• Tidak ada hasil yang ditemukan

PEMBUATAN DAN UJI FUNGSI REAKTOR GELASI SISTEM PRESOLIDIFIKASI DI FASA GAS

N/A
N/A
Protected

Academic year: 2021

Membagikan "PEMBUATAN DAN UJI FUNGSI REAKTOR GELASI SISTEM PRESOLIDIFIKASI DI FASA GAS"

Copied!
9
0
0

Teks penuh

(1)

PEMBUATAN DAN UJI FUNGSI REAKTOR GELASI SISTEM

PRESOLIDIFIKASI DI FASA GAS

Sutarni1, Triyono1, Sri Rinanti S1, Supardjono Mudjiman1 Tenesa Mageti2, Bangun Wasito2

1)Pusat Teknologi Akselerator danProses Bahan - BATAN

2)SekolahTinggi Teknologi Nuklir – BATAN

Jl. Babarsari Kotak Pos 6101 YKBB Yogyakarta Email :ptapb@batan.go.id

ABSTRAK

PEMBUATAN DAN UJI FUNGSI REAKTOR GELASI SISTEM PRESOLIDIFIKASI DI FASA GAS. Seperangkat reaktor gelasi sistem presolidifikasi telah selesai dibuat dan diuji coba. Alat tersebut terdiri dari kolom umpan, pompa peristaltik, alat penggerak /vibrator, peredam pulsasi, alat penetes/nozzle, kolom gelasi, pompa vakum, manometer, flowmeter digital, flowcontrol regulator, dan scrubber. Alat ini dilengkapi dengan distributor udara dan amonia yang berfungsi sebagai pengatur reaksi presolidifikasi gel ADU(Amonium Diuranat). Secara teori diameter tetesan yang dihasilkan dipengaruhi oleh diameter nozzle, kecepatan alir umpan, frekuensi vibrasi, densitas, serta viskositas umpan. Kebulatan gel dipengaruhi oleh kecepatan alir udara dan gas amonia. Uji fungsi alat tersebut menunjukkan bahwa proses gelasi berlangsung relatif baik dengan kondisi umpan: kadar U dalam larutan uranil nitrat 637,84 g U/l dan keasaman 1,2 N; viskositas 123,2 cpoise dan densitas 1,221 g/ml. Kondisi operasi: diameter nozzle 0,3 mm; kecepatan alir umpan 1,67 ml/menit; frekuensi vibrasi 150 Hz; kecepatan alir udara 0,5 l/menit dan kecepatan alir gas amonia 0-1 l/menit. Kondisi tersebut menghasilkan gel dengan diameter 2 mm dan sperisitas 0,822174. Kata kunci : uji fungsi, reaktor gelasi, presolidifikasi

ABSTRACT

CONSTRUCTION AND PERFORMANCE TEST OF A GELATION REACTOR USING PRESOLIDIFICATION SYSTEM IN THE GAS PHASE. A set of gelation reactor using pre solidification system in the gas phase has been constructed and tested it’s performance. The installation consist of feedstock column, peristaltic pump, vibrator, pulse dampener, nozzle, gelation column, vacuum pump, manometer, digital flow meter, regulator flowcontrol, and scrubber This unit was completed with air and amonia gas distributors which control pre solidification reaction of ammonium diuranat (ADU) gel. Theoritically, the droplets diameter is effected by nozzle diameter, feed flow rate, vibration frequency, density, and viscosity of the feed. Sphericity of the produced gel is influenced by the air and ammonia gas flow rate. The performance test of the installed unit showed that the gelation process run suitably. The feed condition for the operation of the test were: the uranium content in uranyl nitrate solution of 637.84 g U/l, acidity of 1.2 N, viscosity of 123.2 cpoise, and density of 1.221 g/ml. Operating conditions during the test were nozzle diameter of 0.3 mm, feed flow rate of 1.67 ml/min, vibration frequency of 150 Hz, air flow rate of 0.5 l/min and ammonia gas flow rate of 0-1 l/min. Under these conditions resulted in gel diameter diameter of 2 mm with sphericity of 0.822174.

Keywords : performance test, gelation reactor, presolidification

PENDAHULUAN

ewasa ini telah dikembangkan berbagai macam reaktor nuklir seperti HTR (High

Temperature Reactor), PWR (Pressurised Water Reactor), PHWR (Pressurized Heavy Water Reactor) dan lain-lain. Bahan bakar yang

digunakan berupa kernel berlapis untuk HTR atau pelet sinter dari serbuk UO2 untuk jenis yang lain.

Proses pembuatan kernel bisa diperoleh dengan proses kering yang menggunakan bahan awal berupa serbuk, sedang pada proses basah menggunakan bahan awal/umpan larutan uranyl nitrate(UN). Larutan UN yang digunakan adalah larutan uranil nitrat yang mempunyai konsentrasi

uranium tinggi dan keasaman rendah (ADUN/acid

deficient uranyl nitrate). Proses pembuatan kernel

meliputi pembuatan umpan/sol, proses gelasi ke media organik, pencucian, pengeringan dan pembuatan kernel UO2 yaitu dengan proses

kalsinasi, reduksi dan proses sintering. Dalam rangka meningkatkan kualitas dan kapasitas kernel UO2 maka perlu penyempurnaan dari segi proses

maupun alat yang digunakan. Kondisi proses pembuatan gel telah dilakukan baik kondisi umpan (konsentrasi U, jumlah aditif, viskositas, densitas), pencucian, pengeringan sampai proses reduksi. Proses pembuatan gel U dimulai/diawali dari proses penetesan sol melewati nozzle ke reaktor gelasi. Sol yang jatuh ke larutan ammonia sering terjadi

(2)

perubahan bentuk, untuk menghindari perubahan bentuk bola sol yang jatuh ke larutan ammonia maka diperlukan reaksi awal (presolidifikasi). Sebagian besar kerusakan bulatan kernel disebabkan oleh perubahan bentuk/deformasi pada tahap pembentukan tetesan bola dan partikel ADU (ammonium diuranat ) basah (presolidifikasi )(1,2,3,4,5). Presolidifikasi adalah suatu proses

pengendapan antara larutan uranil nitrat (UN) dengan gas ammonia membentuk ADU pada lapisan terluar. Pada saat sol menetes melewati

nozzle dan tetesan tersebut dilewatkan lapisan

udara maka pada waktu tersebut terjadi tetesan sol bentuk bola sebagai hasil tegangan muka(4,5).

Microsphere (bulatan sol) ini selanjutnya melewati

lapisan ammonia, dimana reaksi kimia antara ammonia dengan sol uranium terjadi dan membentuk ADU pada lapisan terluar. Bulatan sol yang telah terlapisi bagian luar dengan ADU tersebut kemudian jatuh ke reaktor gelasi yang berisi larutan ammonia, sehingga dimungkinkan mereka tetap bisa menjaga kebolaannya. Pada proses pembuatan gel U(1,7) didalam kolom gelasi,

ukuran/diameter gel U yang dihasilkan akan sangat tergantung dengan alat penetes /Orifice, tekanan/kecepatan alir dan tinggi kolom gelasi yang digunakan. Namun kesempurnaan bentuk akan sangat ditentukan oleh sifat-sifat dari umpan ( densitas, viskositas, kadar UN )dan aliran gas NH3.

Kesempurnaan bentuk dan ukuran kernel terjadi pada saat penetesan sol yang dialirkan melewati orifice/lubang kecil menuju media/fluida yang tidak dapat campur. Dimana sol akan mempertahankan bentuk kebolaanya pada saat keluar orifice karena sol mempunyai viskositas dan tegangan muka tertentu. Untuk mengetahui ukuran/diameter kernel dapat diprediksi dengan menggunakan rumus (1,3,7):

ρ

πγ

Δ = g D F V o s (1) Vs = volume tetesan/gel Δρ = Δ densitas 2 fluida Do = diameter orifice

Bila dilihat dari hubungan kecepatan alir sol dan tekanan umpan dengan diameter hasil :

6 3 f D Q=

π

(2) Q = kecepatan alir umpan/sol

D = diameter tetesan f = frequensi vibrasi

Dari dua hubungan diatas bisa diprediksi : diameter gel/volume tetesan adalah merupakan hasil gel yang diameternya tergantung dari diameter

orifice dan kecepatan alir cairannya. Bila

menginginkan diameter kernel besar maka kita harus memperbesar Do (diameter orifice) dan

tekanan atau kecepatan alir cairan begitu pula sebaliknya.

Reaksi pada proses pembuatan gel (7) : Proses pelarutan

3U3O8+20HNO3→9UO2(NO3)2=10H2O)+NO (3)

Prenetralisasi

2UO2(NO3)2 + NH4OH → 2UO2(NO3)1,5(OH)0,5 +

NH4NO3 (4)

Pembentukan gel • Presolidifikasi

2UO2(NO3)1,5(OH)0,5 (sol U ) + NH3 → lap.film

UO3.xNH3.yH2O (s) + ADUN+ NH4NO3/NH3 +

H2O (5)

atau

2UO2(NO3)1,5(OH)0,5 (sol U) + 2NH3

→lap.film(NH4)U2O7 (s) + ADUN+ NH4NO3/NH3)

+ H2O (6)

• Solidifikasi:

Lap. Film ADU/ 2UO2(NO3)1,5(OH)0,5 + 2NH4OH

→ UO3.xNH3.yH2O (s) + NH4NO3 + H2O (7)

atau

Lap.film ADU/2UO2(NO3)1,5(OH)0,5 + 2NH4OH→

(NH4)U2O7 (s) +NH4NO3

(

aq

) +

H2O (8)

Penelitian ini dimaksudkan untuk melihat profil seperangkat alat kolom umpan gelasi. Profil alat pembuat kernel tersebut dapat digunakan untuk menghitung/mengetahui

kemampuan/kesempurnaan pembentukan gel serta efisiensi/jumlah kernel yang dihasilkan. Agar seperangkat alat gelasi bisa berfungsi secara optimal, menurut (7) gel hasil proses gelasi

mempunyai ukuran/diameter 2,0 - 2,145 mm dengan umpan yang digunakan mempunyai viskositas 70 – 80 cSt (5) atau 10-500cP(10oC) (3).

Setelah direduksi/sinter kernel UO2 mempunyai

spesifikasi : diameter 0,5 – 0,450 mm, densitas 10,4 g/cm3, sphericity <1,2 (Dmax/Dmin) dan O/U <

2,01. Bila harga/nilai gel hasil percobaan skala laboratorium mendekati nilai teoritis maka dianggap unjuk kerja kolom gelasi sesuai kebutuhan, hasil inilah yang merupakan tujuan penelitian ini. Dari keseluruhan proses tersebut diatas dapat digambarkan dalam diagram proses pembuatan kernel seperti ditunjukkan pada Gambar 1.

(3)

Gambar 1. Proses pembuatan kernel UO2

(Eksternal)

TATA KERJA

Bahan Penelitian

Larutan ADUN (Acid deficient Uranyl

nitrate), NH4OH, PVA (Polivinil Alkohol), THFA

(Tetra Hidro Furfural Alkohol), Gas amonia (NH3)

Alat

Kolom gelasi, Peralatan gelas, pH meter digital, dial caliper (skeitmate), pompa peristaltik, alat penggerak/vibrator, peredam pulsasi, alat penetes/nozzle, pompa vakum, manometer,

flowmeter digital, flowcontrol regulator, scrubber.

distributor udara /ammonia dan Mikroskop digital/dino lite (PTBN)

Cara Kerja

1. Pembuatan dan uji fungsi reaktor

gelasi sistem presolidifikasi

Setelah mengidentifikasi alat per unit dan memodifikasi kolom gelasi, selanjutnya menginstall seperangkat alat gelasi sistem presolidifikasi seperti Gambar 2. berikut :

Gambar 2. Rancangan Seperangkat Reaktor Gelasi Sistem Presolidifikasi di Fasa Gas Setelah reaktor terinstal, dilakukan Uji

fungsi yang bertujuan untuk memastikan alat dapat berjalan dengan baik selanjutnya proses penelitian dengan variabel kecepatan alir gas NH3 dan

kecepatan alir umpan. Pengukuran diameter gel dengan dial caliper/skeitmate dan analisa kebulatan/sperisitas dengan menggunakan mikroskop digital “Dino lite”(PTBN)

2. Pembuatan Umpan Gelasi (Larutan

Sol)

Larutan uranil nitrat hasil proses ekstraksi dan pemekatan mempunyai kadar uranium sebesar 637,84 gU/L dan keasaman sebesar 1,26 N (ADUN). Sol diperoleh dengan mencampur ADUN, larutan PVA dan THFA pada suhu 80 oC.

(4)

Hasil pencampuran tersebut diharapkan mempunyai densitas 1,221 g/mL dan viskositas 70-100 cpoise yang digunakan sebagai umpan proses gelasi. 3. Proses gelasi

Dalam proses gelasi terjadi dua proses yaitu presolidifikasi diatas kolom gelasi karena bereaksi dengan gas amonia dan reaksi gelasi dikolom gelasi yang berisi larutan NH4OH 7N. Reaksi presolidifikasi dan solidifikasi dari butir-butir gel yang memadat diakibatkan oleh reaksi kimia antara butiran gel dan molekul amonia.

HASIL DAN PEMBAHASAN

A. Pembuatan dan Uji Fungsi

Seperangkat Reaktor Gelasi Sistem

Presolidifikasi di Fase Gas

1. Pembuatan rangkaian alat gelasi

Hasil pembuatan seperangkat reaktor gelasi sistem presolidifikasi dapat dilihat pada Gambar 3. di bawah ini:

Gambar 3. Seperangkat reaktor gelasi

Seperangkat reaktor gelasi tersebut terdiri dari beberapa unit :

a. Pompa peristaltik

Pada penelitian ini digunakan pompa peristaltik “IKA-Schlauch Pumpe” dengan 6 roller. Pompa berfungsi sebagai pengatur kecepatan tetesan dengan mengatur kecepatan alir pompa(rpm), semakin besar rpm pompa semakin cepat tetesan yang dihasilkan. Kelemahan peristaltik menyebabkan adanya pulsasi yang menyebabkan tetesan tidak stabil.

Gambar 4. Pompa peristaltik

b. Alat penggerak/vibrator

Gambar 5. Vibrator

Gambar 6. Batang dan pengait

Alat penggerak nozle terdiri dari motor vibrator ( Gambar 5 ) serta batang dan pengait (Gambar 6.). Vibrator berfungsi untuk membuat tetesan sol jatuh secara kontinyu dengan diameter tetesan lebih uniform atau merata. Ketika suatu getaran kontinyu diberikan kepada nozzle yang dialiri sol umpan dengan kecepatan alir tertentu, maka tetesan-tetesan dengan diameter yang lebih seragam akan jatuh dari nozzle. Pada penelitian ini digunakan frekuensi getaran 150 Hz.

c. Peredam Pulsasi

Telah dijelaskan di atas bahwa pompa peristaltik menghasilkan pulsasi aliran yang menyebabkan tekanan cairan tidak merata dan membuat tetesan tidak stabil. Akibatnya ukuran diameter gel yang dihasilkan tidak homogen. Cara lain untuk mengurangi pulsasi selain menambah jumlah roller pada pompa peristaltik juga dengan membuat tandon cairan (feedstock) yang dipasang pada selang output pompa (Gambar 7).

(5)

Gambar 8. Orifice (nozzle) d. Orifice (nozzle)

Tetesan sol berbentuk bola akan terjadi setelah melewati suatu orifice (Gambar 6 dan 8). Diameter orifice mempengaruhi ukuran butir gel. Semakin besar diameter orifice semakin besar ukuran gel yang terbentuk. Untuk menghasilkan ukuran gel ADU yang optimal (diameter 2,0-2,145 mm), diameter orifice yang digunakan adalah 0.2 mm sampai 3 mm dan pada penelitian ini digunakan diameter orifice 0,3 mm. Selain itu panjang nozzle juga harus diperhatikan. Sebaiknya sebuah nozzle dibuat dari suatu pipa lurus dengan panjang berkisar 0,1-2 cm. Bila panjang nozzle melebihi 2 cm, sol umpan akan membutuhkan tekanan yang lebih besar untuk dapat menetes dari ujung nozzle. Sebaliknya bila panjang nozzle kurang dari 0,1 cm sol umpan mungkin tidak akan menetes dari ujung nozzle karena terhambat oleh tekanan udara dari bawah nozle dan gaya tarik menarik sol itu sendiri (3).

e. Kolom gelasi

Kolom gelasi berfungsi sebagai tempat terjadinya reaksi presolidifikasi dan solidifikasi seperti terlihat pada gambar 9 dan 10 :

Gambar 9. Kolom gelasi bagian atas

Gambar 10. Kolom gelasi bagian bawah

Kolom gelasi dibuat dari bahan kaca berbentuk tabung dengan panjang 1,5 m dan diameter 4 cm. Bagian atas kolom didesain seperti Gambar 9 dilengkapi distribusi udara dan gas amonia. Udara mencegah supaya reaksi presolidifikasi tidak terjadi di lubang nozzle dan membuat tetesan berbentuk bola. Begitu pula gas amonia yang masuk dengan kecepatan tertentu akan membentuk reaksi kimia di permukaan butir-butir tetesan dan sisa gas amonia dikeluarkan dari kolom melalui saluran dengan di vakum.

Kolom gelasi berisi larutan NH4OH 7 N

sampai batas overflow. Pada kolom gelasi terjadi reaksi solidifikasi dari butir-butir gel yang memadat selama gerak jatuh di dalam larutan medium yang diakibatkan oleh reaksi kimia antara butiran gel dan molekul amonia. Bagian bawah kolom diberi kran seperti pada Gambar 10 untuk mengeluarkan gel hasil proses.

f. Unit pelengkap

Dalam pengoperasian reaktor gelasi diperlukan unit pelengkap yang berfungsi sebagai pengendali proses gelasi, seperti terlihat pada Gambar 11, 12, 13 dan Gambar 14 :

Gambar 11. Pompa vakum

Gambar 12. Manometer

(6)

Gambar 14. Flow kontrol regulator

Pompa vakum berfungsi untuk mengalirkan kebutuhan udara(Gambar 11). Manometer dan flowmeter digital berfungsi untuk mengukur debit gas amonia dan udara scrub(

Gambar 12 dan 13). Flowcontrol regulator

berfungsi untuk mengatur debit gas amonia yang diinginkan ( Gambar 14).

g. Scrub

Pada proses presolidifikasi terdapat sisa gas NH3, untuk itu perlu dikendalikan dengan

menggunakan scrubber, yang terdiri dari kolom dan penampung seperti terlihat pada Gambar 15 dan 16

Gambar 15. Kolom scrubber

Gambar 16. Drum penampung

Scrubber berfungsi untuk menghisap

sisa-sisa gas amonia di antara orifice dan kolom gelasi. Mengingat gas amonia mudah larut dalam air maka

scrubber yang digunakan adalah air/H2O yang

ditampung di drum penampung.

2. Uji fungsi instalasi reaktor gelasi

Uji fungsi seperangkat alat gelasi bertujuan untuk memastikan alat dapat berjalan dengan baik. Setelah uji fungsi dengan larutan PVA, selanjutnya alat digunakan untuk proses

gelasi. Dalam pelaksanaan penelitian kondisi yang tetap yaitu frequensi vibrator 150 Hz, nozle panjang 1,5 cm dan diameter sekitar 0,3 mm serta kecepatan udara 0,5 L/menit. Sedang kondisi umpan larutan ADUN dengan konsentrasi U 637,8 g/l, keasaman 1,26 N. Larutan sol (ADUN, PVA dan THFA) dengan densitas 1,2 g/ml dan viskositas 123,2 cpoise. Densitas sol dalam penelitian ini tidak masuk dalam rentang densitas yang disyaratkan. Namun nilai densitas sol pada penelitian ini tidak banyak menyimpang dari persyaratan sehingga sol umpan masih bisa digunakan untuk proses gelasi.

B. Proses Gelasi dan Hasil Pengamatan

Gel ADU

1. Pengaruh kecepatan alir umpan terhadap pembentukan gel ADU

Berikut adalah gambar gel ADU hasil proses gelasi dengan variasi kecepatan alir. Umpan ( kec.alir gas NH3=0,1-1 L/mnt ) :

Gambar 17. Gel ADU hasil variasi kecepatan alir umpan; (a) pada 1,5 ml/mnt, (b) pada 1,67 ml/mnt, (c) pada 1,93 ml/mnt, dan (d) pada 2,67 ml/mnt

Tabel 1. menunjukkan bahwa semakin besar rpm pompa peristaltik, maka semakin kecil waktu alir umpan ( volume tetap 15 ml) yang diperlukan begitu juga waktu untuk menghasilkan 20 tetes gel, hal ini berarti kecepatan alir umpan semakin besar. Jika dilihat dari diameter gel. semakin besar kecepatan alir umpan semakin besar diameter gel yang dihasilkan. Hal ini sesuai dengan persamaan dibawah, tentang hubungan antara diameter gel, kecepatan alir umpan dan frekuensi vibrasi dari persamaan 2 :

6

3

f

D

Q

=

π

(10) Q = kecepatan alir umpan/sol

D = diameter tetesan f = frequensi vibrasi

(7)

Tabel 1. Data pengamatan hasil proses gelasi dengan variasi kecepatan alir sol umpan. Freq.vibrator 150 Hz, nozle 1,5 cm dan d nozle 0,3 mm

Parameter Nilai Kec. pompa peristaltik(rpm) 10 12,5 15 22,5

Waktu alir umpan 15cc (menit) 9,96 8,98 7,78 5,62 Kecepatan alir (ml/mnt) 1,5 1,67 1,93 2,67 Waktu untuk 20 tetes (detik) 9 7 6 5

Diameter gel (mm) 1,9 2 2,1 2,3

Semakin besar kecepatan alir umpan dengan frekuensi vibrasi dan diameter orifice dibuat tetap, diameter tetesan yang keluar semakin besar. Untuk kecepatan alir umpan 1,67 ml/mnt menghasilkan gel dengan diameter sesuai persyaratan yaitu 2 mm, hasil ini digunakan sebagai standar proses gelasi dengan variasi kecepatan alir gas amonia. Sifat fisik yang lain dari gel ADU dapat dilihat pada Gambar 17. Ada sebagian gel yang berukuran tidak seragam, hal ini disebabkan oleh pulsasi atau tekanan yang tidak stabil dari pompa peristaltik.

2. Pengaruh penambahan aliran udara dan variasi kecepatan alir gas amonia terhadap pembentukan gel ADU

Berikut adalah gambar bentuk gel ADU hasil proses gelasi tanpa menggunakan dan menggunakan udara :

Gambar 18. (a) Gel ADU hasil proses dengan tanpa menggunakan udara dan gas, (b) Gel ADU hasil proses menggunakan udara dan berikut adalah gambar bentuk gel ADU hasil proses gelasi dengan variasi gas amonia:

Gambar 19. Gel ADU hasil variasi kecepatan alir gas. (a) Pada 0,1 - 1 L/mnt, (b) Pada 1 - 2 L/mnt, dan (c) Pada >2 L/mnt

Tabel 2. menunjukkan bahwa terdapat perbedaan yang mencolok pada kebulatan gel ADU hasil proses gelasi dengan menggunakan gas amonia dan yang tidak menggunakan gas amonia. Gel ADU hasil proses gelasi yang tidak menggunakan gas amonia nilai sirkularitas dan speresitasnya tidak dilakukan pengukuran karena gel pipih/gepeng. Dapat diamati pula pada Gambar 18 bahwa bentuk gel ADU terlihat bulat tetapi pipih, berbeda dengan Gambar 19 yang sudah membentuk bola. Hal ini sesuai dengan teori yang ada bahwa gas amonia sangat berpengaruh terhadap pembentukan gel ADU yaitu dalam reaksi presolidifikasi.

Tabel 2. Hubungan antara kecepatan alir gas NH3

terhadap sperisitas. Kondisi operasi: konsent U di sol 200 g/l, viskositas 123,2 cpoise. Freq. vibrator 150 Hz, Lnozle 1,5 cm dan d nozle 0,3 mm rate udara rate gas NH3 Waktu jatuh/tetes dlm medium

Kebulatan gel ADU Sirkularitas Sperisitas (L/mnt)

0 0 13 detik pipih pipih

0,5 0 13 detik pipih pipih

0,5 0,1 - 1 10 detik 0,877625 0,822174 0,5 1 - 2 9 detik 0,826167 0,750934 0,5 >2 7 detik 0,8125 0,732378 Berdasarkan tabel 2. selain kebulatan, parameter yang dapat diamati adalah waktu jatuh setiap tetes dalam larutan medium. Semakin besar gas amonia yang diberikan kepada tetesan, semakin kecil waktu tetesan untuk melewati medium. Hal ini menunjukkan bahwa tebal lapisan film ADU yang terbentuk saat reaksi presoldifikasi tergantung pada jumlah gas amonia yang dialirkan sehingga densitas awal gel meningkat. Akibatnya, semakin besar densitas gel hasil reaksi presolidifikasi, semakin cepat gel melewati medium. Nilai kebulatan gel ADU yang paling baik atau mendekati 1 adalah gel ADU hasil proses gelasi menggunakan kecepatan alir gas amonia 0,1 - 1 L/mnt dengan nilai sirkularitas 0,877625 dan sperisitas 0,822174. Semakin besar kecepatan alir gas amonia, bentuk gel semakin tidak bulat karena desain distributor gas amonia pada kolom gelasi hanya mampu mendistribusikan aliran gas dari satu sisi. Akibatnya, tetesan menjadi rusak saat kecepatan aliran gasnya besar. Hal ini dapat dihindari dengan mendesain distributor udara dan gas amonia dengan lebih baik agar distribusi merata ke semua bagian permukaan tetesan.

(8)

KESIMPULAN

Telah dilakukan pembuatan dan uji fungsi reaktor gelasi sistem presolidifikasi di fasa gas. Reaktor gelasi dilengkapi dengan distributor udara dan amonia yang berfungsi sebagai pengatur reaksi presolidifikasi ADU( amonium di uranat) dan beberapa unit pendukung yaitu kolom umpan, pompa peristaltik, alat penggerak /vibrator, peredam pulsasi, alat penetes/nozzle, pompa vakum, manometer, flowmeter digital, flowcontrol regulator, dan scrubber. Secara teori diameter tetesan yang dihasilkan dipengaruhi oleh diameter nozzle, kecepatan alir umpan, frekuensi vibrasi, densitas, serta viskositas umpan. Kebulatan gel dipengaruhi oleh kecepatan alir udara dan gas amonia. Uji fungsi alat tersebut menunjukkan bahwa proses gelasi berlangsung relatif baik dengan kondisi umpan: kadar U dalam larutan uranil nitrat 637,84 g U/l dan keasaman 1,2 N; viskositas 123,2 cpoise dan densitas 1,221 g/ml. Kondisi operasi : diameter nozzle 0,3 mm; kecepatan alir umpan 1,67 ml/menit; frekuensi vibrasi 150 Hz; kecepatan alir udara 0,5 l/menit dan kecepatan alir gas amonia 0-1 l/menit. Kondisi tersebut menghasilkan gel dengan diameter 2 mm dan sperisitas 0,822174.

DAFTAR PUTAKA

1. MATTHEWS RB, SWANSON L; “ Fabrication Of Large ( Th,U ))2 Microspheres” Nuclear research Establishment, Pinawa, Man, Canada, vol.58 No.2 (1979)

2. MULLER A.;” Establishment Of The Technology To Manufacture Uranium Dioxide Kernels For PBMR Fuel “ PBMR fuel devision, Proceedings HTR2006, October 1-4, 2006, Johannesburg, south Africa. B00000070 3. OKUBO KAZUTOSHI, “Dropping Nozzle

Device for Recovering dropping undiluted solution, device for supplying dropping undiluted solution, device for solidiflying surface of droplet, devivice for circulating aqueous ammonia solution, and apparatus for producing ammonium deuterouranate particles”, European Patent Aplication, EP 1 686 094 A1, 15 October 2004.

4. KUMAR N, SHARMA R.K, GANATRA VR, “Studies Of The Preparation Of Thoria-Urania Microspheres Using An Internal Gelation Process” Bhabha Atomic Research Centre, Fuel Chemistry Division Trombay, Bombay 400 085, India, vol.96, Nov. 1991

5. KYUNG-CHAI JEONG, “ adu Compound Particle Preparation for HTGR Nuclear Fuel in Korea” HTGR Fuel Development Division,Korea, 2007

6. HAAS PA, BEGOVICH JM, Chemical Flowsheet Conditions For Preparing Urania Spheres By Internal Gelation, ORNL/TM-6850 D.St Category UC-7 ORNL Oak Ridge, Tennessee 37830 MATTHEWS RB, SWANSON L; “ Fabrication Of Large (Th,U)O2 Microspheres” Nuclear research

Establishment, Pinawa, Man, Canada, vol.58 No.2 (1979)

7. MULLER A.;” Establishment Of The Technology To Manufacture Uranium Dioxide Kernels For PBMR Fuel “ PBMR fuel devision, Proceedings HTR2006, October 1-4, 2006, Johannesburg, south Africa. B00000070

TANYAJAWAB

Anung Pujiyanto

− Apa perbedaan bahan bakar Uranium yang dikembangkan oleh PTAPB dengan PTBN Serpong?

Sutarni

• Gel U digunakan untuk HTR, PTAPB

kerjasama dengan PTBN dalam penelitian bahan bakar kernel U. Teknologi dari PTAPB yang telah diperoleh selanjutnya ditransfer ke PTBN dan untuk proses produksi dilakukan oleh PTBN. PTBN saat ini memproduksi serbuk U untuk bahan

bakar PWR (pellet UO2)

Sunardjo

− Hasil yang diperoleh apakah sudah sesuai dengan yang diharapkan, jika belum bagaimana berusaha selanjutnya?

Sutarni

Spesifikasi UO2 sinter D = 0,5 mm,

sphericity < 1,2 dalam penelitian belum dilakukan sampai proses sintering, namun alat tersebut telah bisa berfungsi dengan baik. Untuk lebih sempurna diperlukan alat ukur kecepatan aliran umpan karena kecepatan alir berhubungan dengan

diameter gel, sesuai rumus 6

3

f D

Q

dan juga perlu penyempurnaan design distributor

gas NH3

Herlan S.

− Metode yang paling efektif untuk meningkatkan spheritas selain teknik tetes?

(9)

Sutarni

• Teknik tetes untuk membuat bahan bakar

bentuk bola dengan diameter kernel ± 0,5 mm, sedang spheritas bisa ditingkatkan dengan membuat lapisan film ADU pada gel

sehingga gel tidak mengalami kerusakan

pada saat jatuh dikolom yang berisi NH3.

Sistem membuat lapisan film ADU pada butiran (gel U) disebut presolidifikasi

Gambar

Gambar 1. Proses pembuatan kernel UO 2
Gambar 3. Seperangkat reaktor gelasi
Gambar 8. Orifice (nozzle)  d.  Orifice (nozzle)
Gambar 12 dan 13).  Flowcontrol regulator  berfungsi untuk mengatur debit gas amonia yang  diinginkan ( Gambar 14)
+2

Referensi

Dokumen terkait

Peranan Unit Pengelola Keuangan dan Usaha (UPKu) Panca Usaha dalam pemberdayaan ekonomi masyarakat miskin di desa Mojoruntut adalah melalui program Usaha Ekonomi

dilakukan dengan analisa perpindahan panas compact heat.. exchanger, untuk mendapatkan flowrate dari hot oil dari suhu dan laju aliran massa flue gas hasil variasi pembakaran

Penelitian ini bertujuan untuk mengetahui hubungan antara : (1) minat belajar dengan motivasi belajar siswa; (2) konsep diri dengan motivasi belajar siswa; (3)

Seperti yang sudah dijelaskan sebelumnya dalam rumusan masalah, bahwa salah satu masalah yang ingin diselesaikan dalam penelitian ini adalah bagaimana agar data konsumen yang

Dengan ini saya menyatakan dengan sesungguhnya bahwa dalam skripsi ini tidak terdapat keseluruhan atau sebagian tulisan orang lain yang saya ambil dengan cara

Hasil studi menunjukkan bahwa aliran Sungai Cisangkuy secara teknis dapat digunakan untuk membangkitkan listrik menggunakan turbin propeller dengan potensi daya total sebesar 510

Pada Tabel 5, distribusi hasil produk kalsium dan fosfat berdasarkan jenis kelamin dari pasien PGK stadium V yang menjalani hemodialisis, didapatkan angka

Formulir (Borang) adalah dokumen tertulis yang berfungsi untuk mencatat/merekam kegiatan yang harus dilaksanakan untuk memenuhi isi standar dan Standar Operasional Prosedur