• Tidak ada hasil yang ditemukan

Penentuan koefisien refleksi cahaya untuk reflektor plastik dan aluminium bercat putih.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Penentuan koefisien refleksi cahaya untuk reflektor plastik dan aluminium bercat putih."

Copied!
67
0
0

Teks penuh

(1)

INTISARI

PENENTUAN KOEFISIEN REFLEKSI CAHAYA

UNTUK REFLEKTOR PLASTIK DAN ALUMINIUM BERCAT PUTIH

Telah dilakukan pengukuran koefisien refleksi untuk dua jenis reflektor (plastik dan alumunium bercat putih). Pengukuran koefisien refleksi berdasarkan pada pengukuran intensitas cahaya dengan mengukur kuat penerangan cahaya pada bidang kerja. Pengukuran intensitas cahaya dan kuat penerangan cahaya menggunakan luxmeter. Dari hasil analisis data diperoleh nilai koefisien refleksi untuk reflektor plastik bercat putih adalah 0,34±0,03 dan nilai koefisien refleksi untuk reflektor alumunium bercat putih adalah 0,42±0,01

(2)

ABSTRACK

DETERMINING OF THE COEFICIENT OF LIGHT REFLECTION OF PLASTIC AND WHITE ALUMINUM REFLECTOR

(3)

PENENTUAN KOEFISIEN REFLEKSI CAHAYA

UNTUK REFLEKTOR PLASTIK DAN ALUMINIUM BERCAT PUTIH

Skripsi

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains (S.Si)

Program Studi Fisika

Oleh :

Laurensius Lodofikus. L. Henakin NIM : 013214015

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS SANATA DHARMA

(4)

DETERMINING OF THE COEFICIENT OF LIGHT REFLECTION OF PLASTIC AND WHITE ALUMINUM REFLECTOR

Scription

Presented as Partial Fulfillment of The Requirement To Obtain The Sarjana Sains Degree in Physics

By:

Laurensius Lodofikus. L Henakin 013214015

FACULTY of SCIENCE AND TECHNOLOGY

SANATA DHARMA UNIVERSITY

(5)

SKRIPSI

PENENTUAN KOEFISIEN REFLEKSI CAHAYA

UNTUK REFLEKTOR PLASTIK DAN ALUMINIUM BERCAT PUTIH

Oleh:

Laurensius Lodofikus L. Henakin NIM: 013214015

Telah disetujui untuk diujikan pada tanggal

Pembimbing

Ir. Sri Agustini Sulandari M.Si. Tanggal Agustus 2008

(6)
(7)

HALAMAN PERSEMBAHAN

Kupersembahkan S ripsi ini Untuk:

k

n

Bapak & Mama sebagai tanda Bakti dan Hormatku.

Saudariku Tercinta.

Seseorang yang Kukasihi dan Kucintai...

Almamaterku Terci ta.

Motto:

Siapa Yang Mengejar Kebenaran & Kasih

Akan Memperoleh Kehidupan, Kebenaran &Kehormatan

(amsal 21:21)

(8)

PERNYATAAN KEASLIAN KARYA

Saya menyatakan dengan sesungguhnya bahwa skripsi yang saya tulis ini tidak memuat karya atau bagian karya orang lain, kecuali yang telah disebutkan dalam kutipan daftar pustaka, sebagaimana layaknya karya ilmiah.

Yogyakarta, 26 Agustus 2008 Penulis

(9)

INTISARI

PENENTUAN KOEFISIEN REFLEKSI CAHAYA

UNTUK REFLEKTOR PLASTIK DAN ALUMINIUM BERCAT PUTIH

Telah dilakukan pengukuran koefisien refleksi untuk dua jenis reflektor (plastik dan alumunium bercat putih). Pengukuran koefisien refleksi berdasarkan pada pengukuran intensitas cahaya dengan mengukur kuat penerangan cahaya pada bidang kerja. Pengukuran intensitas cahaya dan kuat penerangan cahaya menggunakan luxmeter. Dari hasil analisis data diperoleh nilai koefisien refleksi untuk reflektor plastik bercat putih adalah 0,34±0,03 dan nilai koefisien refleksi untuk reflektor alumunium bercat putih adalah 0,42±0,01

(10)

ABSTRACK

DETERMINING OF THE COEFICIENT OF LIGHT REFLECTION OF PLASTIC AND WHITE ALUMINUM REFLECTOR

(11)

LEMBAR PERNYATAAN PERSETUJUAN

PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS

Yang bertanda tangan di bawah ini,saya mahasiswa Universitas Sanata Dharma : Nama : Laurensius Lodofikus L Henakin

Nomor mahasiswa : 013214015

Demi pengembangan ilmu pengetahuan, saya memberikan kepada Perpustakaan Universitas Sanata Dharma karya ilmiah saya yang berjudul :

“PENENTUAN KOEFISIEN REFLEKSI CAHAYA

UNTUK REFLEKTOR PLASTIK DAN ALUMINIUM BERCAT PUTIH” Beserta perangkat yang diperlukan (bila ada). Dengan demikian saya memberikan kepada perpustakaan Universitas Sanata Dharma hak untuk menyimpan,mengalihkan dalam bentuk media lain, mengelolanya dalam bentuk pangkalan data, mendistribusikan secara terbatas, dan mempublikasikannya di internet atau media lain untuk kepentingan akademis tanpa perlu meminta ijin dari saya maupun memberikan royalty kepada saya selama tetap mencantumkan nama saya sebagai penulis.

Dengan pernyataan ini saya buat dengan sebenarnya. Dibuat di Yogyakarta

Pada tanggal :26 Agustus 2008 Yang menyatakan

(12)

KATA PENGANTAR

Puji syukur penulis panjatkan ke hadirat Tuhan Yesus atas segala berkat, kasih serta karunia-Nya yang begitu besar, sehingga penulis dapat menyelesaikan skripsi dengan judul “PENENTUAN KOEFISIEN REFLEKSI CAHAYA UNTUK REFLEKTOR PLASTIK DAN ALUMUNIUM PUTIH ”.

Skripsi ini disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains (S.Si.) untuk Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sanata Dharma Yogyakarta.

Dengan selesainya penulisan skripsi ini, penulis menyampaikan terima kasih yang sebesar-besarnya kepada :

1. Ibu Ir. Sri Agustini Sulandari, M.Si., selaku dosen pembimbing yang telah memberikan bimbingan, arahan, petunjuk, dan semangat selama penulisan skripsi dan juga selaku Ketua Program Studi Fisika, Fakultas sains dan Teknologi, Universitas Sanata Dharma, sekaligus sebagai dosen penguji.

2. Romo Ir. Greg. Heliarko, S.J.,S.S.,B.S.T., M.Sc., M.A., selaku dekan Fakultas Sains dan Teknologi.

3. Bapak Dr. Ign. Edi Santosa, M.S., selaku dosen penguji. 4. Bapak A. Prastyadi, M.Si. selaku dosen penguji.

5. Seluruh dosen pengajar Program Studi Fisika dan eks Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sanata Dharma.

(13)

7. Saudariku tercinta Helena Angelina Yuventa thanx atas Kasih dan Cinta 8. Paulina Meity Badilangoe, yang telah banyak memberikan bantuan, dorongan

semangat, dan warna kehidupan.

9. SN loundy Comunity ( Hary, Minto, Mili, Bento + Enu, P’Aryo, Jois, Santo), atas tumpangan dan kebersamaannya.

10.Sahabat-sahabatku di Fisika USD (Mamat, Aris Korea, Mili, Rangga, mas P, Neni, Ismeth, Mella, Nita, Raf, Golang, Dweek, Ade, Ratna, Manggar).

11.Kneu Gerry,Reu Bento,Reu Baleo,Reu Guterez thanx atas dorongan semangat 12.Komunitas Jogja Mercy Club (JMC), makasih atas kebersamaan kita, kapan

jadwal touringnya?

13.Santan Crue (Ronggeng, Jhotoz, Mansi, Allan, Jepho, Andris, Rommy, Yonis, Ignas, Benny, Neloz, Ita, Merlin) thanx atas doa dan kebersamaan kita.

14.Semua pihak yang tidak dapat penulis sebutkan satu persatu.

Semoga Tuhan Yang Maha Pengasih dan Pemurah melimpahkan berkat dan kasih-Nya.

Penulis menyadari bahwa skripsi ini masih banyak kekurangan dan jauh dari kesempurnaan, sehingga segala kritik dan saran yang bersifat membangun sangat penulis harapkan demi perbaikan skripsi ini. Namun demikian, dengan segala kekurangan yang ada, penulis berharap agar skripsi ini masih dapat diambil manfaatnya, khususnya bagi perkembangan ilmu fisika.

Yogyakarta, 26 Agustus 2008

Penulis

(14)

DAFTAR ISI

Halaman HALAMAN JUDUL………...

HALAMAN PERSETUJUAN PEMBIMBING………. HALAMAN PENGESAHAN………. HALAMAN PERSEMBAHAN………. PERNYATAAN KEASLIAN KARYA………. ABSTRAK...………... ABSTRACT ……….

KATA PENGANTAR...……….. DAFTAR ISI………... DAFTAR TABEL... DAFTAR GAMBAR……….. DAFTAR LAMPIRAN………... BAB I. PENDAHULUAN………..

A. Latar Belakang………..

B. Rumusan Permasalahan……… C. Batasan Masalah……….... D. Tujuan Penelitian……..……… E. Manfaat Penelitian ……… F. Sistematika Penulisan………

(15)

BAB II. DASAR TEORI………. A. Gelombang………... B. Besaran-besaran dalam pengukuran cahaya………. C. Koefisien Refleksi....………... BAB III. METODOLOGI PENELITIAN……….. A. Waktu dan Tempat Penelitian………..

B. Alat dan Bahan………..

C. Metode Eksperimen………... D. Metode Analisis Data……… BAB IV. HASIL DAN PEMBAHASAN………...

A. Hasil………..

B. Pembahasan………...

BAB V. KESIMPULAN DAN SARAN………

A. Kesimpulan………...

B. Saran………..

DAFTAR PUSTAKA………. LAMPIRAN………

5 5 17 22 26 26 26 26 28 30 30 39 41 41 41 42 43

(16)

DAFTAR TABEL

Halaman Tabel 4.1. Intensitas sumber cahaya titik... Tabel 4.2. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang

berbeda-beda dengan tinggi lampu (t) 0,30 m untuk reflektor plastik... Tabel 4.3. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang berbeda-beda dengan tinggi lampu (t) 0,25 m untuk reflektor plastik... Tabel 4.4. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang berbeda-beda dengan tinggi lampu (t) 0,20 m untuk reflektor plastik... Tabel 4.5. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang berbeda-beda dengan tinggi lampu (t) 0,30 m untuk reflektor alumunium bercat putih... Tabel 4.6. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang

berbeda-beda dengan tinggi lampu (t) 0,25 m untuk reflektor alumunium bercat putih... Tabel 4.7. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang

berbeda-beda dengan tinggi lampu (t) 0,20 m untuk reflektor alumunium bercat putih... Tabel 4.8. Sudut (β) antara luasan bidang dasar kap terhadap bidang

kerja... 29

30

31

31

32

32

33

(17)

Tabel 4.9. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada reflektor plastik dengan tinggi lampu (t) 0.30m...

Tabel 4.10. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada reflektor plastik dengan tinggi lampu (t) 0.25m... Tabel 4.11. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada

reflektor plastik dengan tinggi lampu (t) 0.20m... Tabel 4.12. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada

reflektor alumunium bercat putih dengan tinggi lampu (t) 0.30m... Tabel 4.13. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada

reflektor alumunium bercat putih dengan tinggi lampu (t) 0.25m... Tabel 4.14. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada

reflektor alumunium bercat putih dengan tinggi lampu (t) 0.20m...

34

35

35

36

37

37

(18)

DAFTAR GAMBAR

Halaman Gambar 2.1. Gelombang berjalan ke kanan dan lama P bergetar sama

dengan lama O bergetar dikurangi waktu untuk merambat dari O ke P... Gambar 2.2. Gelombang datang ξ1 ketika sampai ke ujung tetap (ujung

terikat) akan dipantulkan, sedangkan gelombang pantul ξ2 berbeda fase 1800 dengan gelombang datang... Gambar 2.3. Gelombang datang ξ1 ketika sampai ke ujung bebas akan

dipantulkan. Gelombang pantul pada ujung bebas tidak mengalami beda fase... Gambar 2.4. Definisi sudut ruang... Gambar 2.5a Perbandingan jumlah arus yang jatuh pada bidang bola A dan

B... Gambar 2.5b Bidang sangat kecil di P yang berada pada bidang kerja... Gambar 2.6. Bola yang mempunyai sumber cahaya dengan kekuatan

cahaya 1 cd di T... Gambar 2.7 Kuat penerangan untuk luasan keseluruhan... Gambar 3.1. Penelitian intensitas lampu... Gambar 3.2 Skema penelitian... Gambar 3.3 Proyeksi dari bidang dasar kap lampu...

6

8

12 18

20 20

(19)

DAFTAR LAMPIRAN

Halaman Lampiran I Contoh perhitungan intensitas cahaya dan arus cahaya………….. Lampiran II Contoh perhitungan untuk memperoleh nilai θ dan tabel nilai

sudut θ……… Lampiran III Contoh perhitungan untuk memperoleh nilai sudut β... Lampiran IV Contoh perhitungan luasan kap lampu dan luasan permukaan

dasar kap lampu... Lampiran V Contoh perhitungan nilai koefisien refleksi…...

43

44 46

47 48

(20)

BAB I

PENDAHULUAN

A. Latar Belakang

Cahaya dapat dimengerti sebagai arus partikel-partikel (bagian materi) dan/atau sebagai arus gelombang elektromagnetik yang panjang gelombangnya antara 400 nm atau 4x10-7 m hingga 700 nm atau 7x10-7 m (Mangunwijaya, 1981) Diatas 7x10-7 m akan melepaskan sinar infra merah, sedangkan dibawah 4x10-7 m akan memberikan sinar ultraviolet yang mengganggu proses kimiawi terutama pada lensa mata.

Salah satu sifat cahaya adalah jalannya lurus. Cahaya juga dapat direfleksikan (dipantulkan), didifraksikan (dibiaskan), didispersikan (diuraikan), dan dipolarisasikan (pengkutuban). Karena sifat yang dimiliki cahaya sama dengan sifat

gelombang elektromagnetik maka cahaya juga merupakan gelombang. Kecepatan cahaya c = 2.99x108 m/s dan juga pada gelombang elektromagnetik c = 2.99x108 m/s jadi cahaya adalah gelombang elektromagnetik.

Cahaya yang dipancarkan oleh matahari dapat sampai ke dalam kamar kita dinamakan pencahayaan langsung ada pula pencahayaan yang tidak langsung atau dengan kata lain pencahayaan buatan misalnya pencahayaan pada ruangan belajar, pencahayaan pada ruang tidur dan masih banyak lagi. Makna pencahayan buatan bukanlah sekedar menyediakan lampu dan terangnya tetapi untuk membentuk suasana.

(21)

2

misalnya ditempat kita bekerja. Bahkan, dengan cahaya buatan yang baik dan disaring dari “kesilauan” akan bisa mempertinggi aktivitas kita dalam bekerja jika dibandingkan jika beraktivitas pada cahaya siang alamiah. Sumber cahaya haruslah bisa memberikan pencahayaan dengan intensitas yang memadai, menyebar, merata, tidak menyilaukan, dan tidak menimbulkan bayangan yang mengganggu, dan pencahayaan haruslah cukup intensitasnya, sesuai dengan beban aktivitas (bekerja) (http:www.sinarharapan.co.id/berita/0611/28/ipt02.html).

(22)

B. Rumusan Masalah

Rumusan masalah dalam tulisan ini adalah:

Bagaimana menentukan koefisien refleksi suatu reflektor pada kap lampu yang digunakan untuk menerangi meja belajar.

C. Batasan Masalah

Dalam penelitan ini pengukuran terbatas pada pengukuran pada bidang kerja dengan mengabaikan pantulan dinding dan perabot.

D. Tujuan Penelitian

Adapun tujuan dari penelitian ini

Mengetahui koefisien refleksi suatu reflektor yang selanjutnya akan digunakan untuk merancang pencahayaan pada ruangan belajar.

E. Manfaat Penelitian

Adapun manfaat dari penelitian ini adalah

1) Memberi manfaat bagi peneliti dalam bidang optik tentang koefisien refleksi suatu reflektor yang selanjunya akan digunakan pada ruangan belajar.

2) Memberikan tambahan data di bidang ilmu pengetahuan dan teknologi terutama pemilihan jenis reflektor yang dapat mempengaruhi penerangan pada ruang belajar.

F. Sistematika Penulisan

(23)

4

BAB I Pendahuluan

Dalam bab ini diuraikan tentang latar belakang permasalahan, rumusan masalah, tujuan penelitian, manfaat penelitian dan batasan masalah.

BAB II Dasar Teori

Dalam bab ini diuraikan tentang teori gelombang sehubungan dengan cahaya sebagai gelombang.

BAB III Metodelogi penelitian

Bab ini menguraikan tentang alat dan bahan yang digunakan dalam eksperimen, prosedur eksperimen dan metode yang digunakan untuk analisa data.

BAB IV Hasil dan Pembahasan

Dalam bab ini diuraikan tentang menganalisis hasil eksperimen dan pembahasanya.

BAB V Penutup

(24)

BAB II DASAR TEORI

A. Gelombang A.1 Pengertian

Gelombang merupakan energi yang merambat dalam suatu medium. Energinya

dipindahkan dari satu titik ke titik yang lain melalui suatu medium dan disebarkan

merata keseluruh medium (Prasetio at al, 1992). Besaran-besaran pokok yang

mempengaruhi gelombang adalah panjang gelombang (λ), frekuensi (ƒ), periode (Τ),

amplitudo (ξ0), dan laju perambatan gelombang ( ). Fungsi gelombang adalah suatu

fungsi yang menjelaskan simpangan partikel dalam medium pada sembarang posisi

dan waktu. Fungsi gelombang tersebut merupakan fungsi posisi dan waktu yang

dilambangkan sebagai ξ

( )

x,t .

Ditinjau dari amplitudonya gelombang dibedakan menjadi 2 yaitu gelombang

berjalan dan gelombang diam. Gelombang berjalan adalah gelombang yang

amplitudonya sama pada setiap titik yang dilalui, sedangkan gelombang diam adalah

gelombang yang ampiltudonya tidak sama pada setiap titik yang dilalui.

a. Gelombang berjalan

Pada gambar 2.1 misalkan pada saat titik O bergetar selama t detik, dapat

(25)

6

Gambar 2.1 gelombang berjalan ke kanan dan lama P bergetar sama dengan lama O bergetar

dikurangi waktu untuk merambat dari O ke P

Bila cepat rambat gelombang adalah υ, maka waktu untuk titik P bergetar adalah

tp = t-x/υ. Persamaan gelombang berjalan sesuai dengan persamaan getaran harmonis

ξ= ξ0 Sin ωtp = ξ0 Sin 2πϕ 2.1

disebut fase

fase dititik P akibat gelombang dari titik 0 adalah

λ

Hubungan antara cepat rambat gelombang (v), panjang gelombang (λ) dan periode

(T) adalah

T υ λ=

Jika ϕpdimasukan ke persamaan (2.1) diperoleh

(26)

Karena

T π ω= 2 dan

λ π 2 =

k maka persamaan (2.3) dapat ditulis

) (

0Sin tkx

=ξ ω

ξ 2.4

Dengan

ξ0 = Ampiltudo gelombang (m)

ω= Keceptan sudut (radian/detik)

ξ = Simpangan gelombang cahaya saat t dan pada jarak x (m)

k : Bilangan gelombang cahaya (

λ π 2 =

k ) (m-1)

T = Periode (detik)

t = Lama getaran (detik)

λ= Panjang gelombang (m)

b. Gelombang diam

Gelombang diam atau gelombang tegak atau gelombang berdiri sering disebut

juga sebagai gelombang stasioner. Gelombang stasioner terjadi karena ada perpaduan

antara gelombang datang dan gelombang pantul, yang keduanya memiliki panjang

gelombang dan frekuensi yang sama. Pemantulan gelombang dapat terjadi pada ujung

(27)

8

1) Pemantulan pada ujung tetap

Gambar 2.2 Gelombang datang ξ1 ketika sampai ke ujung tetap (ujung terikat) akan

dipantulkan, sedangkan gelombang pantul ξ2 berbeda fase 1800 dengan

gelombang datang.

Misalkan ujung tali O digerakan sehingga gelombang menjalar ke kanan

dengan kecepatan υ. Jarak titik asal getaran dengan ujung tetap adalah OA = l. Jarak

titik P ke ujung tetap A adalah x. Pada saat titik O telah bergetar selama t detik, untuk

gelombang datang, lama titik P bergetar sama dengan lama titik O telah bergetar

dikurangi waktu untuk merambat dari O ke P. Lintasan optisnya adalah __

Fase titik P akibat gelombang datang dari titik O adalah

(28)

Dari persamaan (2.6) dan (2.1) diperoleh

Untuk gelombang pantul, lama P telah bergetar sama dengan lama titik O telah

bergetar dikurangi waktu untuk merambat dari titik O ke titik A dan titik A ke titik P.

Lintasan optisnya adalah =

__

Fase titik P akibat gelombang datang dari titik O dan gelombang pantul dari titik A

adalah

Dari persamaan (2.9) dan (2.1) diperoleh persamaan gelombang pantul ξ2 apabila A

adalah ujung bebas.

p

Untuk ujung tetap, terjadi pembalikan fase (beda sudut fase 1800), sehingga

(29)

10

Berdasarkan rumus trigonometri Sin(α+1800)=−Sinαsehingga diperoleh

Di titik P, bertemu dua buah gelombang, yaitu gelombang datang ξ1dan gelombang

pantul ξ2. perpaduan kedua gelombang ini menghasilkan gelombang stasioner yang

persamaannya adalah

2

Dengan persamaan trigonometri,

)

Sin diproleh persamaan gelombang stasioner

ξ= Simpangan gelombang stasioner pada ujung tetap (m)

(30)

t = Lama getaran (detik)

λ= Panjang gelombang (m)

x = Jarak titik dari ujung tetap (m)

Sehingga beda gelombang berjalan dan gelombang stasioner terlihat pada

persamaan 2.3 dan 2.12 dimana pada persamaan 2.3 amplitudonya sama sedangkan

pada persamaan 2.12 amplitudonya tidak sama pada setiap titik dengan x yang

berbeda dari ujung tetap. Persamaan 2.12 juga merupakan persamaan untuk

gelombang harmonis dengan amplitudo

λ π ξ

ξ0p =2 0Sin2 x 2.13

ξ0 merupakan amplitudo gelombang stasioner pada ujung tetap, di suatu titik

(P) yang berjarak x dari ujung tetap. Titik-titik dengan amplitudo maksimum disebut

perut, sedangkan titik-titik dengan amplitudo minimum disebut simpul.

Amplitudo mencapai maksimum apabila nilai 2 =±1.

λ π x

Sin Yang

bersesuaian dengan ini adalah pada sudut-sudut fase ,...

(31)

12

Amplitudo mencapai minimum apabila nilai 2 =0

λ π x

Sin Yang bersesuaian dengan

ini adalah pada sudut-sudut fase 0, π, 2π,...nπ sehingga

π λ

π x Sinn

Sin2 =

π λ π x=n

2

λ 2 1 .

n

x= 2.15

Dengan n = 0, 1, 2, 3,...

Untuk gelombang stasioner pada ujung tetap, jarak dari perut ke perut

berikutnya sama dengan jarak simpul ke simpul berikutnya yaitu sama dengan ½λ.

2) Pemantulan pada ujung bebas

Gambar 2.3 Gelombang datang ξ1 ketika sampai ke ujung bebas akan dipantulkan.

Gelombang pantul pada ujung bebas tidak mengalami beda fase

Untuk gelombang pantul, lama P telah bergetar sama dengan lama titik O

telah bergetar dikurangi waktu untuk merambat dari titik O ke titik A dan titik A ke

titik P. Lintasan optisnya adalah =

__ AP

(32)

Perpaduan gelombang pada persamaan 2.7 dan persamaan 2.10 di titik P

menghasilkan gelombang stasioner pada ujung bebas.

2

Dengan persamaan trigonometri

)

Sin diperoleh

Persamaan 2.16 juga merupakan persamaan untuk gelombang harmonis

dengan amplitudo

λ π ξ

ξ0p=2 0Cos2 x 2.17

Amplitudo mencapai maksimum apabila nilai 2 ⎟=±1

bersesuaian dengan ini adalah pada sudut-sudut fase pada sudut-sudut fase 0, π,

(33)

14

Amplitudo mencapai minimum apabila nilai 2 =0

λ π x

Cos Yang bersesuaian dengan

ini adalah pada sudut-sudut fase ,...

2

Untuk gelombang stasioner pada ujung bebas maupun gelombang stasioner

pada ujung tetap, jarak dari perut ke perut berikutnya sama dengan jarak simpul ke

simpul berikutnya yaitu sama dengan ½λ.

Dari persamaan gelombang pada persamaan 2.3, 2.12 dan 2.16 pada

gelombang berjalan dan gelombang stasioner pada ujung tetap dan pada ujung bebas

terlihat adanya perbedaan amplitudo dimana pada persamaan 2.3 amplitudonya sama

yaitu ξ0, sedangkan pada persamaan 2.12 dan 2.16 amplitudonya tidak sama pada

(34)

Sehingga disimpulkan bahwa perpaduan antara gelombang datang dan

gelombang pantul suatu gelombang harmonis yang sama akan menghasilkan suatu

gelombang harmonis yang amplitudonya tidak sama besar pada setiap titik.

A.2 Gelombang Cahaya

Cahaya merupakan gelombang elektromagnetik sferis yang mempunyai muka

gelombang berupa permukan bola. Gelombang cahaya dibangkitkan oleh medan

magnet dan medan listrik yang saling bergantung menurut persamaan Maxwell di

medium hampa.

2

Secara umum persamaan gelombang dalam bentuk skalar (Young at al, 2003)

2

Kecepatan rambat gelombang elektromagnetik ditentukan oleh permeabilitas

vakum µ0 dan permitivitas 0 sesuai dengan hubungan persamaan (2.20)

Dengan memasukan nilai µ0 = 4π x 10-7 Wb/Am dan 0 = 8.85 x 10-12 C/Nm2 ke

(35)

16

elektromagnetik ini sama dengan cepat rambat cahaya dalam vakum (c), maka

disimpulkan bahwa cahaya adalah gelombang elektromagnetik (Peter Soedojo, 1999)

Mengingat tugas gelombang sebagai pengantar untuk memindahkan energi, sudah

tentu energi inilah yang ikut merambat bersama fasa getarannya sehingga υ disebut

sebagai laju perambatan fasa gelombang (Lea prasetio, 1992). Energi gelombang

merambat dengan laju tertentu yang dikenal sebagai laju kelompok gelombang vG

(laju grup) yang besarnya

VG = κ ω d d

2.21

VG = Laju kelompok (m/s)

ω= Kecepatan sudut (radian/detik)

k = Bilangan gelombang (

λ π 2 =

k ) (m-1)

Laju kelompok gelombang adalah laju perubahan frekuensi sudut (ω) yang

terjadi terhadap perubahan bilangan gelombang (k). Pada perambatan cahaya dalam

medium udara, kedua macam laju ini sama besarnya. Tetapi dalam medium-medium

tertentu laju fasa dan laju kelompok dapat memiliki besar yang berbeda. Medium

yang apabila dilalui gelombang, nilai laju fasanya berbeda dengan nilai laju

kelompoknya disebut medium dispersif, sedangkan medium tidak dispersif adalah

medium yang apabila dilalui gelombang, nilai laju fasanya sama dengan nilai laju

(36)

tergantung pula pada ferkuensinya. Laju perambatan fasa gelombang hanya

tergantung pada sifat dasar yang dimiliki oleh mediumnya.

B. Besaran – besaran dalam pengukuran cahaya B.1 Kuat cahaya atau Intensitas Cahaya (I)

Intensitas cahaya adalah energi cahaya yang lewat melalui suatu satuan luas

penampang tiap satuan waktu, atau daya (P) yang melewati suatu satuan luas

penampang (A) (Hirose dan Lonngren, 1984)

I 2 2c

0 ω

ξ ρυ

=

Dengan

κ ω =

c yang merupakan kecepatan gelombang cahaya dan ρv adalah

massa jenis dari medium yang dilalui gelombang cahaya, ξ0 adalah amplitudo dan ω

adalah kecepatan sudut. Sehingga berdasarkan devinisi intensitas cahaya diperoleh:

A P

I = 2.22

I = Intensitas cahaya (Watt/m2)

P = Daya (Watt)

A = Luas penampang (m2)

Satuan intensitas dengan demikian adalah [watt/m2]. Untuk sumber gelombang yang

berupa titik, penampang yang dilewati gelombang, yaitu muka gelombangnya adalah

(37)

18

Arus cahaya dari sumber cahaya memancar ke segala arah. Arus cahaya (Φ)

yang dipancarkan per satuan sudut ruang ( ) pada satu arah tertentu disebut kuat

cahaya rata-rata (Ir), maka:

δ Φ =

r

I 2.23

Sudut ruang didefinisikan sebagai sudut yang terbentuk dari pusat bola yang

memotong luas permukaan bidang bola (Sears. Zemansky, 1962)

Gambar 2.4 Definisi sudut ruang

Pengukuran ste-radian dari sudut ruang didefinisikan sebagai

2

r A =

δ 2.24

Jika luas A tepat sama dengan r2, maka sudut ruang adalah satu steradian. Karena luas

bola 4 π r2 maka sudut ruang total pada suatu titik adalah

2 2 4

r r π

δ= = 4 π ste-radian 2.25

Untuk menghitung intensitas sumber cahaya titik yang berada pada pusat bola

pada gambar 2.4 menggunakan persamaan

δ d d

I = Φ 2.26

(38)

B.2. Kuat Penerangan

Bila ada arus cahaya dari sumber cahaya berupa titik jatuh pada permukaan

bidang bola seluas A, maka permukaan tadi menjadi terang. Jumlah arus cahaya yang

mengenai satu satuan luas bidang yang disinari disebut sebagai kuat penerangan (E)

dengan satuan lumen/m2=lux

) (

) (

2

m lumen A

rata rata

E − =Φ 2.27

Untuk memperoleh kuat penerangan yang merata sebesar 1 lux pada bidang seluas

1m2 dibutuhkan arus cahaya sebesar 1 lumen.

Semakin besar arus cahaya (Φ), semakin besar juga kuat cahaya (I) maka kuat

penerangan (E) dapat ditentukan dari persamaan (2.23) dan (2.27) sehingga

diperoleh:

A I E= δ

2

r I

E= 2.28

Persamaan (2.28) Disebut hukum utama kuadrat fotometri

Dari gambar 2.5a dapat dijelaskan bahwa jumlah arus cahaya yang jatuh pada

bidang bola A dan B tetap sama, akan tetapi kuat penerangan pada bidang A lebih

(39)

20

Gambar 2.5a Perbandingan jumlah arus yang jatuh pada bidang bola A dan B

Gambar 2.5b Bidang sangat kecil di P yang berada pada bidang kerja

Bila bidang B terbentang n kali lebih jauh dari bidang A (terhadap titik-tengah sumber

cahaya maka berdasarkan persamaan (2.28) kuat penerangan pada titik B adalah 1/n2

lebih lemah dari kuat penerangan yang terdapat pada titik A.

Berdasarkan persamaan (2.28), dari gambar 2.5b dapat dihitung juga bahwa di

titik P (lebih tepat : bidang sangat kecil di P yang berada pada bidang kerja)

θ Cos d

I

E= 2 2.29

Dan karena

θ Cos

t

d= 2.30

Maka diperoleh persamaan umum untuk menghitung kuat penerangan akibat sumber

cahaya titik.

θ

3

2 Cos

d I

E= 2.31

Keterangan

E =Kuat penerangan pada suatu titik yang disinari oleh sumber cahaya

(40)

I = Intensitas cahaya dari sumber cahaya

d = Jarak dari lampu ke titik di bidang yang disinari

θ = Sudut yang dibentuk oleh garis yang tegak lurus dengan sinar dari

lampu terhadap bidang yang disinari.

B.3 Kecerlangan

Kecerlangan atau kepadatan cahaya atau luminasi (B) adalah intensitas cahaya

persatuan luas bidang yang bercahaya (Mangunwijaya, 1981). Bila ada dua bidang

sumber cahaya yang kuat penerangan rata-rata sama tetapi luas keduanya tidak sama,

maka bidang yang luasnya lebih kecil akan tampak lebih cemerlang dan menyilaukan

dari pada bidang yang luasnya lebih besar. Pada bidang kecil itulah seluruh kekuatan

cahaya dipadatkan dan karenanya nampak cemerlang. Dalam praktek biasanya

sumber cahaya dianggap sebagai sistem sumber dengan intensitas rata-rata tertentu

dan menghasilkan kuat penerangan rata-rata tertentu.

Jika 1 cm2 bidang yang memancarkan cahaya berkekuatan 1 cd ke arah garis

normal bidang, maka bidang tersebut mempunyai kecerlangan 1 sb. Atau :

) (

) ( )

( 2

m A

cd I sb

B ratarata = (2.32)

B = Luminasi kecerlangan dalam stilb (sb)

I = Intensitas cahaya (Watt/m2)

(41)

22

Dari gambar 2.6 dapat ditunjukan bahwa cahaya dipancarkan oleh sumber

cahaya dengan kekuatan cahaya 1 cd mengenai permukaan sebuah bola dengan

jari-jari 1m, sehingga untuk setiap titik pada permukaan bola akan menerima kuat

penerangan sebesar 1 lux.

Gambar 2.6 Bola yang mempunyai sumber cahaya dengan kekuatan cahaya 1 cd di T

Lumen merupakan satuan arus cahaya (flux cahaya). Fluks cahaya sebesar 1

lumen dipancarkan dari sumber cahaya dengan kekuatan 1 cd yang berada dipusat

bola dengan jari-jari 1m yang menembus bidang kulit bola seluas 1m2. (Gabriel,1990)

C. Koefisien Refleksi

Sumber cahaya ada 2 macam yaitu

1. Sumber cahaya primer, yaitu yang merupakan penyebab pertama suatu arus

cahaya, misalnya matahari atau kawat pijar pada bola lampu. Dalam

penelitian ini yang menjadi sumber primer adalah lampu tanpa kap.

2. Sumber sekunder yaitu sumber cahaya hanya memberi terang karena diberi

terang, misalnya bulan, gelas buram bola lampu atau kap lampu dan

(42)

lampu sehingga sumber primer adalah lampu dan sumber sekunder adalah

cahaya dari kap.

Salah satu faktor yang penting dalam perlengkapan cahaya, selain lampu adalah

kap lampu yang berfungsi sebagai reflektor. Reflektor berpengaruh pada banyaknya

cahaya yang mencapai area yang diterangi. Koefisien pantul bahan reflektor dan

bentuk reflektor berpengaruh langsung terhadap kuat penerangan yang diinginkan.

Bahan yang digunakan sebagai reflektor dalam penelitian ini adalah plastik putih

tidak trasparan dan aluminium yang dilapisi cat putih. Reflektor yang digunakan

berbentuk setengah bola. Melapisi aluminium dilakukan dengan tujuan untuk

memperoleh nilai pantul yang diinginkan.

Gambar 2.7 Kuat penerangan untuk luasan keseluruhan

Keterangan

A = Luasan kap lampu yang berbentuk setengah bola (m2)

A’ = luasan permukaan dasar kap lampu yang berbentuk lingkaran (m2)

Persamaan (2.31) merupakan persamaan umum untuk mencari kuat

penerangan pada setiap titik yang diterangi oleh sumber cahaya berbentuk titik.

Dalam penelitian ini intensitasnya dipengaruhi oleh cahaya dari sumber cahaya titik

(43)

24

sehingga diperoleh:

ρ Cosβ

I = Intensitas cahaya dari sumber cahaya (Watt/m2)

I’ = Proyeksi intensitas cahaya yang dipantulkan dari kap lampu (Watt/m2)

ρ = Koefisien pantul

A’ = Luasan permukaan dasar kap (m2)

A = Luasan kap lampu (m2)

β = Sudut proyeksi

Dengan substitusi persamaan 2.33 ke persamaan 2.31 diperoleh persamaan

kuat penerangan yang dipengaruhi oleh koefisien refleksi

θ

Dari persamaan 2.34 dapat ditentukan koefisien reflleksi untuk reflektor

(44)

β

Sehingga diperoleh persamaan untuk mencari koefisien refleksi dari suatu reflektor

(45)

BAB III

METODOLOGI PENELITIAN A. Tempat penelitian

Penelitian dilakukan laboratorium Fisika Modern bagian ruang gelap Universitas Sanata Dharma Yogyakarta Kampus III, Paingan Maguwoharjo, Depok, Sleman.

B. Alat dan Bahan penelitian

Alat yang digunakan dalam penelitian ini adalah 1. Luxmeter

2. Lampu pijar 40 watt 3. Reflektor

4. Statip 5. Meteran

C. Metode Eksperimen a. Penelitian awal

a.1 Menentukan Intensitas Lampu a.1.1 Susunan alat

Penysunan alat dalam penentuan intensitas lampu dilakukan seperti pada gambar dibawah ini

Gambar 3.1 penelitian intensitas lampu

Keterangan

Lampu yang digunakan tanpa kap.

(46)

a.1.2 Pengambilan data

Langkah-langkah yang dilakukan pada penentuan intensitas lampu adalah sebagai berikut:

1. Meletakan lampu tanpa kap tepat ditengah-tengah bidang kerja 2. Menghidupkan luxmeter dengan membuka penutup sensor

3. Mengukur kuat penerangan lampu menggunakan luxmeter pada jarak yang sama pada setiap titik yang membentuk sebuah bola, nilai kuat penerangan (E) terbaca pada layar monitor luxmeter. Pembacaan dilakukan dengan menunggu beberapa saat sehingga didapat nilai angka yang stabil pada luxmeter.

4. Mencatat hasil pengukuran kuat penerangan. Data hasil pengukuaran terdapat pada tabel 4.1

b. Prosedur Percobaan b.1 Susunan Alat

Penyususunan alat dalam pengambilan data dilakukan seperti gambar dibawah ini.

Gambar 3.2 Skema penelitian.

Keterangan:

Reflektor berbentuk setengah bola.

(47)

28

b.2 Pengambilan data.

Langkah-langkah yang dilakukan pada pengambilan data adalah sebagai berikut : 1. Menghidupkan luxmeter dengan membuka penutup sensor.

2. Mengukur kuat penerangan lampu dengan menggunakan luxmeter. Nilai kuat penerangan (E) terbaca pada layar monitor luxmeter. Pembacaan dilakukan dengan menunggu beberapa saat sehingga didapat nilai angka yang stabil pada luxmeter.

3. Melakukan pengukuran kuat penerangan untuk tinggi lampu yang berbeda-beda. 4. Mencatat hasil pengukuran kuat penerangan untuk tempat yang berbeda pada

bidang kerja.

5. Mematikan luxmeter setelah selesai dilakukan pengukuran kuat penerangan. D. Metode Analisis Data

Posisi kap lampu yang digunakan membentuk sudut tertentu (β) terhadap bidang kerja,

(48)

sehingga intensitas yang dihasilkan oleh cahaya pantul dari kap lampu yang sejajar

dengan bidang adalah ' .

' β

I = Intensitas total dari lampu dan kap adalah

β

Data hasil pengukuran adalah kuat penerangan lampu pada berbagai tempat / titik pada jarak tertentu terhadap tinggi lampu menggunakan luxmeter.

Koefisien reflreksi dari reflektor yang digunakan dihitung dengan menggunakan persamaan 2.35

(49)

BAB IV

HASIL DAN PEMBAHASAN

A. HASIL

A.1Hasil Eksperimen

A.1.2 Penentuan Intensitas Cahaya

Dalam penelitian ini intensitas sumber cahaya titik yang berada pada pusat bola

diukur menggunakan persamaan 2

r I

E= Hasil pengukuran terdapat pada tabel 4.1

Lampu yang digunakan dalam penelitian ini adalah lampu merk Philips dengan daya 40 watt.

Tabel 4.1 Intensitas sumber cahaya titik

No Kuat penerangan

Dari tabel hasil pengukuran diperoleh Intensitas rata-rata = 32 Watt/m2

Dari hubungan persamaan

]

diperoleh fluks cahaya 401,5 Lumen dan intensitas cahaya 32 Watt/m2.

(50)

A.1.3 Penentuan Kuat Penerangan

A.1.3.1 Kuat penerangan pada bidang kerja oleh lampu dengan menggunakan

reflektor plastik putih tak transparan

Data hasil eksperimen pada penelitian ini adalah kuat penerangan dengan variasi tinggi lampu dan jarak lampu dengan luxmeter. Lampu yang digunakan dalam semua penelitian ini adalah lampu belajar Philips 40 watt. Hasil pengukuran kuat penerangan pada bidang kerja oleh lampu dengan menggunakan reflektor plastik putih tak transparan terdapat pada tabel 4.2 sampai dengan tabel 4.4

Tabel 4.2. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang berbeda-beda dengan tinggi lampu (t) 0,30 m untuk reflektor plastik putih tak transparan

NO Jarak Lampu a

(m)

θ = tg-1t

a E eksperimen

(lux)

1 0,10 18,43 650 2 0,15 26,56 531 3 0,20 33,66 425 4 0,25 39,79 339

5 0,30 45 264

(51)

32

Tabel 4.3. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang berbeda-beda dengan tinggi lampu (t) 0,25 m untuk reflektor plastik putih tak transparan

NO Jarak Lampu a

(m)

θ = tg-1 t

a E eksperimen

(lux)

1 0,10 21,8 810 2 0,15 30,96 640 3 0,20 38,66 480 4 0,25 45 367 5 0,30 50,19 282 6 0,35 54,47 208

Tabel 4.4. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang berbeda-beda dengan tinggi lampu (t) 0,20 m untuk reflektor plastik putih tak transparan

NO Jarak Lampu a

(m)

θ = tg-1 t

a E eksperimen

(lux)

1 0,10 25,57 1241

2 0,15 36,87 804

3 0,20 45 577

4 0,25 51,34 401

5 0,30 56,31 299

6 0,35 60,26 215

A.1.3.1 Kuat penerangan pada bidang kerja oleh lampu dengan menggunakan

(52)

Hasil pengukuran kuat penerangan pada bidang kerja oleh lampu dengan menggunakan reflektor aluminium bercat putih terdapat pada tabel 4.5 sampai dengan tabel 4.7

Tabel 4.5. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang berbeda-beda dengan tinggi lampu (t) 0,30 m untuk reflektor aluminium bercat putih

NO Jarak Lampu a

(m)

θ = tg-1 t

a E eksperimen

(lux)

1 0,10 18,43 699 2 0,15 26,56 587 3 0,20 33,66 475 4 0,25 39,79 378 5 0,30 45 296 6 0,35 49 237

Tabel 4.6. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang berbeda-beda dengan tinggi lampu (t) 0,25 m untuk reflektor aluminium bercat putih

NO Jarak Lampu a

(m)

θ = tg-1 t

a E eksperimen

(lux)

1 0.10 21.8 963

2 0.15 30.96 710

3 0.20 38.66 568

4 0.25 45 429

5 0.30 50.19 321

(53)

34

Tabel 4.7. Nilai kuat penerangan secara eksperimental untuk jarak lampu yang berbeda-beda dengan tinggi lampu (t) 0,20 m untuk reflektor aluminium bercat putih

NO Jarak Lampu a

(m)

θ = tg-1 t

a E eksperimen

(lux)

1 0,10 25,57 1338 2 0,15 36,87 966 3 0,20 45 661 4 0,25 51,34 455 5 0,30 56,31 324 6 0,35 60,26 229

A.1.4 Analisis Data

A.1.4.1 Menentukan sudut antara luasan bidang dasar kap terhadap bidang kerja

Dari gambar 3.2 diperoleh nilai sudut β yang merupakan sudut yang dibentuk oleh luasan bidang dasar kap (A’) terhadap bidang kerja. Nilai sudut β ditunjukan pada tabel 4.8

Tabel 4.8 Sudut (β) antara luasan bidang dasar kap terhadap bidang kerja

No Tinggi lampu (m) x (m) y (m)

β = tg-1 y

x Luasan dasar kap

A’=πr2 (m2)

(54)

A.1.4.2Menentukan koefisien refleksi dari reflektor dengan menggunakan

A.1.4.2.1 Reflektor plastik putih tak transparan

Hasil perhitungan koefisien reflektor ditunjukan pada tabel 4.9 sampai dengan tabel 4.11

Tabel 4.9. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada reflektor plastik putih tak transparan dengan tinggi lampu (t) 0,30m

NO Jarak

Ralat menggunakan persamaan

(55)

36

Tabel 4.10. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada reflektor plastik putih tak transparan dengan tinggi lampu (t) 0,25m

NO Jarak

Ralat menggunakan persamaan

1

Tabel 4.11. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada reflektor plastik putih tak transparan dengan tinggi lampu (t) 0,20m

(56)

Ralat menggunakan persamaan

A.1.4.2.2 Reflektor aluminium bercat putih

Hasil perhitungan koefisien reflektor ditunjukan pada tabel 4.12 sampai dengan tabel 4.14

Tabel 4.12. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada reflektor aluminium bercat putih dengan tinggi lampu (t) 0,30m

NO Jarak

Ralat menggunakan persamaan

(57)

38

Tabel 4.13. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada reflektor aluminium bercat putih dengan tinggi lampu (t) 0.25m

NO Jarak

Ralat menggunakan persamaan

1

Tabel 4.14. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada reflektor aluminium bercat putih dengan tinggi lampu (t) 0,20m

(58)

Ralat menggunakan persamaan

1 )

( 2

__

− − ∑ =

n

i ρ

ρ σ

Sehingga diperoleh: ρ±σ = 0,42±0,01

B. PEMBAHASAN

Pada identitas lampu dituliskan bahwa lampu yang digunakan mempunyai intensitas 40 watt dan fluks cahaya 400 lumen. Identitas ini sama dengan data yang diperoleh dalam penelitian.(tabel 4.1). Dalam penelitian ini intensitas ditentukan dengan mengukur kuat penerangan pada setiap titik pada jarak yang sama. Lampu yang digunakan adalah lampu tanpa kap sehingga nilai kuat penerangan yang diperoleh sama besar pada setiap titik.

(59)

40

variasi tinggi. Perbedaan nilai koefisien refleksi pada setiap reflektor dipengaruhi oleh perilaku keadaan (jarak) dan pemantulan cahaya oleh reflektor. Sebelum cahaya mengenai bidang kerja, cahaya yang dikeluarkan oleh sumber cahaya dipantulkan terlebih dahulu oleh reflektor sehingga ada sebagian cahaya yang diteruskan ke bidang kerja dan ada juga cahaya yang hilang.

(60)

BAB V

KESIMPULAN DAN SARAN

A. Kesimpulan

1. Koefisien refleksi dapat diketahui dari pengukuran Intensitas cahaya dengan mengukur kuat penerangan pada bidang kerja.

2. Koefisian refleksi suatu reflektor mempunyai nilai yang berbeda–beda pada setiap bahan reflektor.

3. Dari hasil analisis diperoleh nilai koefisien refleksi untuk reflektor plastik adalah

ρ = 0,34±0,03 dan nilai koefisien refleksi untuk reflektor aluminium bercat putih adalah ρ = 0,42±0,01.

B. Saran

(61)

DAFTAR PUSTAKA

Gabriel, J. F. 1996. Fisika Kedokteran. Jakarta: Penerbit EGC.

Hirose, Akira dan Lonngren, Karl E. 1984. Introduction to wave phenomena. Canada: A Wiley Interscience Publication.

Mangunwijaya, Y. B. 1981. Pasal-pasal Penghantar Fisika Bangunan. Jakarta: Penerbit Gramedia.

Prasetio, Lea. Setiawan, Sandi. Hien, Tan kian. 1992. Mengerti Fisika: Gelombang. Yogyakarta: Penerbit Andi Offset.

Sears, Francis Westone dan Zemansky, Mark W. 1962. Fisika untuk Universitas III: Optika & Fisika Atom. Jakarta: Penerbit Binatjipta.

Soedojo, P. 1999. Fisika Dasar. Yogyakarta: Penerbit Andi Offset.

Young, Hugh D. Freedman, Roger A. Sandin, T. R. Ford, Lewis. A. 2003. Fisika Universitas Edisi Kesepuluh. Seri Sears dan Zemansky. Jakarta: Penerbit Erlangga.

Daftar Pustaka dari Internet

http://www.sinarharapan.co.id/berita/0611/28/ipt02.html--Dampak sistem

pencahayaan bagi kesahatan mata

(62)

Lampiran V

Contoh perhitungan nilai koefisien refleksi Koefisien refleksi diperoleh dari persamaan:

β

Nilai koefisien refleksi untuk reflektor plastik

β

Nilai koefisien refleksi untuk reflektor alumunium putih

(63)

Lampiran I Contoh perhitungan intensitas cahaya dan arus cahaya intensitas cahaya diperoleh dari persamaan :

2

Arus cahaya diperoleh dari persamaan:

(64)

Lampiran II

Contoh perhitungan untuk memperoleh nilai θ Diketahui : Jarak lampu 0,10m

Tinggi lampu 0,30m tg θ = 0,10/0,30

θ = arctg 0,33

θ = 18,43

Tabel nilai sudut θ antara sumber cahaya titik dan bidang kerja terhadap tinggi lampu (t) 0,30m

NO Jarak Lampu a

(m)

θ = tg-1 t

a Cos3θ

1 0,10 18,43 0,85 2 0,15 26,56 0,71 3 0,20 33,66 0,57 4 0,25 39,79 0,45

5 0,30 45 0,35

(65)

45

Tabel nilai Cos3 sudut antara sumber cahaya titik terhadap bidang kerja untuk tinggi lampu (t) 0,25m

NO Jarak Lampu a

(m)

θ = tg-1 t

a Cos3θ

1 0,10 21,8 0,8

2 0,15 30,96 0,63 3 0,20 38,66 0,47

4 0,25 45 0,35

5 0,30 50,19 0,26 6 0,35 54,47 0,19

Tabel nilai Cos3 sudut antara sumber cahaya titik terhadap bidang kerja untuk tinggi lampu (t) 0,20m

NO Jarak Lampu a

(m)

θ = tg-1 t

a Cos3θ

1 0,10 25,57 0,73 2 0,15 36,87 0,51

3 0,20 45 0,35

4 0,25 51,34 0,24 5 0,30 56,31 0,17

(66)

Lampiran III

Contoh perhitungan untuk memperoleh nilai sudut β

Nilai sudut β merupakan sudut yang dibentuk oleh luasan bidang dasar kap (A’) terhadap bidang kerja.

Diketahui Jarak lampu 0.084m Tinggi lampu 0,017m tg β = 0,084/0,017 β = arctg 4,94

(67)

Lampiran IV

Contoh perhitungan luasan kap lampu dan luasan permukaan dasar kap lampu. Luasan kap lampu diperoleh dengan rumus luas bola A = 4π r2.

Diketahui kap lampu berbentuk setengah bola dengan jari-jari 0.13m sehingga rumus luas setengah bola: A = 2π r2

A = 2 x 3,14 x 0,132 A = 0,106132 m2

Luasan permukaan dasar kap lampu diperoleh dengan rumus luas lingkaran A’ = π r2. Diketahui kap lampu berbentuk lingkaran dengan jari-jari 0,13m sehingga luasan permukaan dasar kap lampu:

A’ = π r2

A’ = 3,14 x 0,132 A’ = 0,053 m2

Gambar

Tabel 4.8. Sudut (β) antara luasan bidang dasar kap terhadap bidang
Tabel 4.10. Nilai koefisien refleksi untuk jarak lampu yang berbeda-beda pada
Gambar 2.1 gelombang berjalan ke kanan dan lama P bergetar sama dengan lama O bergetar
Gambar 2.2 Gelombang datang ξ1 ketika sampai ke ujung tetap (ujung terikat) akan dipantulkan, sedangkan gelombang pantul ξ berbeda fase 1800 dengan
+7

Referensi

Dokumen terkait

Pendidikan karakter adalah suatu sistem penanaman nilai-nilai karakter kepada peserta didik, melalui pendidikan karakter diharapkan akan terbentuk perilaku peserta didik yang

Jumlah bunga yang di analisis adalah jumlah bunga dari tiga ranting sampling yang dipilih secara acak dalam satu pohon, dimana dalam satu petak diambil satu pohon yang dominan

Proses pendidikan dan perubahan organisasi sekolah tidak terdefinisikan dengan jelas tetapi mempunyai potensi terhadap isu-isu pendekatan baru dan dapat dikembangkan

Penyakit menular seksual (PMS) adalah infeksi yang sebagian besar menular lewat hubungan seksual dengan pasangan yang sudah tertular. PMS dapat menyebabkan terjadinya komplikasi

Tujuan penyusunan Petunjuk Penyelenggaraan Napak Tilas Perjuangan Pahlawan Joko Songo ke XX Kwartir Cabang Gerakan Pramuka Kabupaten Karanganyar Tahun 2015 ini

Sementara  pada  ekosistem  tadah  hujan  atau  lahan  kering  dengan  intensitas  dan  distribusi  hujan  yang  tidak  merata, embung  dapat  digunakan  untuk 

Satuan Kerja BPK Perwakilan Provinsi Nusa Tenggara Barat Eselon I Pusat adalah entitas akuntansi dari Badan Pemeriksa Keuangan Republik Indonesia yang berkewajiban

[r]