• Tidak ada hasil yang ditemukan

STRUKTUR ELEKTRON MOLEKUL N2 MENURUT TEO

N/A
N/A
Protected

Academic year: 2018

Membagikan "STRUKTUR ELEKTRON MOLEKUL N2 MENURUT TEO"

Copied!
17
0
0

Teks penuh

(1)

STRUKTUR ELEKTRON MOLEKUL N2

MENURUT TEORI MOLEKUL ORBITAL

A.

Pendahuluan

Penyusunan tabel periodik dan konsep konfigurasi elektron telah membantu para ahli kimia menjelaskan proses pembentukan molekul dan ikatan yang terdapat dalam suatu molekul. Gilbert Lewis, seorang kimiawan berkebangsaan Amerika, mengajukan teori bahwa atom akan bergabung dengan sesama atom lainnya membentuk molekul dengan tujuan untuk mencapai konfigurasi elektron yang lebih stabil. Kestabilan dicapai saat atom-atom memiliki konfigurasi elektron seperti gas mulia (semua kulit dan subkulit terisi penuh oleh elektron serta memiliki 8 elektron valensi).

Saat atom-atom berinteraksi, hanya elektron valensi yang terlibat dalam proses pembentukan ikatan kimia. Untuk menunjukkan elektron valensi yang terlibat dalam pembentukan ikatan, para ahli kimia menggunakan simbol Lewis dot, yaitu simbol suatu unsur dan satu dot untuk mewakili tiap elektron valensi unsur bersangkutan. Jumlah elektron valensi suatu unsur sama dengan golongan unsur bersangkutan. Sebagai contoh, unsur Mg terletak pada golongan IIA, sehingga memiliki 2 elektron valensi (2 dot). Sementara, unsur S yang terletak pada golongan VIA, akan memiliki 6 elektron valensi (6 dot). Unsur yang terletak pada golongan yang sama akan memiliki struktur Lewis dot yang serupa.

(2)

penuh oleh gas klorin yang berwarna kuning kehijauan, sesuatu yang sangat menakjubkan akan terjadi. Natrium mulai memancarkan cahaya putih yang semakin terang dan gas klorin mulai bercampur, yang disertai dengan hilangnya warna. Beberapa saat kemudian, reaksi selesai, dan kita akan mendapatkan garam meja atau NaCl yang terendapkan di dasar beaker glass.

Natrium adalah logam alkali, golongan IA pada tabel periodik. Natrium memiliki 1 elektron valensi. Sebaliknya, klorin adalah unsur nonlogam, unsur golongan halogen (VIIA) pada tabel periodik. Unsur ini memiliki 7 elektron valensi. Unsur-unsur di golongan A pada tabel periodik akan mendapatkan, kehilangan, atau berbagi elektron valensi untuk mengisi tingkat energi valensinya dan menjadi sempurna (meniru konfigurasi gas mulia). Pada umumnya, proses ini melibatkan pengisian orbital s dan p terluar yang disebut sebagai

aturan oktet, yaitu unsur akan mendapatkan atau kehilangan elektron untuk mencapai keadaan penuh delapan elektron valensi.

Natrium memiliki satu elektron valensi. Menurut hukum oktet, unsur ini akan bersifat stabil ketika memiliki 8 elektron valensi. Dengan demikian, natrium akan kehilangan elektron 3s-nya. Dengan demikian, atom natrium akan berubah menjadi ion natrium dengan muatan positif satu (Na+). Ion tersebut isoelektronik dengan neon (gas mulia) sehingga ion Na+

bersifat stabil.

Sementara, untuk memenuhi aturan oktet, unsur klorin membutuhkan satu elektron untuk melengkapi pengisian elektron pada 3p. Setelah menerima satu elektron tambahan, unsur ini berubah menjadi ion dengan muatan negatif satu (Cl-). Ion Cl- isoelektronik dengan

argon (gas mulia) sehingga bersifat stabil. Jika natrium dicampurkan dengan klorin, jumlah elektron natrium yang hilang akan sama dengan jumlah elektron yang diperoleh klorin. Satu elektron 3s pada natrium akan dipindahkan ke orbital 3p pada klorin. Peristiwa serah-terima elektron terjadi dalam proses pembentukan senyawa NaCl. Ini merupakan contoh dari ikatan ionik, yaitu ikatan kimia (gaya tarik-menarik yang kuat yang tetap menyatukan dua unsur kimia) yang berasal dari gaya tarik elektrostatik (gaya tarik-menarik dari muatan-muatan yang berlawanan) antara ion positif (kation) dan ion negatif (anion). Ikatan ionik terbentuk saat unsur logam bereaksi dengan unsur nonlogam.

Di sisi lain, tidak semua ikatan kimia terbentuk melalui mekanisme serah-terima elektron. Atom-atom juga dapat mencapai kestabilan melalui mekanisme pemakaian bersama pasangan elektron. Ikatan yang terbentuk dikenal dengan istilah ikatan kovelen.

(3)

dengan helium), atom hidrogen membutuhkan satu elektron tambahan. Saat dua atom hidrogen membentuk ikatan kimia, tidak terjadi peristiwa serah-terima elektron. Yang akan terjadi adalah kedua atom akan menggunakan elektronnya secara bersama-sama. Kedua elektron (satu dari masing-masing hidrogen) menjadi milik kedua atom tersebut. Dengan demikian, molekul H2 terbentuk melalui pembentukan ikatan kovelen, yaitu ikatan kimia

yang berasal dari penggunaan bersama satu atau lebih pasangan elektron antara dua atom. Ikatan ini terjadi di antara dua unsur nonlogam.

Atom-atom dapat membentuk berbagai jenis ikatan kovelen. Ikatan tunggal terjadi saat dua atom menggunakan sepasang elektron bersama. Ikatan rangkap dua (ganda)

terjadi saat dua atom menggunakan menggunakan dua pasangan elektron bersama. Sementara, ikatan rangkap tiga terjadi saat dua atom menggunakan tiga pasangan elektron bersama. Senyawa ionik memiliki sifat yang berbeda dari senyawa kovalen. Senyawa ionik, pada suhu kamar, umumnya berbentuk padat, dengan titik didih dan titik leleh tinggi, serta bersifat elektrolit. Sebaliknya, senyawa kovelen, pada suhu kamar, dapat berbentuk padat, cair, maupun gas. Selain itu, senyawa kovalen memiliki titik didih dan titik leleh yang relatif rendah bila dibandingkan dengan senyawa ionik serta cenderung bersifat nonelektrolit.

Ketika atom klorin berikatan secara kovalen dengan atom klorin lainnya, pasangan elektron akan digunakan bersama secara seimbang. Kerapatan elektron yang mengandung ikatan kovalen terletak di tengah-tengah di antara kedua atom. Setiap atom menarik kedua elektron yang berikatan secara sama. Ikatan seperti ini dikenal dengan istilah ikatan kovalen nonpolar.

Sementara, apa yang akan terjadi bila kedua atom yang terlibat dalam ikatan kimia tidak sama? Kedua inti yang bermuatan positif yang mempunyai gaya tarik berbeda akan menarik pasangan elektron dengan derajat (kekuatan) yang berbeda. Hasilnya adalah pasangan elektron cenderung ditarik dan bergeser ke salah satu atom yang lebih elektronegatif. Ikatan semacam ini dikenal dengan istilah ikatan kovalen polar.

Sifat yang digunakan untuk membedakan ikatan kovalen polar dengan ikatan kovalen nonpolar adalah elektronegativitas (keelektronegatifan), yaitu kekuatan (kemampuan) suatu atom untuk menarik pasangan elektron yang berikatan. Semakin besar nilai elektronegativitas, semakin besar pula kekuatan atom untuk menarik pasangan elektron pada ikatan. Dalam tabel periodik, pada satu periode, elektronegativitas akan naik dari kiri ke kanan. Sebaliknya, dalam satu golongan, akan turun dari atas ke bawah.

(4)

Sementara, pada ikatan kovelen polar, atom yang menarik pasangan elektron pengikat dengan lebih kuat akan sedikit lebih bermuatan negatif; sedangkan atom lainnya akan menjadi sedikit lebih bermuatan positif. Ikatan ini terbentuk bila atom-atom yang terlibat dalam ikatan adalah berbeda. Semakin besar beda elektronegativitas, semakin polar pula ikatan yang bersangkutan. Sebagai tambahan, apabila beda elektronegativitas atom-atom sangat besar, maka yang akan terbentuk justru adalah ikatan ionik. Dengan demikian, beda elektronegativitas merupakan salah satu cara untuk meramalkan jenis ikatan yang akan terbentuk di antara dua unsur yang berikatan.

Teori Ikatan Modern

Dua metode pendekatan untuk menjelaskan ikatan antar atom: – Metode ikatan Valensi:

Ikatan terbentuk karena adanya overlaping orbital atom

– Metode Orbital Molekul:

Bila atom atom membentuk molekul/senyawa, orbital-orbitalnya bergabung dan membentuk orbital baru – (orbital molekul)

B.

Teori Ikatan Valensi ( Valence Bond Theory, Vbt )

(5)

Teori ikatan valensi secara sederhana merupakan teori ikatan yang menjelaskan bahwa atom-atom saling berikatan melalui tumpang tindih orbital terluar. Untuk memahami teori ikatan valensi maka dibutuhkan pemahaman mengenai orbital dan bilangan kuantum.

Dalam teori ikatan valensi, kita akan mengenal istilah orbital atom dan orbital hibrida. Orbital hibrida terbentuk dari proses hibridisasi yaitu pembentukan orbital-orbital dengan tingkat energi yang sama (orbital hibrid) dari orbital-orbital dengan tingkat energi berbeda. Dengan menggunakan konsep hibridisasi maka dapat ditentukan geometri molekul dilihat dari susunan dalam ruang orbital hibrid yang terbentuk. Teori ini bukanlah teori ikatan dalam ilmu kimia.

Teori Ikatan Valensi mampu secara kualitatif menjelaskan kestabilan ikatan kovalen sebagai akibat tumpang-tindih orbital-orbital atom. Dengan konsep hibridisasi pun dapat dijelaskan geometri molekul sebagaimana yang diramalkan dalam teori VSEPR, tetapi sayangnya dalam beberapa kasus, teori ikatan valensi tidak dapat menjelaskan sifat-sifat molekul yang tramati secara memuaskan. Contohnya adalah molekul oksigen, yang struktur Lewisnya sebagai berikut.

Menurut gambaran struktur Lewis Oksigen di atas, semua elektron pada O2

berpasangan dan molekulnya seharusnya bersifat diamagnetik, namun kenyataanya, menurut hasil percobaan diketahui bahwa Oksigen bersifat paramagnetik dengan dua elektron tidak berpasangan. Temuan ini membuktikan adanya kekurangan mendasar dalam teori ikatan valensi.

Teori ikatan valensi mengasumsikan bahwa “ sebuah ikatan kimia terbentuk ketika dua valensi elektron bekerja dan menjaga dua inti atom bersama oleh karena efek penurunan energi system ”, teori ini berlaku dengan baik pada molekul diatomik. Pada teori ikatan valensi ini, elektron-elektron dalam molekul menempati orbital-orbital atom dari masing-masing atom.

(6)

dapat dijelaskan mengapa energi ikatan dan panjang ikatan dalam beberapa molekul diatomik dapat berbeda, sesuatu yang tidak dapat dijelaskan dengan teori Lewis.

Pada teori ikatan valensi lebih lanjut Pauling mengidentifikasi adanya inner orbital complex, yaitu kompleks yang membentuk orbital hibrida dengan menggunakan orbital d

sebelah dalam relatif terhadap orbital kosong s (yaitu hibridisasi d2 sp3), dan outer orbital

complex jika hibridisasi menggunakan orbital d sebelah luar (yaitu sp3 d3). Pauling juga

mengidentifikasi bahwa pada kompleks high-spin outer-orbital interaksi antara metal-atom donor atau metal- ligan bersifat ionic karena tidak melibatkan adanya perubahan konfigurasi elektronik 3dn bagi ion pusat dalam senyawa kompleks maupun dalam garam normalnya,

misalnya seperti pada kompleks [CoF6]-3 garam normal CoCl3.

Teori VSEPR memprediksi bentuk molekul dilihat dari tolakan antar pasangan elektron. Jika kita menggunakan teori ini untuk menjelaskan ikatan kimia, maka akan ada hal-hal yang tidak konsisten seperti tolakan antar pasangan elektron dalam VSEPR menentukan bentuk geometri molekul tapi mengapa elektron-elektron ikatan yang jaraknya lebih dekat dibanding pasangan elektron ikatan tidak saling tolak-menolak, teori ini tidak bisa menjelaskan. Jadi, yang akan menjelaskan bentuk molekul adalah teori ikatan valensi yang pada ujungnya adalah konsep hibridisasi sedangkan untuk memprediksi bentuk molekul kita bisa menggunakan teori VSEPR.

Teori VSEPR (Valence Shell Electron Pair Repulsion: tolakan pasangan elektron kelopak valensi) adalah suatu model kimia yang digunakan untuk menjelaskan bentuk-bentuk

molekul kimiawi berdasarkan gaya tolakan elektrostatik antar pasangan elektron. Teori ini

juga dinamakan teori Gillespie-Nyholm, dinamai atas dua orang pengembang teori ini. Akronim "VSEPR" diucapkan sebagai "vesper" untuk kemudahan pengucapan.

Teori VSEPR utamanya melibatkan prediksi susunan pasangan elektron di sekitar satu atau lebih atom pusat pada suatu molekul. Jumlah pasangan elektron pada kelopak valensi atom pusat ditentukan dengan menggambarkan struktur Lewis molekul tersebut. Ketika terdapat dua atau lebih struktur resonansi yang dapat mewakili suatu molekul, model VSEPR dapat diterapkan pada semua struktur resonansi tersebut. Pada teori VSEPR, pasangan elektron berganda pada ikatan berganda diperlakukan sebagai "satu pasang" elektron.

(7)

Teori VSEPR (Valence Shell Electron-Pair Repulsion) atau Tolakan Pasangan Elektron Kulit Valensi memungkinkan para ahli kimia untuk meramalkan geometri molekul

dari molekul-molekul. Teori ini mengasumsikan bahwa pasangan elektron di sekitar atom, baik itu bonding pair maupun lone pair (nonbonding pair), akan berada dalam jarak sejauh mungkin untuk meminimalkan gaya tolakan di antara elektron tersebut. Geometri pasangan elektron (domain elektron) adalah susunan pasangan elektron, baik bonding pair maupun

lone pair di sekitar atom pusat. Berdasarkan jumlah domain elektron, kita dapat meramalkan

bentuk molekul.

Untuk menentukan geometri molekul atau bentuk molekul dengan menggunakan

teori VSEPR, kita dapat mengikuti langkah-langkah sebagai berikut:

1. Tentukan struktur Lewis molekul tersebut

2. Tentukan jumlah keseluruhan pasangan elektron total (domain elektron) yang berada di sekitar atom pusat (ikatan rangkap dua dan rangkap tiga masing-masing dianggap satu domain)

3. Dengan menggunakan tabel di bawah ini, tentukanlah geometri pasangan elektron (domain elektron)

Selain menggunakan teori VSEPR, bentuk molekul juga dapat diramalkan melalui pembentukan orbital hibrida, yaitu orbital-orbital suatu atom yang diperoleh saat dua atau lebih orbital atom bersangkutan yang memiliki tingkat energi yang berbeda, bergabung membentuk orbital-orbital baru dengan tingkat energi sama (terjadi pada proses pembentukan

ikatan kovalen). Hibridisasi adalah proses penggabungan orbital-orbital atom (biasanya pada atom pusat) untuk mendapatkan orbital hibrida.

Hubungan antara jumlah dan jenis orbital atom pusat yang digunakan pada proses

(8)

s, p, p, p, d, d sp3d2 6 Octahedral SF 6

Dengan mengetahui jenis dan jumlah orbital atom pusat yang terlibat dalam proses pembentukan ikatan, kita hanya dapat menentukan bentuk geometri (domain elektron)

(9)

C.

Teori Orbital Molekul

Ikatan pada Orbital Molekular

• Untuk membentuk molekul yang stabil maka elektron di dalam orbital ikatan harus lebih banyak dibandingkan di dalam orbital anti-ikatan

• Ikatan yang terbentuk akan berada pada energi yang lebih rendah, sehingga menjadi lebih stabil

• Orbital ikatan dan anti-ikatan untuk ikatan-s dan ikatan-p harus dipertimbangkan • Perhatikan diagram MO untuk Ne2 berikut ini:

Fungsi gelombang elektron dalam suatu atom disebut orbital atom. Karena kebolehjadian menemukan elektron dalam orbital molekul sebanding dengan kuadrat fungsi gelombang, peta elektron nampak seperti fungsi gelombang. Suatu fungsi gelombang

mempunyai daerah

beramplitudo positif dan negatif yang disebut cuping (lobes). Tumpang tindih cuping positif dengan positif atau negatif dengan negatif dalam molekul akan memperkuat satu sama lain membentuk ikatan, tetapi cuping positif dengan negatif akan meniadakan satu sama lain tidak membentuk ikatan. Besarnya efek interferensi ini mempengaruhi besarnya integral tumpang tindih dalam kimia kuantum.

Dalam pembentukan molekul, orbital atom bertumpang tindih menghasilkan orbital molekul yakni fungsi gelombang elektron dalam molekul. Jumlah orbital molekul adalah jumlah atom dan orbital molekul ini diklasifikasikan menjadi orbital molekul ikatan, non-ikatan, atau antiikatan sesuai dengan besarnya partisipasi orbital itu dalam ikatan antar atom. Kondisi pembentukan orbital molekul ikatan adalah sebagai berikut.

Setiap baris dalam diagram orbital molekul menggambarkan sebuah orbital molekul yang terisi oleh elektron. Orbital molekul ini mencakup seluruh molekul. Diasumsikan bahwa elektron akan terisi pada orbital molekul sama seperti elektron terisi pada orbital atom dengan mengikuti aturan aufbau, kaidah Hund, serta larangan Pauli. Salah satu pendekatan yang digunakan untuk menggambarkan diagram orbital molekul untuk molekul diatomk adalah

Linear Combination of Atomic Orbitals approach (LCAO/Pendekatan Kombinasi Linear Orbital Atom). Pendekatan diatas memuat hal-hal sebagai berikut,

1. Orbital molekul terbentuk dari overlap atau tumpang tindih orbital atom

(10)

3. Ketika 2 orbital saling tumpang tindih keduanya berinteraksi membentuk 2 orbital molekul, yaitu Bonding Molecular Orbital (Orbital Molekul Ikatan) dan Anti-bonding Molecular Orbital (Orbital Molekul Anti-ikatan)

Pendekatan yang digunakan berasumsi bahwa 2 orbital atom 1s dapat saling tumpang tindih dengan 2 cara untuk membentuk 2 orbital molekul. Cara yang pertama adalah adalah berinteraksi secara In-Phase. Ketika orbital atom saling tumpang tindih, interaksi secara In-Phase menyebabkan peningkatan intensitas muatan negatif pada area dimana kedua orbital atom tersebut saling tumpang tindih. Hal ini menimbulkan gaya tarik yang lebih besar antara elektron dan inti atom. Gaya tarik yang lebih besar mengarah kepada energi potensial yang lebih rendah.

Karena elektron pada orbital molekul memiliki energi potensial yang lebih rendah daripada elektron pada orbital atom, maka tentunya untuk memisahkan kembali elektron pada orbital 1s masing-masing atom diperlukan sejumlah energi (tidak akan terjadi secara spontan) yang menyebabkan ikatan yang terbentuk akan stabil. Hal ini menjaga agar atom-atom tetap stabil pada molekul.Orbital molekul yang terbentuk ini disebut Bonding Molecular Orbital

(Orbital molekul Ikatan). Orbital ini akan simetris terhadap sumbu ikatan. Orbital molekul jenis ini disebut Sigma Molecular Orbital (Orbital Molekul Sigma), σ. Simbol σ1s digunakan untuk menggambarkan orbital molekul ikatan yang terbentuk dari 2 orbital atom 1s.

Cara yang kedua, yaitu berinteraksi secara Out-of-Phase. Ketika orbital atom saling tumpang tindih, interaksi secara Out-of-Phase menyebabkan penurunan intensitas muatan negatif. Hal ini menimbulkan gaya tarik yang lebih lemah antara elektron dan inti atom. Gaya tarik yang lebih lemah mengarah kepada energi potensial yang lebih tinggi. Elektron akan lebih stabil jika berada pada orbital 1s masing-masing atom, sehingga elektron dalam orbital molekul ini akan melemahkan ikatan antar atom. Orbital molekul kenis ini disebut Anti-bonding Molecular Orbital (Orbital Molekul Anti-ikatan). Orbital molekul ini juga akan simetris terhadap sumbu ikatan, sehingga orbital ini adalah orbital molekul sigma namun dengan simbol σ*1s. Tanda * mengindikasikan orbital molekul anti-ikatan.

(11)

molekul ikatan lebih rendah, sementara tingkat energi orbital molekul anti ikatan lebih tinggi dari tingkat energi orbital atom penyusunnya.

Semakin besar selisih energi orbital ikatan dan anti ikatan, semakin kuat ikatan. Bila tidak ada interaksi ikatan dan anti ikatan antara A dan B, orbital molekul yang dihasilkan adalah orbital non ikatan. Elektron menempati orbital molekul dari energi terendah ke energi yang tertinggi. Orbital molekul terisi dan berenergi tertinggi disebut HOMO (highest occupied molecular orbital) dan orbital molekul kosong berenergi terendah disebut LUMO (lowest unoccupied molecular orbital). Ken’ichi Fukui (pemenang Nobel 1981) menamakan orbital-orbital ini orbital-orbital terdepan (frontier).

Dua atau lebih orbital molekul yang berenergi sama disebut orbital terdegenerasi (degenerate). Simbol orbital yang tidak terdegenerasi adalah a atau b, yang terdegenerasi ganda e, dan yang terdegenerasi rangkap tiga t. Simbol g (gerade) ditambahkan sebagai akhiran pada orbital yang sentrosimetrik dan u (ungerade) pada orbital yang berubah tanda dengan inversi di titik pusat inversi. Bilangan sebelum simbol simetri digunakan dalam urutan energi untuk membedakan orbital yang sama degenarasinya.

Selain itu, orbital-orbital itu dinamakan sigma (σ) atau pi(π) sesuai dengan karakter orbitalnya. Suatu orbital sigma mempunyai simetri rotasi sekeliling sumbu ikatan, dan orbital pi memiliki bidang simpul. Oleh karena itu, ikatan sigma dibentuk oleh tumpang tindih orbital s-s, p-p, s-d, p-d, dan d-d, dan ikatan pi dibentuk oleh tumpang tindih orbital p-p, p-d, dan d-d. Bila dua fungsi gelombang dari dua atom dinyatakan dengan φA dan φB, orbital molekul adalah kombinasi linear orbital atom (linear combination of the atomic orbitals (LCAO)) diungkapkan sebagai :hanya orbital-orbital atom kulit elektron valensi yang digunakan dalam metoda orbital molekul sederhana. Pembentukan orbital molekul diilustrasikan di bawah ini untuk kasus sederhana molekul dua atom. Semua tingkat di bawah HOMO terisi dan semua tingkat di atas LUMO kosong. Dalam molekul hidrogen, H2, tumpang tindih orbital 1s masing-masing atom hidrogen membentuk orbital ikatan σg bila cupingnya mempunyai tanda yang sama dan antiikatan σu bila bertanda berlawanan, dan dua elektron mengisi orbital ikatan σg.

(12)

dengan orbital 2s dari atom lain untuk membentuk satu orbital σ2s dan satu orbital σ*2s. Bentuk dar kedua orbital molekul ini akan sama dengan orbital σ1s dan orbital σ*2s, namun memiliki tingkat energi yang lebih tinggi.

Orbital atom p dari 2 atom dapat berinteraksi melalui 2 cara berbeda, yaitu Parallel dan end-on.Orbital molekul yang terbentuk pun akan berbeda tergantung pada cara interaksinya. Interaksi end-on antara 2 orbital atom 2px menghasilkan orbital σ2p dan orbital σ*2p yang simetris terhadap sumbu ikatan.

2 orbital atom 2py saling tumpang tindih secara parallrl dan membentuk 2 molekul orbital π (pi). Orbital molekul π asimetris terhadap sumbu ikatan.

Orbital 2pz-2pz saling tumpang tindih menghasilkan satu pasang orbital molekul π2p dan π*2p sama dengan tumpang tindih nya orbital 2py-2py. Orbital molekul yang terbentuk memiliki energi potensial yang sama dengan orbital molekul yang terbentuk dari utmpang tindih orbital 2py-2py.

Diagram orbital molekul yang diharapkan dari tumpang tindih orbital atom 1s, 2s, dan 2p adalah sebagai berikut.

Orbital molekul dua atom yang berbeda dibentuk dengan tumpang tindih orbital atom yang tingkat energinya berbeda. Tingkat energi atom yang lebih elektronegatif umumnya lebih rendah, dan orbital molekul lebih dekat sifatnya pada orbital atom yang tingkat energinya lebih dekat. Oleh karena itu, orbital ikatan mempunyai karakter atom dengan elektronegativan lebih besar, dan orbital anti ikatan mempunyai karakter atom dengan

ke-elektronegativan lebih kecil.

Misalnya, lima orbital molekul dalam hidrogen fluorida, HF, dibentuk dari orbital 1s hidrogen dan orbital 2s dan 2p fluor, sebagaimana diperlihatkan dalam Gambar 2.21. Orbital ikatan 1σ mempunyai karakter fluorin, dan orbital 3σ anti ikatan memiliki karakter 1s hidrogen. Karena hidrogen hanya memiliki satu orbital 1s, tumpang tindih dengan orbital 2p fluor dengan karakter π tidak efektif, dan orbital 2p fluor menjadi orbital nonikatan. Karena HF memiliki delapan elektron valensi, orbital nonikatan ini menjadi HOMO.

(13)

karakter 2s oksigen sebab oksigen memiliki ke-elektronegativan lebih besar. Orbital antiikatan 2π dan 4σ memiliki karakter 2p karbon.

Orde ikatan antar atom adalah separuh dari jumlah elektron yang ada di orbital ikatan dikurangi dengan jumlah yang ada di orbital anti ikatan. Misalnya, dalam N2 atau CO, orde ikatannya adalah (8 – 2)/2= 3 dan nilai ini konsisten dengan struktur Lewisnya.

Berikut ini adalah aturan-aturan yang digunakan dalam menggambarkan diagram orbital molekul

1. Tentukan jumlah elektron dalam molekul. Jumlah elektron per atom diperoleh dari nomor atom pada tabel periodik (Jumlah total elektron buakn hanya elektron valensi)

2. Isi orbital molekul dari bawah hingga ke atas sampai semua elektron terisi

3. Orbital harus terisi dengan spin yang sejajar sebelum elektron nya mulai berpasangan (Kaidah Hund)

Kemudain stabil tidak nya suatu molekul ditentukan melalui orde ikatan (Bond Order)

Bond Order = 1/2 (#e- in bonding MO's - #e- in antibonding MO's)

Bond order digunakan untuk meramalkan kestabilan molekul

1. Jika bond order suatu molekul sama dengan nol (0) maka molekul tersebut tidak stabil

2. Jika bond order lebih dari nol (0) maka molekul tersebut stabil

3. Semakin besar nilai dari bond order, semakin stabi ikatan dalam molekul

Kita juga dapat menentukan molekul tersebut bersifat paramagnetic atau diamagnetic. Jika semua elektron telah berpasangan maka molekul tersebut bersifat diamagnetic. Jika salah satu atau lebih elektron belum berpasangan maka molekul tersebut bersiafat paramagnetic.

EXAMPLES

(14)

H2

Bond Order = 1/2 (2-0) = 1

Bond Order lebih besar dari pada nol (0) berarti molekul H2 stabil

Karena semua elektron dalam molekul H2 telah berpasangan berarti H2 bersifat diamagnetic

2. Diagram molekul O2

O2

Bond Order = 1/2 (10-6) = 2

Bond Order > 0, maka molekul O2 stabil

(15)

3. Diagram molekul He2

Bond Order = 1/2 (2-2) = 0

Bond Order = 0, maka molekul He2 tidak stabl

D.

Perbandingan antara teori ikatan valensi dan teori orbital

molekul

Jika kita mengambil struktur ikatan valensi yang sederhana dan menggabungkan semua struktur kovalen dan ion yang dimungkinkan pada sekelompok orbital atom, kita mendapatkan apa yang disebut sebagai fungsi gelombang interaksi konfigurasi penuh. Jika kita mengambil deskripsi orbital molekul sederhana pada keadaan dasar dan mengkombinasikan fungsi tersebut dengan fungsi-fungsi yang mendeskripsikan keseluruhan kemungkinan keadaan tereksitasi yang menggunakan orbital tak terisi dari sekelompok orbital atom yang sama, kita juga mendapatkan fungsi gelombang interaksi konfigurasi penuh. Terlihatlah bahwa pendekatan orbital molekul yang sederhana terlalu menitikberatkan pada struktur ion, sedangkan pendekatan teori valensi ikatan yang sederhana terlalu sedikit menitikberatkan pada struktur ion.

Pada beberapa bidang, teori ikatan valensi lebih baik daripada teori orbital molekul. Ketika diaplikasikan pada molekul berelektron dua, H2, teori ikatan valensi, bahkan dengan

pendekatan Heitler-London yang paling sederhana, memberikan pendekatan energi ikatan

yang lebih dekat dan representasi yang lebih akurat pada tingkah laku elektron ketika ikatan kimia terbentuk dan terputus. Sebaliknya, teori orbital molekul memprediksikan bahwa molekul hidrogen akan berdisosiasi menjadi superposisi linear dari hidrogen atom dan ion hidrogen positif dan negatif. Prediksi ini tidak sesuai dengan gambaran fisik. Hal ini secara sebagian menjelaskan mengapa kurva energi total terhadap jarak antar atom pada metode ikatan valensi berada di atas kurva yang menggunakan metode orbital molekul. Situasi ini terjadi pada semua molekul diatomik homonuklir dan tampak dengan jelas pada F2 ketika

(16)

Konsep hibridisasi sangatlah berguna dan variabilitas pada ikatan di kebanyakan senyawa organik sangatlah rendah. Namun, hasil kerja Friedrich Hund, Robert Mulliken, dan

Gerhard Herzberg menunjukkan bahwa teori orbital molekul memberikan deskripsi yang

lebih tepat pada spektrokopi, ionisasi, dan sifat-sifat magnetik molekul. Kekurangan teori ikatan valensi menjadi lebih jelas pada molekul yang berhipervalensi (contohnya PF5) ketika

molekul ini dijelaskan tanpa menggunakan orbital-orbital d yang sangat krusial dalam hibridisasi ikatan yang diajukan oleh Pauling. Logam kompleks dan senyawa yang kurang

elektron (seperti diborana) dijelaskan dengan sangat baik oleh teori orbital molekul,

walaupun penjelasan yang menggunakan teori ikatan valensi juga telah dibuat.

Sekarang kedua pendekatan tersebut dianggap sebagai saling memenuhi, masing-masing memberikan pandangannya sendiri terhadap masalah-masalah pada ikatan kimia. Perhitungan modern pada kimia kuantum biasanya dimulai dari (namun pada akhirnya menjauh) pendekatan orbital molekul daripada pendekatan ikatan valensi. Ini bukanlah karena pendekatan orbital molekul lebih akurat dari pendekatan teori ikatan valensi, melainkan karena pendekatan orbital molekul lebih memudahkan untuk diubah menjadi perhitungan numeris. Namun program ikatan valensi yang lebih baik juga tersedia.

E.

Struktur Orbital Molekul N2

(17)

Hibridisasi N2 =

σ

1s2,

σ*

1s2,

σ

2s2,

σ*

2s2,

σ

2p2,

π

2py2,

π

2pz2

Referensi

Dokumen terkait

pada gabah kualitas GKP yaitu Varietas Galur terdapat di Kecamatan Purbolinggo, Kabupaten Lampung Timur, sedangkan harga gabah terendah kelompok kualitas GKP yaitu

2) Hasil Pembahasan Rencana Anggaran Pendapatan dan Belanja Daerah (RAPBD) Perubahan oleh 2 tahun setelah tahun 3tahun Dinilai kembali.. Dewan Perwakilan Rakyat Daerah (DPRD)

artikel ini akan memberikan langkah2 secara manual dalam setting samba sebagai paket dari linux yang digunakan, sesuai dengan praktikum jaringan komputer di Kelas S1 SI 4A dan D3 MI

Dalam kaitan itulah, makalah ini akan mendeskripsikan betapa pentingnya peran pemerintah dalam upaya mempertahankan bahasa yang menunggu kematian sebagai penyangga

Untuk melihat urutan proses bahasa penterjeman Indonesia  Sulawesi maka diperlukan diagram sequence, untuk user atau admin yang melakukan penterjemahan kata atau kalimat.

Pada penelitian ini menemukan hari bebas parasit dari pengobatan AAQ yaitu pada hari kedua (H2) dari penderita dengan densitas parasit >1.000-10.000 tidak

Menimbang, bahwa berdasarkan fakta yang sudah tetap, terbukti dalam perkawinan Penggugat dengan Tergugat telah lahir 3 (tiga) orang anak yang sekarang dipelihara oleh