• Tidak ada hasil yang ditemukan

PENENTUAN ATURAN ASOSIASI SPASIAL PADA OBJEK SPASIAL KOTA BOGOR ANGGI WIDYASARI

N/A
N/A
Protected

Academic year: 2021

Membagikan "PENENTUAN ATURAN ASOSIASI SPASIAL PADA OBJEK SPASIAL KOTA BOGOR ANGGI WIDYASARI"

Copied!
34
0
0

Teks penuh

(1)

PENENTUAN ATURAN ASOSIASI SPASIAL PADA OBJEK

SPASIAL KOTA BOGOR

ANGGI WIDYASARI

DEPARTEMEN ILMU KOMPUTER

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

BOGOR 2016

(2)
(3)

PERNYATAAN MENGENAI SKRIPSI DAN

SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA

Dengan ini saya menyatakan bahwa skripsi berjudul Penentuan Aturan Asosiasi Spasial pada Objek Spasial Kota Bogor adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor.

Bogor, Januari 2016

Anggi Widyasari

(4)

ABSTRAK

ANGGI WIDYASARI. Penentuan Aturan Asosiasi Spasial pada Objek Spasial di Kota Bogor. Dibimbing oleh ANNISA dan TOTO HARYANTO.

Spatial data mining dapat mengekstrak pengetahuan yang menarik dari

data spasial yang belum diketahui sebelumnya dan juga bermanfaat. Penelitian ini menggunakan metode spatial association rule untuk menghasilkan sebuah sistem terhadap data objek spasial di Kota Bogor, yaitu data landuse, terminal bis, stasiun, jalan, rel, dan sungai di Kota Bogor. Operasi spasial yang ada antara lain

contains, intersects, is disjoint, overlaps, equals, touches, dan within. Algoritme

yang digunakan pada penelitian ini adalah algoritme apriori. Aturan yang digunakan adalah yang memiliki nilai support dan confidence di atas ambang batas. Minimum support yang digunakan adalah yang bernilai lebih dari 20% dan

minimum confidence bernilai lebih dari 50%. Hasilnya adalah objek yang disjoint

dengan terminal, stasiun, rel, brige main road, main road, national highway,

overpass highway, tol road, commercial and bussines, forestry, industry and warehouse, planned house, serta berpotongan dan bersentuhan dengan agriculture and open space, disjoint, maka objek tersebut adalah low density urban kampung.

Objek yang disjoint dengan terminal, stasiun, rel, bridge main road, main road,

overpass highway, tol road, commercial and bussines, forestry, industry and warehouse, dan berpotongan dan bersentuhan dengan low density urban kampung,

maka objek tersebut adalah agriculture and open space. Kata kunci: aturan asosiasi spasial, spatial data mining

ABSTRACT

ANGGI WIDYASARI. Determination of Spatial Association Rules on Spatial Objects in Bogor. Supervised by ANNISA and TOTO HARYANTO.

Spatial data mining can extract interesting knowledge from spatial data that have not been discovered before. This research used spatial association rule to produce a system for spatial objects data in Bogor, which are city data, landuse, bus terminals, stations, roads, rail, and river in the city of Bogor. Spatial attributes that being used such as contains, intersects, is disjoint, overlaps, equals, touches, and within. Algorithms used in this research are apriori algorithm. Rule which being used is the one that have support and confidence values above the threshold. Minimum support used is greater than 20% and the minimum confidence is greater than 50%. The results are a disjoint objects with terminals, station, rail, bridge main road, main road, overpass highway nation, toll road nation, commercial and bussines, forestry, industry and warehouse, planned house, intersects and touches agriculture and open space, then the object is low density urban kampung. Objects that are disjoint with terminals, stations, rail, bridge main road, main road, overpass highway, toll road, commercial and bussines, forestry, industry and warehouse, and intersects and touches with low density urban kampung, then the object is agriculture and open space.

(5)

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer

pada

Departemen Ilmu Komputer

PENENTUAN ATURAN ASOSIASI SPASIAL PADA OBJEK

SPASIAL KOTA BOGOR

DEPARTEMEN ILMU KOMPUTER

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

BOGOR 2016

(6)
(7)
(8)

PRAKATA

Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta’ala atas segala karunia-Nya sehingga karya ilmiah ini berhasil diselesaikan. Tema yang dipilih dalam penelitian ini ialah aturan asosiasi spasial, dengan judul Penentuan Aturan Asosiasi Spasial pada Objek Spasial Kota Bogor.

Terima kasih penulis ucapkan kepada Ibu Annisa, SKom MKom dan Bapak Toto Haryanto, SKom MSi selaku pembimbing, yang telah memberikan saran dan bimbingan selama penelitian dan penulisan karya ilmiah ini, serta Ibu Dr Imas Sukaesih Sitanggang, SSi MKom sebagai moderator seminar dan penguji yang telah banyak memberi saran.

Ungkapan terima kasih juga disampaikan kepada ayah, ibu, serta seluruh keluarga dan sahabat, atas segala doa dan kasih sayangnya.

Semoga karya ilmiah ini bermanfaat.

Bogor, Januari 2016

(9)

DAFTAR ISI

DAFTAR TABEL vi DAFTAR GAMBAR vi DAFTAR LAMPIRAN vi PENDAHULUAN 1 Latar Belakang 1 Perumusan Masalah 1 Tujuan Penelitian 2 Manfaat Penelitian 2

Ruang Lingkup Penelitian 2

METODE 2

Pengadaan Data 2

Praproses Data 3

Tahap Penentuan Aturan Asosiasi 6

Verifikasi Aturan 7

HASIL DAN PEMBAHASAN 7

Data 7

Praproses Data 8

Tahap Penentuan Aturan Asosiasi 12

SIMPULAN DAN SARAN 16

Simpulan 16

Saran 17

DAFTAR PUSTAKA 17

(10)

DAFTAR TABEL

1 Jumlah objek dan tipe geometri 8

2 Hubungan spasial objek Kota Bogor 11

3 Kode hubungan spasial 11

4 Large itemset untuk minimum support 10% dan confidence 30% 12 5 Large itemset untuk minimum support 20% dan confidence 30% 13 6 Large itemset untuk minimum support 20% dan confidence 50% 14

DAFTAR GAMBAR

1 Tahapan penelitian 3

2 Ilustrasi operasi spasial (Murai 1996) 4

3 Peta objek spasial Kota Bogor 8

4 Atribute objek terminal 9

5 Tampilan operasi split pada layer vector 9

6 Penentuan hubungan spasial 10

7 Data dalam format ARFF 12

8 Daerah hasil aturan asosiasi 16

DAFTAR LAMPIRAN

1 Data terminal 18

2 Data stasiun 18

3 Data sungai 18

4 Data rel 18

5 Data Kota Bogor 19

6 Data ARFF 19

7 Nilai atribut objek spasial 20

(11)

PENDAHULUAN

Latar Belakang

Data spasial di suatu kota perlu diketahui untuk mendukung pembangunan kota tersebut. Data spasial merupakan kumpulan data yang mengacu pada posisi, objek, dan hubungan di antaranya dalam ruang bumi (Rajabidfard dan Williamson 2000). Bogor memiliki berbagai data spasial, antara lain bangunan, jalan, dan perairan. Dari data spasial tersebut dapat diketahui hubungan spasialnya. Hubungan spasial tersebut dapat diketahui dengan mengolah dan menganalisis data spasial dengan spatial data mining. Spatial data mining dapat mengekstrak pengetahuan yang menarik dari data spasial yang belum diketahui sebelumnya.

Penelitian Hariona (2009), menerapkan spatial association rule menggunakan data bangunan Kota Bogor. Sistem ini menghasilkan pola-pola sebaran bangunan Kota Bogor dengan menggunakan relasi spasial arah dan jarak. Selain arah dan jarak, sebenarnya masih banyak relasi spasial lainnya yang bisa dilihat, misalnya adalah hubungan topologi antar objek spasial, seperti disjoint,

intersect, inside/outside, adjacent_to, covers/covered_by, dan equal.

Pada penelitian ini data yang digunakan tidak hanya data bangunan tetapi data objek spasial Kota Bogor, seperti terminal, stasiun, rel, sungai, jalan, sungai, kota, dan landuse. Metode yang digunakan sama seperti penelitian Hariona (2009), yaitu metode spatial association rule dengan algoritme yang digunakan adalah algoritme apriori. Spatial association rule adalah aturan yang menggambarkan implikasi dari satu atau serangkaian fitur oleh satu set fitur dalam database spasial (Koperski dan Han 1995). Spatial association rule digunakan untuk mencari aturan asosiasi dari sejumlah objek di dalam peta Kota Bogor, yaitu terminal, stasiun, rel, sungai, jalan, dan landuse terhadap hubungan antar objek tersebut dengan objek lainnya. Hubungan spasial yang digunakan adalah hubungan topologi, seperti contains, intersects, is disjoint, overlaps, equals, touches, dan

within. Contoh dari aturan asosiasi yang dihasilkan adalah sebuah sungai dapat

diketahui berada disjoint dengan jalan utama, berseberangan dengan lahan pertanian, dan berseberangan dengan perkampungan. Sistem ini diharapkan dapat menghasilkan pola-pola menarik yang sebelumnya tidak teramati dan berguna tentang data spasial Kota Bogor.

Perumusan Masalah Masalah yang dianalisis dalam penelitian ini adalah:

1 Bagaimana metode spatial association rule mining dapat menghasilkan pola-pola objek spasial di Kota Bogor?

2 Bagaimana aturan yang dihasilkan dari relasi antar objek spasial di Kota Bogor?

(12)

2

Tujuan Penelitian

Penelitian ini bertujuan menerapkan algoritme apriori pada objek spasial. Hal ini dilakukan untuk menghasilkan aturan asosiasi yang berkaitan dengan objek spasial Kota Bogor, sehingga dapat diketahui karakteristik suatu objek di Kota Bogor.

Manfaat Penelitian

Hasil penelitian ini berupa aturan yang memberikan informasi mengenai pola antara beberapa item pada data objek spasial Kota Bogor. Hasil ini diharapkan dapat bermanfaat untuk mendapatkan informasi yang berguna untuk pembangunan Kota Bogor.

Ruang Lingkup Penelitian

Penelitian ini dibatasi pada penerapan spatial data mining dengan menggunakan salah satu teknik yaitu spatial association rule. Data yang digunakan adalah data objek spasial Kota Bogor. Hubungan spasial yang digunakan adalah hubungan topologi, seperti contains, intersects, is disjoint,

overlaps, equals, touches, dan within. Data spasial diolah dalam bentuk titik,

garis, dan bidang.

METODE

Penelitian ini dilakukan dengan melakukan beberapa tahapan untuk menghasilkan aturan-aturan dengan aturan asosiasi spasial. Tahapan pada penelitian ini diilustrasikan pada Gambar 1.

Pengadaan Data

Data yang digunakan untuk penelitian ini adalah data spasial Kota Bogor, antara lain data landuse, terminal bis, stasiun, jalan, rel, dan sungai di Kota Bogor. Data tersebut didapatkan dari blog GIS Indonesia. Untuk data landuse dan jalan, karena jumlahnya yang sangat besar dibanding data lainnya, yaitu 5147 data jalan dan 7495 data landuse, maka dibagi sesuai kategori yang ada. Data landuse dibagi menjadi 7 jenis yaitu agriculture and open space, commercial and bussines,

forestry, industry and warehouse, low density urban kampung, planned house, dan swamp, river and pond. Data jalan dibagi menjadi 15 jenis yaitu local road, main road, other road, bridge (local road), bridge (main road), bridge (road other), footpath road, footbridge for double line, national highway, overpass (highway national), overpass (other road), rail road single, tol road national highway, tunnel, dan unknown road.

(13)

3

Gambar 1 Tahapan penelitian

Praproses Data

Praproses data meliputi pembersihan data, seleksi data, integrasi data, dan transformasi data. Tujuan dilakukannya praproses dalam data mining adalah mentransformasi data ke suatu format yang prosesnya lebih mudah dan efektif. Seleksi Data

Proses pemilihan data yang sesuai dengan analisis data yang akan dilakukan. Jumlah data yang sangat banyak memerlukan penyeleksian yang tepat. Pada data jalan dan landuse yang memiliki jumlah data yang besar, dilakukan pembagian data lagi sesuai kategorinya. Tetapi terdapat beberapa kategori pada data jalan yang tidak digunakan karena dianggap kurang penting, yaitu data local road,

other road, bridge (local road), bridge (road other), footpath road, footbridge for double line, overpass (other road), rail road single, tunnel, dan unknown road.

Oleh karena itu data jalan yang digunakan menjadi 5 jenis yaitu main road, bridge (main road), national highway, overpass (highway national), dan tol road

national highway. Begitu juga pada data landuse, terdapat satu data yang tidak

memiliki kategori. Maka data tersebut tidak diikutsertakan pada proses selanjutnya.

Mulai Pengadaan data

Data objek spasial kota Bogor Praproses data Seleksi data Integrasi data Pembersihan data Transformasi data Tahap penentuan aturan asosiasi

(14)

4

Integrasi Data

Data yang sudah didapatkan dengan format .shp diproses menggunakan perangkat lunak QuantumGIS untuk ditentukan hubungan spasialnya. Masing-masing objek dihubungkan dengan objek lainnya menggunakan fungsi spatial

query pada QuantumGIS. Operasi spasial yang ada antara lain contains, intersects, is disjoint, overlaps, equals, touches, dan within. Contoh ilustrasi operasi spasial

dapat dilihat pada Gambar 2.

Gambar 2 Ilustrasi operasi spasial (Murai 1996)

Data dari objek yang ada masing-masing dicari dengan dipasangkan satu per satu dengan objek lainnya kemudian dipilih feature hubungan spasial yang ada, maka akan didapatkan id dari objek yang mempunyai hubungan spasial tersebut. Selanjutnya objek dengan id tersebut dicatat dan disimpan pada Microsoft Excel. Setelah seluruh kelompok objek sudah dicari hubungan spasialnya dengan objek lainnya, kemudian kelompok objek tersebut diintegrasikan menjadi satu kesatuan data. Setelah itu, hasil hubungan spasial antar-objek tersebut agar bisa diproses selanjutnya.

Pembersihan Data

Pada tahap ini, data yang mengandung nilai hilang (kosong), noise, maupun data yang tidak konsisten dibuang. Pembersihan data dilakukan untuk membuang

record yang keliru, menstandarkan atribut-atribut, merasionalisasi struktur data,

dan mengendalikan data yang hilang. Dari proses sebelumnya diketahui terdapat 42 data sungai dan 117 data jalan yang tidak mempunyai hubungan spasial dengan objek-objek lainnya. Maka data-data tersebut dihapus agar dapat memaksimalkan hasil yang didapat nantinya.

Transformasi Data

Selanjutnya, data yang ada dilakukan proses pengubahan data. Data objek dengan hubungan spasialnya diubah menjadi simbol-simbol yang bisa diproses pada perangkat lunak Weka.

(15)

5 Data objek dengan hubungan spasialnya diubah menjadi terminal = t, stasiun = st, rel = r, sungai = su, agriculture and open space = aos, commercial

and bussines = cb, forestry = f, industry and warehouse = iw, low density urban kampung = lduk, planned house = ph, swamp, river, and pond = swp, bridge main

road = bmr, main road = mr, national highway = nh, overpass highway national =

ohn, dan tol road nation = trnh. Begitu juga dengan hubungan spasial yang ada direpresentasikan menjadi, 1 = is disjoint, 2 = intersects, 3 = within, 4 = crosses, 5 = overlaps, 6 = touches, dan 7 =contains. Hubungan spasial antar-sesama objek, misalnya sungai dengan sungai dituliskan dengan tanda “?” karena tidak mempunyai hubungan spasial.

Kemudian data tersebut disimpan dalam format CSV. Setelah itu data tersebut diubah lagi menjadi format ARFF dengan menambahkan nama relasi dan nama atribut. Contohnya sebagai berikut:

@relation Objek_Spasial @attribute Terminal {t1, t27} @attribute Stasiun {st1, st27} @attribute Rel {r1, r2, r24, r26}

@attribute Sungai {su1, su2, su24, su246, su26, su27} @data

?,st1,r1,su1,bmr1,mr1,nh1,ohn1,trnh1,aos1,cb23,f1,iw1,lduk1,ph1,srp1,t ?,st1,r1,su1,bmr1,mr1,nh1,ohn1,trnh1,aos1,cb1,f1,iw1,lduk1,ph1,srp1,t ?,st1,r1,su1,bmr1,mr1,nh1,ohn1,trnh1,aos1,cb23,f1,iw1,lduk1,ph1,srp1,t

Format data di atas menyatakan bahwa nilai atribut untuk terminal adalah t1 = terminal (disjoint), t27 = terminal (intersects dan contains). Nilai atribut untuk stasiun adalah st1 = stasiun (disjoint), st27 = stasiun (intersects dan contains). Nilai atribut untuk rel adalah r1 = rel (disjoint), r2 = rel (intersects), r24 = rel (intersects dan crosses), r26 = rel (intersects dan touches). Nilai atribut untuk sungai adalah su1 = sungai (disjoint), su2 = sungai (intersects), su24 = sungai (intersects dan crosses), su246 = sungai (intersects, crosses, dan touches), su26 = sungai (intersects dan touches), su27 = sungai (intersects dan contains).

Pada bagian contoh data dapat dijelaskan bahwa pada baris pertama menyatakan objek terminal tersebut tidak mempunyai hubungan spasial dengan sesama objek terminal, disjoint dengan stasiun, disjoint dengan rel, disjoint sungai,

disjoint dengan bridge main road, disjoint dengan main road, disjoint dengan overpass highway national, disjoint dengan tol road nation, disjoint dengan agriculture and open space, intersects dan within dengan commercial bussines, disjoint dengan forestry, disjoint dengan industry and warehouse, disjoint dengan low density urban kampung, disjoint dengan planned house, dan disjoint dengan swamp, river, and pond.

Pada baris kedua menyatakan objek terminal tersebut tidak mempunyai hubungan spasial dengan sesama objek terminal, disjoint dengan stasiun, disjoint dengan rel, disjoint sungai, disjoint dengan bridge main road, disjoint dengan

main road, disjoint dengan overpass highway national, disjoint dengan tol road nation, disjoint dengan agriculture and open space, disjoint dengan commercial bussines, disjoint dengan forestry, disjoint dengan industry and warehouse,

(16)

6

disjoint dengan low density urban kampung, disjoint dengan planned house, dan disjoint dengan swamp, river, and pond.

Pada baris ketiga menyatakan objek terminal tersebut tidak mempunyai hubungan spasial dengan sesama objek terminal, disjoint dengan stasiun, disjoint dengan rel, disjoint sungai, disjoint dengan brige main road, disjoint dengan main

road, disjoint dengan overpass highway national, disjoint dengan tol road nation, disjoint dengan agriculture and open space, intersects dan within dengan commercial bussines, disjoint dengan forestry, disjoint dengan industry and warehouse, disjoint dengan low density urban kampung, disjoint dengan planned house, dan disjoint dengan swamp, river, and pond.

Tahap Penentuan Aturan Asosiasi

Pada tahap ini dilakukan proses penentuan aturan asosiasi spasial untuk mencari aturan spasial yang sesuai. Algoritme yang digunakan adalah algoritme apriori.

Algoritme Apriori

Algoritme Apriori adalah sebuah algoritme pencarian pola yang banyak digunakan dalam data mining. Algoritme ini ditujukan untuk mencari kombinasi

item-set yang mempunyai suatu nilai keseringan tertentu sesuai kriteria atau filter

yang diinginkan. Nama dari algoritme ini didasarkan pada fakta bahwa algoritme ini menggunakan prior knowledge dari frequent itemset (Han dan Kamber 2006).

Tahap pertama pada algoritme ini adalah menemukan frequent 1-itemsets dengan scanning database untuk kemudian menghitung support (jumlah kejadian) untuk setiap item. Setelah support dari setiap item didapat, item yang memiliki

support diatas minimum support dikumpulkan. Hasil dari tahap tersebut disebut

L1. Selanjutnya, dengan L1 dapat menemukan L2 (frequent 2-itemsets), dari L2 kita dapat menemukan L3, dan seterusnya sampai tidak ada lagi frequent

k-itemsets yang ditemukan.

Algoritme Apriori (Agrawal dan Srikant 1994) : Ck: candidate itemset of size k

Lk: frequent itemset of size k L1 = {large 1-itemset};

for (k = 2; Lk-1 != Ø; k++) do begin Ck = apriori-gen(Lk-1);

for each transaction t in database do

Ct = subset(Ck, t);

for each candidates c in Ct do c.count++; end Lk = candidates c in Ck where c.count >= minsupp; return ∪k Lk; Aturan

Aturan yang dihasilkan melalui proses penentuan aturan asosiasi spasial berbentuk X  Y [S%, C%]. Jika sebuah aturan terdiri atas dua atau lebih dimensi,

(17)

7 seperti dimensi object, intersects, dan close_to, maka disebut dengan

multidimensional association rule (Han dan Kamber 2006). Jika hanya satu

dimensi maka disebut single-dimensional association rule. Sebagai contoh

object(X, “sekolah”) ^ intersects(X, “pusatolahraga”)  close_to(X,”taman”)

[50%, 80%], ini bermakna bahwa 80% sekolah yang berpotongan dengan pusat olahraga maka dekat dengan taman, hal ini terjadi pada 50% dari keseluruhan data yang ada.

Support

Support untuk suatu aturan asosiasi X  Y adalah proporsi banyaknya

kejadian dalam basis data yang item X dan item Y terdapat dalam sebuah relasi, dengan kata lain

Support = P(X ⋃ Y) = Jumlah relasi yang mengandung X dan YJumlah keseluruhan relasi

Confidence

Confidence untuk suatu aturan asosiasi X  Y adalah ukuran keakuratan

dari aturan tersebut, dihitung dari persentase relasi dalam basis data yang mengandung X dan juga mengandung Y, dengan kata lain

Confidence(X⇒Y) = P(Y|X) =support(x ⋃ y) support(x)

= Jumlah relasi yang mengandung X dan Y Jumlah relasi yang mengandung X

Verifikasi Aturan

Aturan yang sudah dihasilkan pada tahap sebelumnya kemudian diverifikasi untuk menentukan apakah memiliki keterkaitan yang berguna atau tidak. Aturan yang digunakan adalah yang memiliki nilai support dan confidence di atas ambang batas.

Laporan

Aturan-aturan yang sudah didapatkan dan diverifikasi kemudian dilakukan representasi pengetahuan yang ditampilkan dalam bentuk tabel.

HASIL DAN PEMBAHASAN

Data

Penelitian dilakukan terhadap objek spasial di Kota Bogor sebanyak 13 179 data yang dikelompokkan menjadi 7495 landuse, 11 bus terminal (Lampiran 1), 2 stasiun (Lampiran 2), 5147 jalan, 455 sungai di Kota Bogor (Lampiran 3), dan 1 rel (Lampiran 4).

(18)

8

Tabel 1 Jumlah objek dan tipe geometri

Objek Tipe geometri Jumlah objek

Landuse Poligon 7495 Terminal Titik 11 Stasiun Titik 2 Jalan Garis 5147 Rel Garis 1 Sungai Garis 455 Praproses Data

Dari data yang ada tersebut kemudian dilakukan proses penentuan hubungan spasial antar objek. Data yang didapatkan dengan format file .shp dibuka menggunakan QuantumGIS, kemudian dapat dilihat peta yang menampilkan objek-objek spasial tersebut. Peta objek spasial dapat dilihat pada Gambar 3.

Gambar 3 Peta objek spasial Kota Bogor

Selanjutnya dapat dilihat tabel atribut yang berisi informasi dari masing-masing objek. Contoh tabel dapat dilihat pada Gambar 4 yang menampilkan nama dari terminal-terminal yang ada. Kemudian atribut yang penting dari tabel tersebut di-copy ke Microsoft Excel.

(19)

9

Gambar 4 Atribute objek terminal Seleksi Data

Untuk data jalan dan landuse karena jumlahnya yang sangat banyak, yaitu 5147 data jalan dan 7495 data landuse, maka dilakukan pembagian data sesuai kategori yang ada. Pembagian data tersebut dilakukan di QuantumGIS dengan fungsi split vector layer. Pada split vector layer, dipilih input vector layer yaitu layer yang akan dibagi, kemudian unique id field untuk memilih berdasarkan apa

layer tersebut akan dibagi. Fungsi split vector layer tersebut dapat dilihat pada

Gambar 5.

Gambar 5 Tampilan operasi split pada layer vector

Dari Gambar 5, layer yang akan dibagi adalah jalan dan dibagi berdasarkan nama unsur.

Integrasi Data

Selanjutnya, setiap kelompok objek ditentukan hubungan spasialnya dengan kelompok objek lainnya. Hubungan spasial yang ada antara lain contains,

intersects, is disjoint, overlaps, equals, touches, dan within. Proses penentuan

hubungan spasial dengan menggunakan fungsi spatial query pada QuantumGIS dapat dilihat pada Gambar 6.

(20)

10

Gambar 6 Penentuan hubungan spasial

Dengan spatial query tersebut, dapat dipilih objek yang akan dicari hubungan spasialnya dengan fungsi select source features from. Kemudian dipilih dengan objek apa objek tersebut akan dicari hubungannya dengan fungsi

reference features of. Selanjutnya dipilih hubungan spasialnya dengan fungsi where the feature. Dari Gambar 6 tersebut dapat dilihat, objek yang dicari

hubungannya adalah terminal dan Kota Bogor dengan fitur hubungan spasial yang dicari adalah intersects. Hasil dari objek terminal yang mempunyai hubungan spasial intersects dengan Kota Bogor dapat dilihat di result feature ID’s yang menampilkan id dari objek tersebut. Kemudian objek dengan id tersebut dicatat di Microsoft Excel. Selanjutnya dicari lagi dengan fitur hubungan spasial lainnya. Begitu juga selanjutnya dengan objek-objek lainnya, dihubungkan satu persatu untuk dicari hubungan spasialnya.

Setelah semua objek dihubungkan dengan objek lainnya dan diketahui hubungan spasialnya. Hasil tersebut dicatat ke Microsoft Excel, kemudian seluruh kelompok objek tersebut diintegrasikan menjadi satu kesatuan data. Contoh dari hubungan spasial yang dihasilkan dapat dilihat pada Tabel 2 dan 3.

Pembersihan Data

Selanjutnya, dilakukan pembersihan data dengan menghapus data yang mengandung nilai kosong. Dari proses sebelumnya diketahui terdapat 42 data sungai dan 117 data jalan yang tidak mempunyai hubungan spasial dengan objek-objek lainnya, maka data tersebut dihapus. Total data yang digunakan setelah pembersihan dan seleksi data adalah 8081 data.

Transformasi Data

Setelah itu data yang ada dilakukan proses pengubahan menjadi bentuk yang tepat agar dapat digunakan pada proses selanjutnya. Objek yang ada direpresentasikan dalam bentuk lain, seperti terminal = t, stasiun = st, rel = r,

(21)

11 sungai = su, agriculture and open space = aos, commercial and bussines = cb, forestry = f, industry and warehouse = iw, low density urban kampung = lduk, planned house = ph, swamp, river, and pond = swp, bridge main road = bmr, main

road = mr, national highway = nh, overpass highway national = ohn, dan tol road

nation = trnh. Begitu juga dengan hubungan spasial yang ada direpresentasikan menjadi, 1 = is disjoint, 2 = intersects, 3 = within, 4 = crosses, 5 = overlaps, 6 =

touches, dan 7 =contains. Contoh setelah dilakukan proses pengubahan data dapat

dilihat pada Tabel 3.

Tabel 2 Hubungan spasial objek Kota Bogor

Objek Stasiun Rel Sungai

Terminal is_disjoint is_disjoint is_disjoint

Stasiun ? is_disjoint is_disjoint

Rel is_disjoint ? intersects, crosses

Sungai is_disjoint is_disjoint ?

Sungai is_disjoint intersects, crosses ?

Main Road is_disjoint is_disjoint is_disjoint

Main Road is_disjoint intersects, crosses intersects, crosses

Forestry is_disjoint is_disjoint is_disjoint

Forestry is_disjoint is_disjoint Intersects

Planned_House is_disjoint is_disjoint is_disjoint Planned_House is_disjoint is_disjoint intersects

Tabel 3 Kode hubungan spasial

Objek Stasiun Rel Sungai

Terminal st1 r1 su1

Stasiun ? r1 su1

Rel st1 ? su24

Sungai st1 r1 ?

Sungai st1 r24 ?

Main Road st1 r1 su1

Main Road st1 r24 su24

Forestry st1 r1 su1

Forestry st1 r1 su2

Planned_House st1 r1 su1

Planned_House st1 r1 su2

Setelah itu, semua data dari masing-masing objek diintegrasikan menjadi satu kesatuan data, kemudian disimpan dalam format CSV. Kemudian data tersebut diubah lagi menjadi format ARFF agar dapat dibaca oleh Weka untuk proses selanjutnya, yaitu tahap mining. Contoh data dengan format ARFF dapat dilihat pada Gambar 7.

(22)

12

Gambar 7 Data dalam format ARFF Tahap Penentuan Aturan Asosiasi

Pada tahap ini dilakukan proses mining dengan menggunakan fungsi asosiasi yang tersedia di Weka versi 3.7.10. Data tersebut diproses dengan

associator apriori. Kemudian ditentukan minimum support dan minimum confidence. Aturan asosiasi yang dipilih adalah yang memiliki nilai support dan confidence di atas ambang batas.

Pada proses ini dilakukan percobaan beberapa kali dengan minimum support dan confidence yang berbeda. Pertama, minimum support diberi nilai 10% dan

minimum confidence 30%.

Jumlah total aturan yang dihasilkan adalah 133 074 aturan. Aturan-aturan tersebut dibentuk oleh large itemset dengan jumlah seperti pada Tabel 4.

Tabel 4 Large itemset untuk minimum support 10% dan confidence 30%

Large itemset Jumlah Large itemset Jumlah

1- large itemset 49 9- large itemset 23616

2- large itemset 360 10- large itemset 16249

3- large itemset 1599 11- large itemset 8781

4- large itemset 4866 12- large itemset 3644

5- large itemset 10885 13- large itemset 1120

6- large itemset 18693 14- large itemset 240

7- large itemset 25294 15- large itemset 32

8- large itemset 27319 16- large itemset 2

Large itemset didapatkan dengan scanning database untuk kemudian

menghitung support (jumlah kejadian) untuk setiap item. Setelah support dari setiap item didapat, item yang memiliki support di atas minimum support dikumpulkan. Hasil dari tahap tersebut disebut 1-large itemset. Selanjutnya, dengan 1-large itemset dapat ditemukan 2-large itemset, dari 2-large itemset dapat

(23)

13 ditemukan 3-large itemset, dan seterusnya sampai tidak ada lagi large itemset yang ditemukan.

Didapatkanlah beberapa aturan berikut dengan running time selama 4 menit 23 detik.

1 is_disjoint (X , stasiun) Ʌ is_disjoint (X , brige main road) Ʌ is_disjoint (X , national highway) Ʌ is_disjoint (X , overpass highway) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X, planned house) Ʌ → is_a (X, low density urban kampung) [40,80% ; 41%]

2 is_disjoint (X , terminal) Ʌ is_disjoint (X , national highway) Ʌ is_disjoint (X , tol road) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [40,28%; 40%]

3 is_disjoint (X, rel) Ʌ is_disjoint (X, national highway) Ʌ is_disjoint (X, commercial bussines) Ʌ is_disjoint (X, forestry) Ʌ is_disjoint (X, industry warehouse) → is_a (X, low density urban kampung) [37,77%; 38%]

Setelah itu dicoba lagi dengan menaikkan nilai minumum support menjadi 20% dan minimum confidence tetap 30%. Jumlah total aturan yang dihasilkan adalah 29 458 aturan dengan running time selama 49 detik. Jumlah large itemset dapat dilihat pada Tabel 5.

Tabel 5 Large itemset untuk minimum support 20% dan confidence 30%

Large itemset Jumlah Large itemset Jumlah

1- large itemset 32 8- large itemset 4939

2- large itemset 223 9- large itemset 2765

3- large itemset 914 10- large itemset 1109

4- large itemset 2469 11- large itemset 303

5- large itemset 4662 12- large itemset 51

6- large itemset 6391 13- large itemset 4

7- large itemset 6504

Beberapa hasilnya dapat dilihat sebagai berikut.

1 is_disjoint (X , national highway) Ʌ intersects (X , agriculture and open space) Ʌ touches (X , agriculture and open space) Ʌ is_disjoint (X , commercial and bussines) Ʌ is_disjoint (X , industry and warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [77%; 77%]

2 is_disjoint (X , terminal) Ʌ intersects (X , agriculture and open space) Ʌ touches (X , agriculture and open space) Ʌ is_disjoint (X , commercial and bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry and warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [76,88%; 77%]

3 is_disjoint (X , rel) Ʌ is_disjoint (X , bridge main road) Ʌ is_disjoint (X , overpass highway) Ʌ intersects (X , agriculture and open space) Ʌ touches (X , agriculture and open space) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry and warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [75,34%; 75%]

(24)

14

Agar aturan yang dihasilkan adalah aturan-aturan yang memiliki support dan confidence yang tinggi, maka minimum support dan confidence dinaikkan lagi nilainya beberapa kali. Sampai pada akhirnya ditentukan bahwa yang dianggap paling tepat adalah dengan minimum support 20% dan minimum

confidence 50%.

Running time untuk menghasilkan aturan-aturan tersebut adalah 43 detik.

Sebaran large itemset dapat dilihat pada Tabel 6.

Tabel 6 Large itemset untuk minimum support 20% dan confidence 50%

Large itemset Jumlah Large itemset Jumlah

1- large itemset 32 8- large itemset 4939

2- large itemset 223 9- large itemset 2765

3- large itemset 914 10- large itemset 1109

4- large itemset 2469 11- large itemset 303

5- large itemset 4662 12- large itemset 51

6- large itemset 6391 13- large itemset 4

7- large itemset 6504

Dengan minimum support dan confidence tersebut dihasilkan 6064 aturan asosiasi dari objek spasial Kota Bogor. Diantaranya sebagai berkut.

1 is_disjoint (X , stasiun) Ʌ is_disjoint (X , national highway) Ʌ intersects (X , agriculture and open space) Ʌ touches (X , agriculture and open space) Ʌ is_disjoint (X , commercial and bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry and warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [77%; 77%]

2 is_disjoint (X , terminal) Ʌ is_disjoint (X , bridge main road) Ʌ is_disjoint (X , national highway) Ʌ is_disjoint (X , overpass highway) Ʌ intersects (X , agriculture and open space) Ʌ touches (X , agriculture and open space) Ʌ is_disjoint (X , commercial and bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry and warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [76,99%; 77%]

3 is_disjoint (X , terminal) Ʌ is_disjoint (X , rel) Ʌ is_disjoint (X , main road) Ʌ is_disjoint (X , tol road) Ʌ intersects (X , agriculture and open space) Ʌ touches (X , agriculture and open space) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [71,35%; 71%]

4 is_disjoint (X , bridge main road) Ʌ is_disjoint (X , main road) Ʌ is_disjoint (X , commercial and bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry and warehouse) Ʌ intersects (X , low density urban kampung) Ʌ touches (X , low density urban kampung) → is_a (X , agriculture and open space) [58,86%; 59%]

5 is_disjoint (X , stasiun) Ʌ is_disjoint (X , tol road) Ʌ is_disjoint (X , commercial and bussines) Ʌ is_disjoint (X , forestry) Ʌ intersects (X , low density urban kampung) Ʌ touches (X , low density urban kampung) → is_a (X , agriculture and open space) [56,81%; 57%]

(25)

15 Dari aturan asosiasi yang didapat, dilakukan seleksi dan verifikasi kembali untuk menentukan aturan yang sesuai. Aturan yang digunakan adalah yang memiliki support dan confidence di atas ambang batas. Tidak semua aturan yang didapat menghasilkan informasi baru. Satu aturan bisa didapatkan dari aturan yang lain. Contohnya adalah sebagai berikut.

1 is_disjoint (X , terminal) Ʌ is_disjoint (X , stasiun) Ʌ is_disjoint (X , overpass highway) Ʌ is_disjoint (X , tol road) Ʌ is_disjoint (X , commercial and bussines) Ʌ is_disjoint (X , forestry) Ʌ intersects (X , low density urban kampung) Ʌ touches (X , low density urban kampung) → is_a (X , agriculture and open space)

2 is_disjoint (X , tol road) Ʌ is_disjoint (X , commercial and bussines) Ʌ is_disjoint (X , forestry) Ʌ intersects (X , low density urban kampung) Ʌ touches (X , low density urban kampung) → is_a (X , agriculture and open space)

Dari contoh tersebut dapat dilihat bahwa informasi yang terdapat pada aturan kedua sudah terdapat pada aturan pertama, maka aturan kedua tersebut tidak menghasilkan informasi baru. Oleh karena itu aturan kedua dapat dihilangkan.

Kemudian didapatkan aturan asosiasi yang dapat dilihat sebagai berikut. 1 is_disjoint (X , terminal) Ʌ is_disjoint (X , stasiun) Ʌ is_disjoint (X , rel) Ʌ

is_disjoint (X , bridge main road) Ʌ is_disjoint (X , main road) Ʌ is_disjoint (X , national highway) Ʌ is_disjoint (X , overpass highway) Ʌ is_disjoint (X , tol road) Ʌ intersects (X , agriculture and open space) Ʌ touches (X , agriculture and open space) Ʌ is_disjoint (X , commercial and bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry and warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [76,66%; 77%]

2 is_disjoint (X , terminal) Ʌ is_disjoint (X , stasiun) Ʌ is_disjoint (X , rel) Ʌ is_disjoint (X , bridge main road) Ʌ is_disjoint (X , main road) Ʌ _disjoint (X , overpass highway) Ʌ is_disjoint (X , tol road) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry and warehouse) Ʌ intersects (X , low density urban kampung) Ʌ touches (X , low density urban kampung) → is_a (X , agriculture and open space) [58,63%; 59%]

Hasil aturan yang dihasilkan dapat direpresentasikan di peta yang ada pada Gambar 8. Daerah yang merepresentasikan hasil aturan pertama diwarnai dengan warna orange. Daerah tersebut merupakan low density urban kampung yang memiliki karakteristik seperti aturan pertama. Daerah yang merepresentasikan hasil aturan kedua diwarnai dengan warna hijau muda. Daerah tersebut merupakan

(26)

16

Gambar 8 Daerah hasil aturan asosiasi

SIMPULAN DAN SARAN

Simpulan

Spatial data mining dapat mengekstrak pengetahuan dari objek data spasial

di Kota Bogor. Dari penelitian yang dilakukan telah berhasil didapatkan aturan asosiasi dari data spasial Kota Bogor. Aturan asosiasi yang dihasilkan menyatakan bahwa terdapat dua objek spasial, yaitu low density urban kampung dan

agriculture and open space yang memiliki asosiasi dengan objek-objek spasial

lain di kota Bogor. Objek spasial low density urban kampung disjoint dengan terminal, disjoint dengan stasiun, rel, bridge main road, main road, national

highway, overpass highway, tol road, disjoint dengan commercial and bussines, forestry, industry and warehouse, dan planned house, serta berpotongan dan

bersentuhan dengan agriculture and open space. Pola asosiasi tersebut memiliki nilai support 76,66% dan nilai confidence 77%. Adapun untuk objek spasial

agriculture and open space memiliki asosiasi dengan objek lain, yaitu disjoint

dengan terminal, stasiun, rel, bridge main road, main road, overpass highway, tol

road, commercial and bussines, forestry, industry and warehouse, serta

berpotongan dan bersentuhan dengan low density urban kampung. Pola asosiasi tersebut memiliki nilai support 58,63% dan nilai confidence 59%. Aturan yang muncul hanya untuk kedua objek spasial yaitu low density urban kampung dan

agriculture and open space. Hal ini dikarenakan jumlah objek spasial tersebut

lebih banyak dibandingkan objek lainnya, yaitu low density urban kampung sebanyak 2826 data dan agriculture and open space sebanyak 2375 data.

(27)

17 Saran

Penelitian ini masih memiliki banyak kekurangan. Untuk penelitian selanjutnya dapat dilakukan pruning sebelum tahap mining untuk menghasilkan atribut terbaik.

DAFTAR PUSTAKA

Agrawal R, Srikant R. 1994. Fast algorithms for mining association rules. Di dalam: Proceedings of the 20th VLDB. hlm 487-499.

Han J, Kamber M. 2006. Data Mining: Concept and Techniques. San Francisco (US): Morgan Kaufmann.

Hariona P. 2009. Spatial association rule mining terhadap data sebaran Kota Bogor [skripsi]. Bogor (ID): Institut Pertanian Bogor.

Koperski K, Han J. 1995. Discovery of spatial association rules in geographic information databases. Di dalam: Advances in Spatial Databases; 1995 Agu 6-9; Portland, USA. hlm 47-66.

Murai S. 1996. GIS work book (fundamental course) [Internet]. [diunduh 2014 Mar 21]. Tersedia pada: http//cret.cnu.edu.cn/syjx/content/giswb/vol1/cp2/2 -4.gif.

Rajabidfard A, Williamson IP. 2000. Spatial data infrastructures: concepts, SDI,

hierarchy, and future directions. Melbourne (AU): University of

(28)

18

LAMPIRAN

Lampiran 1 Data terminal

Lampiran 2 Data stasiun

Lampiran 3 Data sungai

(29)

19 Lampiran 5 Data Kota Bogor

(30)

20

Lampiran 7 Nilai atribut objek spasial

Kode Nilai Atribut

t1 terminal (disjoint)

t27 terminal (intersects, contains)

st1 stasiun (disjoint)

st27 stasiun (intersects, contains)

r1 rel (disjoint)

r2 rel (intersects)

r24 rel (intersects, crosses) r26 rel (intersects, touches) su1 sungai (disjoint)

su2 sungai (intersects)

su24 sungai (intersects, crosses)

su246 sungai (intersects, crosses, touches) su26 sungai (intersects, touches)

su27 sungai (intersects, contains) bmr1 brige main road (disjoint)

bmr2 brige main road (intersects)

bmr24 brige main road (intersects, crosses)

bmr26 brige main road (intersects, touches)

mr1 main road (disjoint)

mr2 main road (intersects)

mr24 main road (intersects, crosses)

mr26 main road (intersects, touches)

mr27 main road (intersects, contains)

nh1 national highway (disjoint)

nh2 national highway (intersects)

nh24 national highway (intersects, crosses)

nh26 national highway (intersects, touches)

nh27 national highway (intersects, contains)

ohn1 overpass highway national (disjoint)

ohn27 overpass highway national (intersects, contains)

trnh1 tol road national highway (disjoint)

trnh2 tol road national highway (intersects)

trnh24 tol road national highway (intersects, crosses)

trnh26 tol road national highway (intersects, touches)

aos1 agriculture & open space (disjoint)

aos2 agriculture & open space (intersects)

aos23 agriculture & open space (intersects, within)

aos24 agriculture & open space (intersects, crosses)

aos246 agriculture & open space (intersects, crosses, touches)

aos25 agriculture & open space (intersects, overlaps)

aos257 agriculture & open space (intersects, overlaps, contains)

aos26 agriculture & open space (intersects, touches)

cb1 commercial & bussines (disjoint)

cb23 commercial & bussines (intersects, within)

cb24 commercial & bussines (intersects, crosses)

(31)

21 Lampiran 7 Lanjutan

Kode Nilai Atribut

cb25 commercial & bussines (intersects, overlaps)

cb257 commercial & bussines (intersects, overlaps, contains)

cb26 commercial & bussines (intersects, touches)

cb27 commercial & bussines (intersects, contains)

f1 forestry (disjoint)

f24 forestry (intersects, crosses)

f246 forestry (intersects, crosses, touches)

f25 forestry (intersects, overlaps)

f257 forestry (intersects, overlaps, contains)

f26 forestry (intersects, touches)

f27 forestry (intersects, contains)

iw1 industry & warehouse (disjoint)

iw2 industry & warehouse (intersects)

iw23 industry & warehouse (intersects, within)

iw24 industry & warehouse (intersects, crosses)

iw246 industry & warehouse (intersects, crosses, touches)

iw25 industry & warehouse (intersects, overlaps)

iw257 industry & warehouse (intersects, overlaps, contains)

iw26 industry & warehouse (intersects, touches)

iw27 industry & warehouse (intersects, contains)

lduk1 low density urban kampung (disjoint)

lduk23 low density urban kampung (intersects, within)

lduk236 low density urban kampung (intersects, within, touches) lduk24 low density urban kampung (intersects, crosses)

lduk246 low density urban kampung (intersects, crosses, touches) lduk25 low density urban kampung (intersects, overlaps)

lduk257 low density urban kampung (intersects, overlaps, contains) lduk26 low density urban kampung (intersects, touches)

lduk2 low density urban kampung (intersects)

ph1 planned house (disjoint)

ph2 planned house (intersects)

ph23 planned house (intersects, within)

ph24 planned house (intersects, crosses)

ph246 planned house (intersects, crosses, touches)

ph25 planned house (intersects, overlaps)

ph257 planned house (intersects, overlaps, contains)

ph26 planned house (intersects, touches)

ph27 planned house (intersects, contains)

srp1 swamp, river & pond (disjoint)

srp23 swamp, river & pond (intersects, within)

srp24 swamp, river & pond (intersects, crosses)

srp246 swamp, river & pond (intersects, crosses, touches) srp25 swamp, river & pond (intersects, overlaps)

srp257 swamp, river & pond (intersects, overlaps, contains) srp26 swamp, river & pond (intersects, touches)

(32)

22

Lampiran 8 Aturan yang dihasilkan No. Aturan

1. is_disjoint (X , stasiun) Ʌ is_disjoint (X , brige main road) Ʌ is_disjoint (X , national highway) Ʌ is_disjoint (X , overpass highway) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X, planned house) Ʌ → is_a (X, low density urban kampung) [40,80% ; 41%]

2. is_disjoint (X , terminal) Ʌ is_disjoint (X , national highway) Ʌ is_disjoint (X , tol road) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [40,28%; 40%]

3. is_disjoint (X, rel) Ʌ is_disjoint (X, national highway) Ʌ is_disjoint (X, commercial bussines) Ʌ is_disjoint (X, forestry) Ʌ is_disjoint (X, industry warehouse) → is_a (X, low density urban kampung) [37,77%; 38%]

4. is_disjoint (X , national highway) Ʌ intersects (X , agriculture open space) Ʌ touches (X , agriculture open space) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X , industry warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [77%; 77%] 5. is_disjoint (X , terminal) Ʌ intersects (X , agriculture open space) Ʌ

touches (X , agriculture open space) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [76,88%; 77%]

6. is_disjoint (X , rel) Ʌ is_disjoint (X , brige main road) Ʌ is_disjoint (X , overpass highway) Ʌ intersects (X , agriculture open space) Ʌ touches (X , agriculture open space) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [75,34%; 75%]

7. is_disjoint (X , stasiun) Ʌ is_disjoint (X , national highway) Ʌ intersects (X , agriculture open space) Ʌ touches (X , agriculture open space) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [77%; 77%]

8. is_disjoint (X , terminal) Ʌ is_disjoint (X , rel) Ʌ is_disjoint (X , main road) Ʌ is_disjoint (X , tol road) Ʌ intersects (X , agriculture open space) Ʌ touches (X , agriculture open space) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [71,35%; 71%]

9. is_disjoint (X , brige main road) Ʌ is_disjoint (X , main road) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry warehouse) Ʌ intersects (X , low density urban kampung) Ʌ touches (X , low density urban kampung) → is_a (X , agriculture open space) [58,86%; 59%]

10. is_disjoint (X , stasiun) Ʌ is_disjoint (X , tol road) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X , forestry) Ʌ intersects (X , low density urban kampung) Ʌ touches (X , low density urban kampung) → is_a (X , agriculture open space) [56,81%; 57%]

(33)

23 Lampiran 8 Lanjutan

No. Aturan

11. is_disjoint (X , terminal) Ʌ is_disjoint (X , stasiun) Ʌ is_disjoint (X , rel) Ʌ is_disjoint (X , brige main road) Ʌ is_disjoint (X , main road) Ʌ is_disjoint (X , national highway) Ʌ is_disjoint (X , overpass highway) Ʌ is_disjoint (X , tol road) Ʌ intersects (X , agriculture open space) Ʌ touches (X , agriculture open space) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry warehouse) Ʌ is_disjoint (X , planned house) → is_a (X , low density urban kampung) [76,66%; 77%]

12. is_disjoint (X , terminal) Ʌ is_disjoint (X , stasiun) Ʌ is_disjoint (X , rel) Ʌ is_disjoint (X , brige main road) Ʌ is_disjoint (X , main road) Ʌ _disjoint (X , overpass highway) Ʌ is_disjoint (X , tol road) Ʌ is_disjoint (X , commercial bussines) Ʌ is_disjoint (X , forestry) Ʌ is_disjoint (X , industry warehouse) Ʌ intersects (X , low density urban kampung) Ʌ touches (X , low density urban kampung) → is_a (X , agriculture open space) [58,63%; 59%]

(34)

24

RIWAYAT HIDUP

Penulis dilahirkan di Jakarta pada tanggal 12 Agustus 1991 dari ayah Wagito dan ibu Saminem. Penulis adalah putri pertama dari tiga bersaudara. Tahun 2009 penulis lulus dari SMA Negeri 47 Jakarta dan pada tahun yang sama penulis lulus seleksi masuk Institut Pertanian Bogor (IPB) melalui jalur Undangan Seleksi Masuk IPB dan diterima di Departemen Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam. Bulan Juni-Agustus 2012 penulis melaksanakan Praktik Kerja Lapangan di Kantor Komunikasi dan Informatika Balai Kota Bogor.

Gambar

Gambar 1  Tahapan penelitian
Gambar 2  Ilustrasi operasi spasial (Murai 1996)
Tabel 1  Jumlah objek dan tipe geometri
Gambar 5  Tampilan operasi split pada layer vector
+6

Referensi

Dokumen terkait

Berdasarkan hasil penelitian maka tingkat pemekatan ekstrak karaginan yang baik digunakan untuk analisis kadar karaginan rumput laut Eucheuma cottonii secara

Berdasarkan struktur biaya usahatani padi sawah baik pada MH maupun MK pada petani SL-PTT maupun non SL- PTT ada beberapa temuan yang sejalan dengan hasil penelitian Nurasa

bagging telah dilakukan oleh Insani, et al (2015) yang mengaplikasikan metode bootstrap aggregating regresi logistik ordinal untuk memperoleh model dan peningkatan

Atau suatu kegiatan yang dilakukan secara sadar dan disengaja untuk memberikan bimbingan, baik jasmani maupun rohani, melalui penanaman nilai-nilai Islam, latihan

(If Dalam  kondisi  normal,  baku  mutu  air  limbah  sebagaimana  climaksud  dalam  Pasal  4  setiap  saat  tidak  boleh  dilampaui  oleh  perianggung  jawab 

[r]

Pertunjukkan Pacu Jawi yang sarat akan nilai-nilai dan pesan-pesan moral telah memberikan corak dalam membentuk karakter, sikap dan prilaku masyarakat Tanah Datar

Penelitian ini bertujuan untuk mengetahui respon korban terhadap aksi bullying verbal yang dialami, kondisi korban pasca bullying verbal,respon dari teman sebaya,