,(X∧Y)Xk),

where (X∧gY)U =g(U, Y)X−g(U, X)Y.

Remark B.The classR2of semi-symmetric spaces was introduced by E. Cartan. These spaces were classified by Z.I. Szabo [11] and semi-symmetric hypersurfaces in

En+1 were studied by K.Nomizu.

a) It is clear that any semi-symmetric manifold (R·R= 0) is Ricci semi-symmetric (R·S= 0).

b)(Open Problem)It is a long standing question whether these notions are equiv-alent for hypersurfaces of Euclidean spaces.

c) Ricci semi-symmetric hypersurfaces of Euclidean spaces (n >3), with positive scalar curvature are semi-symmetric.

d)Both properties are equivalent for hypersurfaces of Euclidean space En+1(n >

3), under the additional global condition of completness.

The class R3 of pseudo-symmetric manifolds (i.e. R·R andQ(g, R) are linearly dependent) arose:

I) during the study of totally umbilical submanifolds in semi-symmetric manifolds [4], [5], [6]:

Theorem A. Let Mn Mn+1 be a totally umbilical hypersurface. If Mn+1 is

semi-symmetric thenM is conformally flat or is a pseudo-symmetric space.

Theorem B. The hypersurface M ⊂ En+1, n 3, is pseudo-symmetric if and only if the shape operator has one of the following forms:

1) 0n;

2)λIn, λ6= 0;

3)λI1⊕0n−1, λ6= 0; 4)λIk⊕0n−k, λ6= 0, k >1;

5)λI1⊕µI1⊕0n−2, λµ6= 0; 6)λI1⊕µIn−1, λµ6= 0; 7)λIk⊕µIn−k, λµ6= 0, k >1.

II) during the study of geodesic and subgeodesic mappings:

Remark C.

a) Let ξ ∈ X(M). A diffeomorphismf : Vn = (M, g)7→ Vn = (M,g¯) is called

ξ− subgeodesic mapping if maps ξ− subgeodesics into ξ− subgeodesics, where ξ−

subgeodesics onM are given by the following equations:

d2xi

dt2 + Γ

i jk

dxk dt

dxj dt =a

dxi dt +bξ

i, ξi =gijξ

j, a, b∈ F(M).

(3)

∇XY =∇XY +ψ(X)Y +ψ(Y)X−g(X, Y)ξ, ψ∈ ∧1(M).

c)f is called nontrivial ifψi−ξi6= 0,∀i∈ {1, . . . n}.

d) There existsf geodesic mapping (i.e. ξ= 0 ) if and only if the Weyl formulae are satisfied

∇XY =∇XY +ψ(X)Y +ψ(Y)X.

e) The geodesic correspondence is special ifψij =f gij,where

ψij =ψi,j−ψiψj, f ∈ F(M).

Example.

LetVn= (M, g), Vn= (M,¯g) be geodesically related Riemann spaces, where one

considers the warped product [12]M = (a, b)×FM˜ of an open interval (a, b) of Rn

and of a Riemann space of constant sectional curvature ( ˜Mn−1,˜g).LetF : (a, b)7→R be a positive differentiable function. The geodesically related metrics are defined in the following manner [5]

Theorem C. [4]Let(M, g)be a pseudo-symmetric manifold admitting a nontriv-ial geodesic mappingf on(M,¯g). Then(M,g¯)is also a pseudo-symmetric space.

Remark D. We should point out that one can consider the general context of pseudo-Riemannian case.

Many spacetimes (Robertson-Walker, Schwarzchild, Einstein-de Sitter etc) are pseudo-symmetric and those which are not pseudo-symmetric verify certain condi-tions of pseudo-symmetric type [6].

(4)

2

Conharmonic semi-symmetric spaces

LetVn= (M, g) be a Riemann space,n≥3.The conharmonic curvature tensorCis

defined by

C(X, Y)Z=R(X, Y)Z− 1

n−2{(AX∧Y)Z+ (X∧AY)Z},

where A is the symmetric endomorphism of the tangent space at each point of the manifold corresponding to the Ricci tensorS, i.e.g(AX, Y) =S(X, Y).

Letξ∈ X(M).The conformal transformation

g7→g˜=e2ug, u∈ F(M), ∂u

∂xi =ξi=gijξ j

is called a conharmonic transformation ifξhk= 0,where

ξhk =ξh,k−ξhξk+12ξiξighk.

The conharmonic curvature tensor is invariant under these transformations. The conharmonic curvature tensor has been introduced by Y. Ishii and character-izes conformally flat spaces with vanishing scalar curvature, if it vanishes identically.

The spaceVn is called conharmonic semi-symmetric ifR·C= 0.

Our aim is to characterize conharmonic semi-symmetric spaces geodesically re-lated.

Theorem 2.1.LetVn= (M, g)andVn = (M, g), n≥3,be two nontrivial

geodesi-cally related Riemann spaces.

If Vn is C-semi-symmetric, then Vn and Vn are spaces with constant sectional

curvature or are special geodesically related.

Proof.Vn isC-semi-symmetric.

Then (R·C)h

ijkrm=C i

jkh;sm−C i

jkh;ms= 0.

Contracting this relation withgkr one gets

(2.1)

gkr(Rs

ikjRhsmr+RsimrRhsjk+RsjmrRhisk+

+Rs

kmrRhijs) +RsihjΨsm−ghmgkrRsikjΨsr+

+ΨimSjh−ΨisRsjmh+ ΨjsRsimh−gjhgkrΨskRsimr−

−ΨjsRsmih+ ΨisRsjmh+ ΨmsRjihs −f Rhijm−gjhΨisgsrSrm= 0,

wheref =gijΨij.

Summing the above equation with the same obtained interchanging the indicesh

andi, we obtain

(2.2)

ΨsmRihjs + ΨsmRshij−ghmgkrΨsrRsikj−ψsrgimgkrRshkj+

+SjhΨim+SijΨmh+ ΨjsRsimh+ ΨjsRshmi−

−gjhgkrΨksRsimr−gijgkrΨksRshmr−gjhΨisgsrSrm−

−gijΨhsSrm = 0.

Summing the relation (2.2) with the same equation obtained permuting the indicesj

withm, we have

(2.3) SjhΨim+SijΨhm−gjhΨisA

s

m+ShmΨij−gijΨshAsm+

(5)

After a contraction of (2.3) withgij, we get the equation

(2.4) (n+ 1)ΨhsAsm−ρΨhm−f Shm+ghmΨsrSsr−ΨsmAsh= 0,

whereSij=girAj

r, ρ=gijSij. From (2.4) we obtain

(2.5) ρf =nSijΨij.

The relations (2.5) and (2.3) lead to

(2.6) ΨshAsm=

Using (2.6), the relation (2.3) becomes

(f ghm−nΨhm)(nSij−ρgij) + (f gij−nΨij)(nShm−ρghm)+

+(f gjm−nΨjm)(nSih−ρgih) + (f gih−nΨih)(nSjm−ρgjm) = 0.

We obtain (Ψij−fngij)(Shm−nρghm) = 0.Hence the correspondence is special or

the spaceVn is Einstein. In the second case one has

Ψir−

f

ngir= 0 or Pijkh = 0,

whereP is the projective Weyl curvature tensor [9], [8].Vn being an Einstein space,

ifP = 0 then Vn becomes a space with constant curvature. Hence, Vn and Vn are

spaces with constant curvature, using the Beltrami theorem.✷

Theorem 2.2.LetVn= (M, g)andVn = (M, g), n≥3,be two nontrivial

geodesi-cally related Riemann spaces. IfVn is C-semi-symmetric, with irreducible curvature

tensor, thenVn andVn are spaces with constant sectional curvature.

Proof.IfVn andVn are two special geodesically related Riemannian spaces then

Rijkh=Rijkh+f(δihgjk−δikgjh), where Ψij =f gij.

The above relation leads to

gisR s

jkh+gjsR s ikh= 0

The spaceVn being with irreducible curvature tensor, then the system

(2.7) xisR

s

jkh+xjsR s ikh= 0

has an unique solution, abstraction a factor. Becausegij and gij are solutions of the

system (2.7) we obtaingij =e2ug

ij, whereuis a function with variablesx1, ..., xn.Vn

andVn being geodesically related, we have u= ct. and we obtain

(6)

The relation between the subgeodesic correspondence and the conformal related spaces leads to the

Theorem 2.3. Let Vn = (M, g) and Vn = (M, g), n ≥ 3, be two nontrivial ξ

-subgeodesically related Riemann spaces. IfVn is C-semi-symmetric, with irreducible

curvature tensor, thenVn andV˜n= (M,˜g=e2ug)are spaces with constant sectional

curvature.

Proof.Vn andVn being subgeodesically related, we have

¯

Because Vn and Vfn are conformally related, the Christoffel symbols are

trans-formed by

So,Vn andVfn are non-trivial geodesically related. Applying the previous theorem

for spacesVn andVfn,we obtain the conclusion. ✷

3

Pseudo-symmetric subgeodesically

related Riemann spaces

One can obtain certain conditions of pseudo-symmetric type for ξ−subgeodesically related spaces:

Proof.Using the Yano formulae, we get

(7)

Theorem 3.2. Let Vn = (M, g) and Vn = (M,g¯), n ≥ 3, be nontrivial ξ

-subgeodesically related Riemann spaces.

Let Vn= (M,¯g)be a pseudo-symmetric space such that

R·R=LQ(g, R),

where L is constant on the set U = {x∈ M |Z 6= 0 at x},Z being the concircular curvature tensor.

If F=f g+hg, f, h∈ F(M),then spaces are conformally related orL=hon U. Proof. Because F = f g +hg, using the previous theorem, we have R ·g =

Q(g, −hg).

The tensorE=−hg−Lgsatisfies on U the relation

E− 1 n(g

ijE

ij)g= 0.

This condition is equivalent [5] with

(L+h)

· g−1

n(g

ijg ij)g

¸

= 0

onU . ✷

Conjectures:

Let Vn = (M, g) and Vn = (M, g), n ≥ 3, be nontrivial geodesically or ξ

-subgeodesically related Riemann spaces.

If Vn is conharmonic pseudo-symmetric (i.e.R·C=LQ(g, C)) then

a)Vn is conharmonic pseudo-symmetric (i.e.R·C=LQ(g, C));

b) both spaces have constant sectional curvature.

References

[1] V. Balan, N. Brˆınzei,Einstein equations for(h, ν)-Berwald-Moor relativistic mod-els, Balkan J.Geom.Appl., 11 (2) (2006), 20-26.

[2] E. Boeckx, G. Calvaruso, When is the tangent sphere bundle semi-symmetric, Tohoku Math. J., (2) 56 (2004), 3, 357-366.

[3] M.T. Calapso, C. Udri¸ste, Isothermic surfaces as solutions of Calapso PDE, Balkan J. Geom. Appl., 13 (2008), 1, 20-26.

[4] F. Defever, R. Deszcz, A note on geodesic mappings of pseudo-symmetric Rie-mann manifolds,Coll. Math., LXII, 2 (1991), 313-319.

[5] R. Deszcz and M. Hotlo´s,Notes on pseudo-symmetric manifolds admitting special geodesic mappings, Soochow J. Math., 15 (1989), 19-27.

[6] R. Deszcz, M. Kucharski, On curvature properties of certain generalized Robertson-Walker spacetimes,Tsukuba J. Math., 23, 1 (1999), 111-130.

[7] I. Duca, C. Udri¸ste,Some inequalities satisfied by periodical solutions of multi-time Hamilton equations,Balkan J. Geom. Appl., 11 (2) (2006), 50-60.

(8)

[9] I.E. Hiric˘a, L. Nicolescu,On Weyl structures, Rend. Circolo Mat. Palermo, II, LIII (2004), 390-400.

[10] I. Kim, H. Park, H. Song,Ricci pseudo-symmetric real hypersurfaces in complex space forms, Nihonkai Math. J., 18, 1-2, (2007), 1-9.

[11] Z.I. Szabo,Structure theorems on Riemannian spaces satisfyingR(X, Y)·R= 0.

II. The local version.J. Diff. Geom., 17 (1982), 531-582; II. Global version. Geom. Dedicata, 19 (1985), 1, 65-108.

[12] L. Todjihounde,Dualistic structures on warped product manifolds, Diff. Geom.-Dynam.Syst., 8 (2006), 278-284.

[13] C. Udri¸ste, T. Oprea, H-convex Riemannian submanifolds, Balkan J.Geom.Appl., 13 (2) (2008), 112-119.

[14] M. Yawata, H. Hideko,On relations between certain tensors and semi-symmetric spaces, J. Pure Math., 22 (2005), 25-31.

Author’s address:

Iulia Elena Hiric˘a University of Bucharest

Faculty of Mathematics and Informatics Department of Geometry, 14 Academiei Str. RO-010014, Bucharest 1, Romania.

Referensi

Dokumen terkait

Puspita Analisis Faktor- Faktor yang Mempengar uhi Kebijakan Dividend Payout Ratio (Studi Kasus pada Perusahaan yang Terdaftar di Cash Ratio (CR) berpengaruh positif

Hasil penilaian gabungan antar pelaku dalam rantai pasok bawang merah dari Kabupaten Nganjuk ke Jakarta menunjukkan bahwa kriteria keseimbangan keuntungan pelaku rantai

[r]

Setelah diumumkannya Pemenang pengadaan ini, maka kepada Peser ta/ Penyedia bar ang/ jasa ber keber atan at as pengumuman ini dapat menyampaikan sanggahan secar a

[r]

705.000.000,- (Tujuh Ratus Lima Juta Rupiah) Pada Satker Balai Lalu Lintas Angkutan jalan, Sungai, Danau dan Penyeberangan Palu, maka dengan ini disampaikan pemenang

Kejaksaan adalah Lembaga Pemerintah yang melaksanakan kekuasaan Negara dibidang penuntutan serta kewenangan lain berdasarkan Undang-Undang oleh karena itu penulis

Pengawasan seperti itu juga menyebabkan independensi advokat dalam menja- lankan tugasnya menjadi tidak bisa dijaga, terutama pada penanganan perkara yang