• Tidak ada hasil yang ditemukan

Pengenalan Gerakan Tangan Manusia Menggunakan Deep Neural Network

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pengenalan Gerakan Tangan Manusia Menggunakan Deep Neural Network"

Copied!
2
0
0

Teks penuh

(1)

57

DAFTAR PUSTAKA

Alex, D.S. & Wahi, A. 2014. BFSD: Background subtraction frame difference algorithm for moving object detection and extraction. Journal of Theoretical & Applied Information Technology 60(3): 623-628.

Amirani, M.C., Toorani, M. & Beheshti, A.A. 2008. A new approach to content-based file type detection. Proceedings of the 13th IEEE Symposium on Computers and Communications (ISCC’08), pp. 1103-1108.

Bengio, Y. 2009. Learning Deep Architectures for AI. Now: Netherland.

Bradski, G. & Kaehler, A. 2008. Learning OpenCV. O’Relly Media, Inc: Sebastopol. Chairunnisa, T. 2015. Pengenalan gerakan tangan manusia untuk interaksi

manusia-komputer. Skripsi. Universitas Sumatera Utara.

Deng, L. & Yu, D. 2014. Deep Learning Methods and Applications. 978-1-60198-814-0. Now: Netherland.

Dunteman, G.H. 1989. Principal Components Analysis. SAGE: Thousand Oaks.

Erhan, D., Szegedy, C., Toshev, A. & Anguelov, D. 2014. Scalable object detection using deep neural networks. IEEE Conference on Computer Vision and Pattern Recognition, pp. 2155-2162.

Haykin, S. 1999. Neural Networks: A Comprehensive Foundation. 2nd Edition. Prentice Hall: Upper Saddle River.

Heaton, J. 2015. Deep Learning and Neural Networks. Artificial Intelligence for Humans. Volume 3. Heaton Research, Inc.: Chesterfield.

Ivakhnenko, A. G. 1971. Polynomial theory of complex system. IEEE Transactions on Systems, Man, and Cybernetics 1(4): 364-378.

Jolliffe, I.T. 2002. Principal Component Analysis. Springer: London.

Kang, J. & Hayes, M.H. 2015. Face recognition for vehicle personalization with near-IR frame differencing and pose clustering. IEEE International Conference on Consumer Electronics (ICCE), pp. 455-456.

Malepati, H. 2010. Digital Media Processing. 978-1-85617-678-1. Elsevier: Burlington.

Mohri, M., Rostamizadeh, A. & Talwalkar, A. 2012. Foundations of Machine Learning. The MIT Press: Cambridge.

(2)

58

Molchanov, P., Gupta, S., Kim, K. & Kautz, J. 2015. Hand gesture recognition with 3D convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1-7.

Negnevitsky, M. 2005. Artificial Intelligence: A Guide to Intelligent Systems. 2nd Edition. Pearson Education Limited: Upper Saddle River.

Neto, P., Pereira, D., Pires, J.N. & Moreira, A.P. 2013. Real-time and continuous hand gesture spotting: an approach based on artificial neural networks. IEEE International Conference on Robotic and Automation (ICRA), pp. 178-183.

Ramjan, M.R., Sandip, R.M., Uttam, P.S. & Srimant, W.S. 2014. Dynamic hand gesture recognition and detection for real time using human computer interaction. International Journal of Advance Research in Computer Science and Management Studies (IJARCSMS) 2(3): 425-430.

Safinaz, S. 2014. An efficient algorithm for image scaling with high boost filtering. International Journal of Scientific and Research Publications 4(5): 1-9.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lilicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T. & Hassabis, D. 2016. Mastering the game of go with deep neural networks and tree search. Nature, January 529: 484-489.

Tang, A., Lu, K., Wang, Y., Huang, J. & Li, H. 2013. A real-time hand posture recognition system using deep neural networks. ACM Transactions on Intelligent Systems and Technology 9(4): 39:1-21.

Vision For Intelligent Vehicles and Appilications Dataset. http://cvrr.ucsd.edu/vivachallenge/index.php/hands/hand-gestures/. (diakses 14 Mei 2016)

Referensi

Dokumen terkait

Dalam penelitian ini, citra isyarat tangan diambil menggunakan kamera kemudian akan dilakukan pengenalan isyarat tangan dan di proses menggunakan single board computer

Hasil klasifikasi yang telah ditetapkan oleh MYO Gesture Control Armband sendiri adalah menggenggam, menekan atau merenggangkan jari, dan melambaikan jari ke kiri dan

"Chapter 8 Hand Gesture Recognition for Real-Time Game Play Using Background Elimination and Deep Convolution Neural Network", Springer Science and Business Media LLC, 2022 Crossref

Static gestures are usually described in terms of hand shapes, and dynamic gestures are generally described according to hand movements [4].The gesture recognition system we have

Centroid Tracking Based Dynamic Hand Gesture Recognition using Discrete Hidden Markov Models.. HMM-based Gesture Recognition System Using Kinect Sensor for Improvised Human-Computer

Hand Gesture Speed Recognition and Classification using IR-UWB Radar Sensor ABSTRACT Human-computer interaction HCI is a term that refers to a set of methods and techniques that