• Tidak ada hasil yang ditemukan

ProdukHukum Pendidikan

N/A
N/A
Protected

Academic year: 2017

Membagikan "ProdukHukum Pendidikan"

Copied!
79
0
0

Teks penuh

(1)

Research Institute for

Humanity and Nature

Makoto Taniguchi

Global groundwater

problems and

adaptation for

(2)

You

 

will

 

have

 

the

 

following

 

assignments

 

during

 

the

 

last

 

discussion

 

on

 

November

 

19

 

(Fri).

(1)

 

Why

 

is

 

groundwater

 

important

 

as

 

water

 

resources

 

and

 

a

 

part

 

of

 

water

 

cycle

 

?

 

(300

 

words)

(2)

 

What

 

kind

 

of

 

techniques

 

and

 

methods

 

will

 

be

 

needed

 

for

 

monitoring

 

and

 

modeling

 

of

 

groundwater

 

?

 

(300

 

words)

(3)

20

th

century:

 

century

 

of

 

oil

 

21

st

century

 

:

 

century

 

of

 

water

Population

 

increase,

 

global

 

warming,

 

contamination

 

Æ

degradation

 

of

 

water

 

environment,

 

water

 

“wars”

From

 

exhausting

 

resources

 

to

 

re

cycling

 

resources

 

21

st

c is the “Century of

Water”

More than 1/3 of world

population rely on

(4)

Reasons

 

why

 

does

 

groundwater

 

system

 

change

 

(1)

 

Change

 

in

 

input

 

to

 

GW

 

system

Change

 

in

 

GW

 

recharge

 

rate

*

 

change

 

in

 

precipitation

  

(nature)

*

 

change

 

in

 

land

 

cover/use

 

(human)

(2)

 

Change

 

in

 

output

 

from

 

GW

 

system

Change

 

in

 

GW

 

discharge

 

rate

*

 

change

 

in

 

sea

 

level

 

(nature)

(5)

Change

 

of

 

Rainfall

 

(1900

2000)

Less Rainfall

(6)

Global

 

Warming

Annual mean temperature change, 2071 to 2100

(7)

Change

 

of

 

precipitation

 

due

 

to

 

global

 

warming

(8)
(9)

Changes in Runoff Extremes

(2070s, A2 Scenario, WaterGAP Model, Hadley Climate Predictions)

no change in extremes

(10)

Change in Annual Water Availability

(2020s, A2 Scenario, WaterGAP Model, Hadley Climate

Predictions)

← Lower runoff Higher runoff →

Change in Annual Water Withdrawals

(2020s, A2 Scenario, WaterGAP Model)

← Lower withdrawals Higher withdrawals →

Climate change

(11)

Water Scarce Areas with Increasing Water Stress

(up to 2020s)

because of:

• increasing water use (socio-economic changes)

and/or

• decreasing water availability (climate change)

Increasing water stress

Withdrawal to Availability Ratio: Water Stress

(12)

Modified from Vörösmarty et al. 2000

Effect of Climate change

20 %

Water Stress Changes

to 2025

UNH

Effects of population change

80 %

(13)

Decrease in groundwater storage (stock)

Groundwater Regions, Political boundaries, river basins & non recharged aquifers (ISRAM,

2006)

Decrease by :

200 billion ton/y

(Foster, 2000)

1/6 of global river discharge)

(14)

Decrease

 

in

 

groundwater

 

due

 

to

 

(15)

Decrease in water table

Registered wells

Total No. : 128,720 (0.3 wells/km2)

(16)

(Mao et al. 1998)

10

20

30

-20

-40

0 20

Bohai Sea

1959

1992

Decrease in groundwater storage

(Northern China Plain)

Bohai Sea

Decrease in GL 40m/40y

Uses of deep groundwater

(17)

Doll et al., 2003

High plain aquifer < 50mm/y

Northern China plain < 50mm/y

Japan

400mm/y

flow

< consumption

decrease in stock

Groundwater

 

recharge

 

rate

 

(flow)

 

mm/y

(18)

Virtual

 

Water

How much

water

do we

need to grow

feed

?

How much feed do we

need to grow a cow

?

(19)

Do you think this is a sustainable way ?

wheat

corn

soy beans pork

beef

Total imported “Virtual water” to Japan: 104 billion t/year

Total consumption of domestic water in Japan : 89 billion t/year

Share of each “virtual water” into Japan

others

>

Virtual water from less water countries to

more water countries

Question 3

(20)

Bottle

 

water

Why

 

do

 

people

 

prefer

 

bottle

 

water

 

to

 

tap

 

water

 

?

* more tasty ?

* more safe ?

* more

fashionable ?

* more

i

t ?

(21)

Human Population

U.S. Bureau

of

the

Census

(22)

Water

 

problems

 

in

 

the

 

world

Shortage of Water Resources

25 % people of the world (1.2 billion)

cannot access the safety water

15 % people of the world (0.8 billion)

(23)

Water

 

problems

 

in

 

the

 

world

Degradation of Water Quality

50 % people of the world is not under the sanitary condition

Dead people due to bad water quality (1998)

Diarrhea 5 million

Cholera 20 thousand

Typhus 3 thousand

(24)

Water

 

problems

 

in

 

the

 

world

Y

Yellow River (China)

Decrease of groundwater in HPA (USA)

present 1850

Shrink of Aral Sea

due to water use for cotton

(25)

Water

 

problems

 

in

 

the

 

world

Disaster of flooding

Dead people by natural disasters (1988-1997) 0.4 million

Flooding

Earthquake

Typhoon

Economic loss by natural disasters (1988-1997)

700 billion $

Others

Others

Earthquake

Typhoon

Flooding

(26)

Residence

 

Time

 

of

 

the

 

Water

Volume

(km3)

Flow

(km3/year)

Residence

Time

Sea Water

1,350,000,000 418,000

3,200 y

Snow & Ice

24,000,000 2,500

9,600 y

Groundwater

10,000,000 12,000

830 y

River water

220,000 35,000

13 d

Vapor water

130,000 483,000

10 d

(27)

Distribution

 

of

 

rainfall

(mm/year)

Annual rainfall (mm/year)

Fewer rainĺdesert Fewer rainĺdesert

(28)

Water

 

wars

 

in

 

the

 

world

Equator

Fewer rain

(29)

Water

 

problems

More than 1/7 of total population cannot access to

the safe water =0.9 Billion

0.5 Billion in Asia)

The number will increase due to global warming and

population increase

Water imbalance

(30)

Change of water environment due to increase in

population and climate change

Population inc.

Homogenous society   Water demand↑

Climate change

Globalization

Forest, agriculture, wet  land, Biodiversity ↓  Quality ↓

Local water culture  &culture diversity ↓

fresh water, river  water, GW

inharmonious society  with local nature

Life, capital, health↓ Flooding↑

Drought↑ Food supply↓

Water Env. Change due to globalization

Social

 

Sci.

Natural

 

Sci.

(31)

Flooding

Improper management

Urban flooding

Land subsidence

Flooding due to not only    natural causes but also  human impacts

too much water

RIHN China Vietnam T h a ila n d

Failiur of modern resources management

Community involvement is necessary Decrease of biodiversity

Global economy deteriorated indigenous society L a o s M y a n m a r

dry

wet

Eco‐history P Akimichi

(32)

too

 

little

 

water

Y

Dry‐up  Yellow River 

Fukushima

Increase of 

ET due to 

forest 

clearing 

caused YR 

dry‐up 

RIHN

Global W  Oki &  Kanae

Oki & Kanae (2006) Science 313

(33)

1:

 

Water

 

imbalance

 

in

 

space

 

and

 

time:

far

near

fast

slow

rain water

Lake water

River water

tapped water

Dam water Bottle water

ground water virtual water

space time

Far

Slow

water

 

has

 

an

 

impact

 

on

 

water

 

imbalance

 

without

 

knowing,

 

therefore

 

we

 

should

 

pay

 

more

 

attention

 

to

 

them

 

for

 

“Futurability”.

(34)

RIHN

Water deficit occurred due to agriculture in middle and down stream

Climate change Human impacts

Reconstruction Oasis P Nakawo

Prediction (Global warming & agriculture P) Watanabe)

Va ri a ti o n   of   the   ar eas   of   agricultur e   and   lak e   wate r

Prediction for 2070

Irrigation

Adaptation/mitigation by not only SEK but also TEK is necessary

Turkey

River discharge (climate change)

Agr (middle)

Lake water

(35)

RIHN

Linkage between Human and Water

revealed by tracers (isotopes)

Lake Biwa – Yodo R (Wada & Yachi)

Layered  structure 

Population density (person/km2)

δ

15N of herbivore

(36)

Linkages of land/ocean & human/habitat/water

Kamaiso

P

GW

discharge

River

discharge ET

Mt  Chokai

(37)

Kisaka ta

Mega

Kamaiso Fukura

Sakata→

Effect of R

Sea  water

Effects of GW

No River

Sr ratiosea < river < GW

Sr isotope of oyster shell can tell the origin of water 

Kisakata Mega Kamaiso

Fukura Sakata N

Precipitation (mm/y)

Pr oduction   of   Oy st er   (kg /y)

Benefit of linkage

between land &

ocean for society

by water cycle.

1994

(38)

黄河 場合 天井川 断流 と 河川 地下 水へ 涵養 無く って まう. 地下水 河川水 涵養 地下水と河川水 平衡 河川水 地下水 涵養 Yellow River groundwater 遠藤氏撮影 大明神川 加茂川

“public

 

water

“private

 

water”

GW GW

R

R

Kamo R

Kurose  Dam

Kamo river basin Kamo River

GW Pri

SW Pub

Decrease of River discharge→ Decrease of GW recharge/

saltwater intrusion

Trans‐boundary water

from Kurose dam to out 

of basin (Matsuyama)

GW  → R

GW   R

(39)

Trans-boundary international R/G W)

Groundwater Regions, Political boundaries, river  basins & non recharged aquifers (ISRAM, 2006)

United Nation General Assembly  (2008.12.11): Trans boundary GW  (International Law)

pridenorm lawinstitution

Linkage of water, institution & mind

加茂川 入

だ 西条

(40)

Harmonized

society-local nature with TEK

New technology (SEK)

past present future

(41)

To

 

design

 

the

 

future

 

society

 

with

 

water

 

environment

 

(stock/flow)

 

to minimize

 

disaster

 

and

 

maximize

 

benefit

 

,

To

 

evaluate

 

not

 

only

 

water

 

resources

 

but

 

also

 

water

 

“circulation”

 

which

 

makes

 

linkage

 

between

 

society

 

and

 

habitats,

To

 

manage

  

water

 

with

 

“blur”

 

boundaries,

 

and

 

to

 

clarify

 

the

 

benefit

 

of

 

local

 

water

 

culture,

 

and

 

To

 

make

 

laws/institutions

 

from

 

pride/norm

 

under

  

changing

 

society

 

and

 

climate.

 

(42)
(43)

Research Institute for

Humanity and Nature

Makoto Taniguchi

Global groundwater

problems and

adaptation for

(44)

The

 

Research

 

Institute

 

for

 

Humanity

 

and

 

Nature

Kyoto,

 

Japan

Makoto

 

Taniguchi

RIHN

a

 

national

 

research

 

institute

 

soliciting

 

and

 

funding

 

fixed

term

 

research

 

projects

Rigorous

 

empirical

 

study

 

and

 

profound

 

conceptual

 

engagement

 

in

 

humanity

nature

 

interactions

Humanity

 

and

 

human

 

wellbeing

 

in

 

the

 

midst

 

of

 

a

 

dynamic,

 

changeable

 

nature

(45)

RIHN: established in Kyoto in 2001

New building completed in 2005

Financed by Ministry of Education, Culture, Sports, Science and Technology

High functionability (laboratories, offices muti‐use and residential 

(46)

5 Research Domains

(47)

Transdisciplinary

 

Framework

Beyond

 

purely

 

rationalistic

 

description

 

of

 

human

 

behavior

 

and

 

environmental

 

impact

Beyond

 

individual

 

specializations

 

and

 

disciplines

Seek

 

consilience

between

 

different

 

traditions

 

of

 

knowledge

Gather

 

empirical

 

and

 

theoretical

 

descriptions

 

in

 

a

 

framework

 

that

 

allows

 

consistent

 

action

 

between

 

human

 

observations,

 

capabilities,

 

social

 

norms

 

and

 

principles

 

or

 

values

Full

 

range

 

of

 

human

 

intelligence

 

to

 

the

 

past

 

and

 

(48)

Global Environmental Issues

Subsurface Environments ?

Subsurface environmental issues are important for

human life in the present and future, but have been

largely ignored because of the

invisibility

of the

phenomena and

difficulty

of the evaluations

.

Decrease of Biodiversity

Seawater pollution Global warming

Air pollution

(49)

¾ Contamination of  groundwater / Saltwater intrusion

Fresh-salt water interface

Land

subsidence

¾ Land subsidence by 

over‐pumping

¾ Recovery of groundwater storage

→ buoyancy → floating stations

Urban

Ueno Station

Steel board of 30000 tons

New problems

Year

Suburb

Invisible

 

global

 

environment

 

issues

 

under

 

the

 

ground

groundwater level

(m)

Traditional problems

Regulation of GW pumping

¾ Increase of subsurface  temperature → increase  of micro biomass 

(50)

Groundwater pumping

Land subsidence

Regulation of pumping

Damage of under-ground infrastructure

Effects to ecosystem

Coastal water pollution Global warming Population Urbanization Economy

Increase demand of water resources

Water storage in Dam

Increase of loads

Contaminations of soil and groundwater

flooding Expand of

Heat island

Subsurface thermal contamination

Increase of river & coastal water temperature Saltwater intrusion

Air pollution Decrease in biodiversity

Sea pollution

Driving force Pressure

State Effect Flow chart of the project

Decrease of useful groundwater resources Increase of soil

(51)

51

Human Impacts on Urban Subsurface

Environments

l

Circulation program C05 (FR4)

(52)

52

RIHN project core members

Backjin LEE KRIHS

William C Burnett FSU, USA

Gayl Ness U of Michigan , USA

Shaopeng Huang U of Michigan , USA

Makoto Taniguchi

RIHN

and more…..

Material Water

Gravity

Urban geography Social economy

(53)

53 Population > million > million Bangkok Jakarta Seoul Tokyo Population Tokyo Taipei Bangkok Groundwater level Tokyo Bangkok Taipei Land subsidence

The goals of this project are to evaluate the

relationships between

the development stage of

the cities

and

subsurface environmental

problems

, and to suggest

sustainable use

of

subsurface environment.

Traditional problems (land subsidence) New problems (floating subway station)

Subsurface environmental problems, such as land subsidence,

contamination, and subsurface thermal anomalies, occurred one after another in Asian major cities with a time lag depending on the

development stage of each city.

(54)

54

Subsurface

environment

Urb a n

He a t

Ma te ria l

Wa te r

3: Subsurface

contaminations and loads to the coast

1: Development stages of cities and subsurface environmental problems

4: Heat island effect and

subsurface thermal anomalies

2: Degradation of subsurface environments and change in reliable water resources

Integrated study on subsurface problems

C ro ss c utting

(3)G IS/ Da ta b a se (1)Inte g ra te d

(55)

55

D

P

S

B-1: Hydro-climate (a) Storage

(b) Recharge

(c) Turnover time

B-2: Geology-geomorphology (d) redox

(e) gradient/permeability

(f) thermal gradient

Water → land subsidence

Material → contamination

Heat thermal storage

Three subjects

Two indices

B: Natural Capacity A: Changing Society

& Environment

Thermal storage A-1: Driving Force

(a) Population (b) Income

(c) Industrial structure (d) Urbanization ratio A-2 :Pressure

(k) Energy consumption (l) Heat Island Index

(m) Air temperature A-3: State

(n) Thermal storage

P I S D I R

Land subsidence

A-1: Driving Force

(a) Population (b) Income

(c) Industrial structure (d) Urbanization ratio

A-2 :Pressure

(e) Water consumption (f) Groundwater pumping (g) Groundwater

dependency A-3: State

(h) Groundwater level A-4:Impact

(i) Land subsidence

A-5: Response

(j) Regulation

Contamination

A-1: Driving Force (a) Population

(b) Income

(c) Industrial structure (d) Urbanization ratio A-2 :Pressure

(e) Num. of Passenger Vehicles

(f) Industrial Water Use

A-3: State

(g) Concentration

A-4:Impact

(h) Accumulated contamination A-5: Response

(56)

56

1930

Tokyo 1960 2000

Land use/cover changes 

(0.5 km grid, 7 cities, 3 ages)

1930

Osaka 1920 1970 2000

Seoul 1930 1960 2000

Taipei 1910 1956 2000

Bangkok 1930 1960 2000

Jakarta 1930 1960 2000

Manila 1960 2000

Forest Grassland Rice Agriculture Industry Urban Wetland Others Ocean

1930 1960 2000

Heat (HII)

1930

2000

B J T O M S 

Material (N)

B J T O M S 

Water (SWAT)

1960 2000

567

422

612

302  (51%↓) Unit: mm/year

378  (33%↓)

248  (41%↓)

Water→ recharge

Material → contamination

Heat → heat storage

3%Ĺ 8%Ĺ

x2 - x6Ĺ

(57)

57

F: Forest H: House I: Industries P: Paddy field

A: Agriculture field

1930 → 1970 1970 → 2000

GW: Grass & Wasteland OC: Ocean

W: Water & wetland OT: Others

Tokyo

Osaka

Seoul

Changes in urban area

Land use analyses

1927 1967 2001

Osaka

1920’s IPP 6888 (44%)

1960’s IPP 15830 (84%)

2000’s IPP 18317 (92%) IP: impermeable, P: Permeable

Urban Geography G

(58)

58 Land Water Change in 

Chao Phraya

GRACE Model Storage change (2002-2008) Satellite GRACE BK NL NB

Wa te r

Reanalysis

Model

PD

Evaluations of water storage change

GRACE (gravity)Reanalysis

(climate)GW model (hydrology)

Bangkok Jakarta Tokyo Osaka Sea Sea Sea Sea

GW pumping &recharge

The area of groundwater recharge

moved to the suburbs after

regulation of groundwater pumping

N

BK NL

NB

PD

GW Modeling in Bangkok

More than 10 times of the official

record of GW was pumped in Jakarta, which was revealed by socio economic data and GW modeling.

Evaluations of groundwater

with different methods

in situ, statistic, tracers,

numerical modeling)

(59)

59

Depth (m)

distance

elevation (m)

0 230 900 Recharge area (Bangkok)

Groundwater flow system and the

recharge area were revealed by

(60)

60

Natural capacity indices

(storage,

 

recharge)

T

㎢ Y

T

T

J

τ: Turnover time (year)

S: Storage capacity(m3)

Q: Recharge (m3/year)

=

G

GLDAS (CLM)

Larger natural capacity:

storageBangkok, Tokyo, Osaka rechargeTaipei, Manila

Turnover time decreased by 90% from natural conditions due to GW pumping

B

Change in turnover time due to GW pumping

year

(61)

61

Accumulation

Ma te ria l

Reconstructions of contaminant history from sediments and social

economy data

a ccu m u la t ion

Tr a n spor t ( loa d)

low

high

Risk / Vulnerability

Saltwater

Intrusion

(+)

SGD

(-)

(M m

3 /day)

Saltwater Intrusion

SGD

Transport

Comparison of risk / vulnerability from “accumulation” and “transport” points of view

(62)

62

Obs. SGDin Osaka (high Rn high SGD)

Clam

Clam Number

SGD (seepage) Nitrate 

(63)

63

Seoul Taipei Bangkok

Jakarta Manila

Groundwater contamination

‐20         ‐10       0         +10        +20       +30       +40

+60 +40 +20 0 ‐20 Bangkok Manila Jakarta Taipei

Manure and Septic waste Atmospheric

Nitrate  Fertilizer

Ammonium Fertilizer

δ15N (

‰) δ 18 O   ( ‰ ) Deposits

Anthropogenic

Seawater intrusion

(64)

64

NH4 NO3 PO4 SiO2

Moles/

day

1e+3 1e+4 1e+5 1e+6 1e+7

River flux

Seepage Flux

NH4 NO3 PO4 SiO2 SriRacha (Jan 04) Hua Hin (July 04)

Nutrient discharge SW vs. GW

2%

71%

44%

37%

1%

58%

15%

47%

Importance of SGD for nutrient

discharge to the ocean

(65)

65 Tokyo(39) Osaka(37) Bangkok(23) Seoul (15) Jakarta(34)

Increased surf. Temp.

Tokyo+ 2.8Seoul+ 2.5 Osaka+ 2.2Bangkok+ 1.8

Jakarta+ 1.2

Observed GW temp. Taipei(10)

Tokyo Osaka

Seoul Bangkok

Increased thermal storage depends on magnitude and timing of surface warming

→index of urbanization

Rural (A)

Suburb (C)

Center (D/E)

Bangkok

Reconstructions of urbanization history have been made by uses of subsurface temperature

Center

rural

suburb

He a t

More than 2-3 times of the worlds average heat was stored in subsurface at Asian cities during the last 100 years.

(66)

66 Jakarta Manila Bangkok Taipei Tokyo Osaka

1915/16 1922/23 1974/75

1917/18 1957/58 1979/80

1915/16 1955/56 1978/79 1985/86

1996/97

1975/76 1992/93

1950/51 2001/02

1959/60

1950/51 1979/80

Water demand transition (share of industrial water demand)

1914 1958

Water supply transition (dependency on groundwater)

Policy transition (land subsidence)

1916 1947 1957 1976

1916 1961 1975

(Development stage of the city)

1st stage

Beginning of  urbanization 

2nd stage

Increase of Industrial  water demand

3rd stage

Recognition of Land  Subsidence  

4th stage

Regulation and Effective  measures

5th stage

Settlement

Stage model with DPSIR framework

Integrated model with &

(7

 

cities)

Groundwater charge system was introduced just after the recognition of land subsidence.

(short 3rd stage means followers benefit)

(67)

67

Historical

 

trend

 

of

 

population

 

and

 

GRDP

Population GRDP per capita

(68)

68

(69)

69

Water

 

consumption

 

per

 

capita

 

and

 

Groundwater

 

abstraction

(70)

70

Groundwater level (m)

Pb 

Thermal storage

S

R

0 10 20 30 40 50 60 70 80 90 100

1900190519101915192019251930193519401945195019551960196519701975198019851990199520002005

Tokyo Osaka Seoul Taipei Bangkok Jakarta Manila

(71)

71

I

P

S D

3rd stage Recognition 4th stage:Regulation

Development pattern City

A: Following Tokyo  (Tokyo), Osaka

B: Excessive Development Jakarta

C: Followers benefit Bangkok, (Manila)

D: Natural Capacity Benefit Taipei, (Bangkok) 

D I P S Land subsidence stopped after

regulation in

Taipei

GL recovered rapidly

ÎLarge natural capacity (recharge) Population Groundwater pumping Decrease of GW level Land subsidence Rapid urbanization

in Jakarta Large GW pumping

Huge land subsidence

→Excessive loadto city

(72)

72

Conclusions

• Integrated study on urban subsurface

environments beyond the boundaries,

surface-subsurface (climate, geodesy,

hydrology) and land-ocean (hydrology,

oceanography) revealed that:

(1) Repeated subsurface problems occurred due to increase in water demand and urbanization, then accelerated the GW circulation

(more than 10 times). It also increased the accumulation of material and heat in subsurface,

(2) The alternative resources are important for society, thus

groundwater/subsurface environments are key for adaptation to the changing society and environment. Subsurface environments can be sustainable with careful management, and

(73)
(74)

74

Gulf of Thailand

Elevation

(m)

Bangk

o

k

B

a

n

g

k

o

k

Y

a

i

K

lo

n

(75)

75

Temple

upstream downstream

Temple Temple

The people who live in Bangkok

respect “Buddhism and temples”, therefore they build the temples at relatively stable land (such as

sandy soil with high permeability / relatively high elevation), therefore groundwater discharge may occur.

222

Rn

 

&

 

cond.

 

measurements

 

in

 

cannel

Hypothesis

Radon of water at the from of temple is always higher. Groundwater with higher Rn

discharge at the from of temples

Fact

(76)

76

Groundwater discharges at the front of temples, because the temples are located in the sandy and a little bit higher elevation.

Elevation and location of temples 標 高 寺立 地ピ ク セ ル数 全域 ピ ク セ ル数 Number of temples:836

Average elevation 3.9m Elevation of temples: 5.4 m

Elevation of land where  temples are located is  1.5 m higher than  average elevation 

Interview on the location of temples

(77)

77

Religious respect to Buddhism may be reflected into the 

quality of water in cannel as human –

nature interaction 

in Bangkok.

(78)

Cross

 

cutting;

Religion/Law

 

&

 

GW

Surface water (public water) Groundwater (private water)

Time

Friday

Groundwater level

Reconstructs of religious activities from long-term

records of groundwater level Religious events and groundwater (Jakarta

Regulation of groundwater

pumping on 1980,1991 (Bangkok)

Regulation Failure without alternative water resources Æ Public vs. private water

(79)

Traditional

Environmental Knowledge

Scientific

Environmental Knowledge

Long-term strategy and the nature-human knowledge

Social & Institutional Knowledge

(followers benefit, linkage of society)

A: Changing society & environment

Referensi

Dokumen terkait

- Nama Perusahaan yang diundang beserta undangan Pembuktian Kualifikasi telah dikirimkan ke alamat Email masing-masing perusahaan sesuai dengan data yang telah diupload di LPSE

Tujuan dari penelitian ini yaitu untuk mengetahui profil parameter kimia oseanografi pada perairan Pantai Timur Sumatera dengan membagi daerah pantai Timur Sumatera

VERIFIKASI DATA D3 - CALON DYS TAHUN 2016 GELOMBANG 201602 PT Pengusul (PTU): SEKOLAH TINGGI ILMU EKONOMI KASIH BANGSA.. Halaman: 1 Tampilkan

Apabila permasalahan yang telah dijelaskan di atas tidak segera diatasi, maka akan berdampak kepada siswa dan masyarakat sebagai stakeholders yang menikmati

Materials used in the experiment consisted of 9 male Kacang goat (6 - 9 months of age and ± 18,67 kg of body weight), corn straw, rice bran and FCS using three types of starters.

Tujuan :Untuk mengetahui hubungan antara faktor kebiasaan asupan garam, konsumsi makanan berlemak, merokok dan olahraga dengan kejadian hipertensi pada lansia di Pusling

Skripsi ini berjudul “Pengaruh Aplikasi DealMedan sebagai Media Promosi Sale terhadap Tindakan Membeli mahasiswa FISIP USU (Studi Korelasional Pengaruh Aplikasi DealMedan

adalah untuk mengetahui hubungan risiko tsunami terhadap tingkat ansietas pada anak sekolah dasar di zona merah.. dan hijau Kota