• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
5
0
0

Teks penuh

(1)

A NEW DIFFERENTIAL INEQUALITY

Georgia Irina Oros

Abstract. We find conditions on the complex-valued functionsA, B, C, D defined in the unit disc U such that the differential inequality

Re [A(z)p2

(z)−B(z)(zp′(z))2

+C(z)zp′(z) +D(z)]>0

implies Re p(z)>0, where p∈ H[1, n].

2000 Mathematics Subject Classification: 30C80

Keywords and phrases: differential subordination, dominant.

1. Introduction and preliminaries

We let H[U] denote the class of holomorphic functions in the unit disc U ={z ∈C: |z|<1}.

For a∈C and nN∗ we let

H[a, n] ={f ∈ H[U], f(z) =a+anz n

+an+1zn+1+. . . , z ∈U} and

An ={f ∈ H[U], f(z) =z+an+1z n+1

+an+2zn+2+. . . , z ∈U} with A1 =A.

(2)

Lemma A. [1, p. 35] Let ψ :C2

×U →C be a function which satisfies

Re ψ(ρi, σ;z)≤0, where ρ, σ∈R, σ≤ −n

2(1 +ρ 2

), z ∈U and n ≥1. If p∈ H[1, n] and

Re ψ(p(z), zp′(z);z)>0

then

Re p(z)>0.

2. Main results

Theorem 1. Letnbe a positive integer. Suppose that unctionsA, B, C, D : U →C satisfy

        

        

i) Re B(z)≥0

ii) Re A(z)≥ −Re

n2

2 B(z) + n 2C(z)

iii) Re D(z)≤Re

n2

4 B(z) + n 2C(z)

.

(1)

If p∈ H[1, n] and Re [A(z)p2

(z)−B(z)(zp′(z))2

+C(z)zp′(z) +D(z)]>0 (2)

then

Re p(z)>0.

Proof. We let ψ :C2

×U →Cbe defined by

ψ(p(z), zp′(z);z) =A(z)p2

(z)−B(z)(zp′(z))2

+C(z)zp′(z) +D(z) (3)

From (2) we have

(3)

For σ, ρ∈R satisfying σ ≤ −n

2(1 +ρ 2

), we have

−σ2 ≤ −n

2

4 (1 +ρ 2

)2 , and by using (1) we obtain:

Reψ(ρi, σ;z) = Re [A(z)(ρi)2

−B(z)σ2

+C(z)σ+D(z)] = =−ρ2

Re A(z)−σ2

Re B(z) +σReC(z) + Re D(z)≤ ≤ −ρ2

ReA(z)− n 2

4 (1 +ρ 2

)2

ReB(z)− n 2(1 +ρ

2

)Re C(z) + Re D(z)≤ ≤ −ρ2

Re A(z)−n 2

4 (1 + 2ρ 2

+ρ4

)Re B(z)−n 2(1 +ρ

2

)Re C(z) + Re D(z)≤ ≤ −n

2

4 ReB(z)−ρ 2

ReA(z) + n 2

2 ReB(z) + n

2ReC(z)

−n 2

4 Re B(z)− n

2Re C(z) + Re D(z)≤0. By using Lemma A we have that Re p(z)>0. If C(z)≡0, then Theorem can be rewritten as follows:

Corollary. Let n be a positive integer. Suppose that the functions A, B, D:U →C satisfy

i) Re B(z)≥0 ii) Re A(z)≥ −n

2

2 Re B(z) iii) Re D(z)≤ n

2

4 Re B(z). If p∈ H[1, n] and

Re [A(z)p2

(z)−B(z)(zp′(z))2

+D(z)]>0 then

Re p(z)>0.

If A(z) = 1 +z, B(z) = 3 + 2z, D(z) = z

(4)

Example 1. If p∈ H[1,1] then Re h(1 +z)p2

(z)−(3 + 2z)(zp′(z))2 + z

4

i

>0 implies

Rep(z)>0. If A(z) = 2 +z, B(z) = 1 + z

2, D(z) = z

2, n = 2, then from Corollary 1 we deduce:

Example 2. If p∈ H[1,2] and Re h(2 +z)p2

(z)−1 + z 2

(zp′(z))2 +z

2

i

>0 implies

Rep(z)>0. If D(z) = n

2

4 B(z) + n

2C(z), then Theorem can be rewritten as follows: Corollary 2. Let n be a positive integer. Suppose that the functions A, B, C :U →C satisfy

i) Re B(z)≥0,Re C(z)≥0 ii) Re A(z)≥ −Re

n2

2 B(z) + n 2C(z)

. If p∈ H[1, n] and

Re

A(z)p2

(z)−B(z)(zp′(z))2

+C(z)zp′(z) + n

2

4 B(z) + n 2C(z)

>0 then

Re p(z)>0.

If A(z) = 4 +z, B(z) = 2 +z, C(z) = 3−z, n= 1, then from Corollary 2 we deduce

Example 3. If p∈ H[1,1] then Re h(4 +z)p2

(z)−(2 +z)(zp′(z))2

+ (3−z)zp′(z) + 2z

4

i

(5)

implies

Rep(z)>0.

IfA(z) = 1−z, B(z) = 2−z,C(z) =−1 +z,n= 2, then from Corollary 2 we deduce

Example 4. If p∈ H[1,2] and Re [(1−z)p2

(z)−(2−z)(zp′(z))2

+ (−1 +z)zp′(z) + 1]>0

implies

Rep(z)>0.

References

[1] S. S. Miller and P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.

Authors:

Georgia Irina Oros

Department of Mathematics University of Oradea

Oradea Romania

Referensi

Dokumen terkait

Lambek, Deductive systems and categories II: Standard constructions and closed categories, Category Theory, Homology Theory and their Applications (Peter J. Hilton, ed.), Lecture

Burton, Differential inequalities and existence theory for dif- ferential, integral and delay equations, in: Comparison Methods and Stability Theory, Xinzhi Liu and David Siegel,

[1] Coddington, E.A., Levinson N., Theory of Ordinary Differential Equa- tions , Mcgraw-Hill, New York, 1975. [2] Coppel, W.A., On the Stability of Ordinary Differential Equations

2 Adapted from Future Edge, by Joel Arthur Barker; William Morrow and Company, Inc., New York, 1992.. Paradigm Case Study #2:

Owa, Univalent Functions, Fractional Calculus, and Their Applications , Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989. Ibrahim, Maslina

Ungureanu, Uniform exponential stability and uniform observabil- ity for time-varying linear stochastic systems , Operator Theory: Advances and Applications, Birkhauser Verlag

Seafood Enzymes Utilization and Influence on Postharvest Seafood Quality.. New York :

Lang,Zariski surfaces and differential equations in characteristic p >0, Marcel Dekker Inc., New York, 1987.. ˇSafareviˇc, Supersingular K3 surfaces over fields of characteristic 2,