• Tidak ada hasil yang ditemukan

this PDF file ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NONEKSPANSIF | Anggoro | Jurnal EurekaMatika 1 SM

N/A
N/A
Protected

Academic year: 2018

Membagikan "this PDF file ITERASI TIGA LANGKAH PADA PEMETAAN ASIMTOTIK NONEKSPANSIF | Anggoro | Jurnal EurekaMatika 1 SM"

Copied!
14
0
0

Teks penuh

(1)

ITERASI TIGA LANGKAH PADA

PEMETAAN ASIMTOTIK

NON-EKSPANSIF

Agung Anggoro, Siti Fatimah

1

, Encum Sumiaty

2 Departemen Pendidikan Matematika FPMIPA UPI

*Surel: agung.anggoro@student.upi.edu

ABSTRAK. Misalkan adalah subhimpunan tak kosong yang tutup, konveks, dan terbatas dari sebuah ruang Banach yang konveks seragam. Selanjutnya, sebuah pemetaan asimtotik non-ekspansif memiliki sebuah titik tetap. Dengan penambahan kondisi tertentu, dapat dikonstruksi sebuah barisan { } dari sebuah iterasi sedemikian sehingga{ } konvergen menuju suatu titik tetap dari .

Kata kunci: pemetaan asimtotik non-ekspansif, titik tetap, iterasi tiga langkah,

konvergen.

ABSTRACT. Let is a non-empty, closed, convex, and bounded subset of a uniformly convex Banach space . Then, an asymptotically non-expansive mapping has a fixed point. By adding certain conditions, we can construct sequence { } which is obtained from an iteration such that { } converges to a fixed point of .

Key words: asymptotically non-expansive mapping, fixed point, three steps

iteration, convergent.

1.

PENDAHULUAN

Pemetaan : , dengan merupakan subhimpunan tak kosong dari ruang Banach , disebut sebagai pemetaan asimtotik non-ekspansif jika terdapat

barisan bilangan real { } dengan , dan { } = 1,

sedemikian sehingga untuk setiap bilangan asli berlaku

, , [6]. Selanjutnya, disebut pemetaan yang asimtotik non-ekspansif dengan barisan{ }[18].

(2)

Pada tahun 1972, Goebel dan Kirk mengemukakan bahwa terdapat sedemikian sehingga memenuhi persamaan = ,dimana : adalah pemetaan asimtotik non-ekspansif, dengan adalah subhimpunan tak kosong yang tutup, konveks, dan terbatas dari sebuah ruang Banach yang konveks seragam [6]. yang demikian disebut sebagai titik tetap dari . Adapun definisi ruang Banach konveks seragam dijelaskan oleh Clarkson [5].

Publikasi-publikasi selanjutnya yang berkaitan dengan pemetaan asimtotik non-ekspansif mengemukakan tentang iterasi yang konvergen menuju titik tetap pada pemetaan asimtotik non-ekspansif, diantaranya oleh Schu pada tahun 1991 yang menjelaskan tentang proses iterasi satu langkah yang disebut sebagai modifikasi dari iterasi Mann [18]. Adapun, Tan dan Xu [20] pada tahun 1994 dan Osilike dan Aniagbosor [14] pada tahun 1999 masing-masing menjelaskan tentang iterasi Ishikawa dan modifikasinya. Selanjutnya, pada tahun 2002, Xu dan Noor memperkenalkan iterasi tiga langkah untuk mengkontruksi barisan yang konvergen menuju titik tetap dari suatu pemetaan asimtotik non-ekspansif yang kontinu lengkap dan sekaligus menjelaskan kekonvergenan iterasi dua langkah maupun satu langkah sebagai kasus khusus dari iterasi tiga langkah [21].

Dalam tulisan ini, penulis mencoba mengemukakan mengenai sifat-sifat dan kekonvergenan iterasi tiga langkah pada pemetaan asimtotik non-ekspansif. Penulis juga mencoba menambahkan sebuah kasus khusus, yaitu pada ruang Banach yang konveks seragam dan berdimensi hingga, dimana syarat kontinu lengkap cukup ditulis dengan kontinu saja.

2.

EKSISTENSI TITIK TETAP PADA PEMETAAN

ASIMTOTIK NON-EKSPANSIF

Ruang Banach konveks seragam, maka merupakan ruang yang refleksif [4]. Oleh karena itu, berlaku teorema tentang rantai dari subhimpunan yang tak kosong, tutup, dan konveks dari yang dijelaskan oleh Kirk [12]. Selanjutnya, berlaku teorema eksistensi titik tetap dari pemetaan asimtotik non-ekspansif

: . Dengan adalah subhimpunan tak kosong yang tutup, konveks, dan terbatas dari .

Teorema 2.1[6]Jika adalah subhimpunan tak kosong yang tutup, konveks,

dan terbatas dari sebuah ruang Banach yang konveks seragam, dan : adalah pemetaan asimtotik non-ekspansif, maka memiliki titik tetap di .

Sebagai contoh adalah : dengan = { , 1} dan

(3)

yang merupakan ruang Banach yang konveks seragam, dan memiliki titik tetap, yaitu = (0,0) .

3.

ITERASI TIGA LANGKAH PADA PEMETAAN

ASIMTOTIK NON-EKSPANSIF

Iterasi tiga langkah dijelaskan oleh Xu dan Noor [21] dengan 0 dan dilakukan penyesuaian yaitu dengan 1 sehingga menjadi sebagai berikut : Misalkan adalah subhimpunan tak kosong dari sebuah ruang bernorm dan

: adalah sebuah pemetaan. Untuk setiap , dapat dikonstruksi barisan{ }, { },dan{ }sedemikian sehingga

Teorema berikut ini mendasari sifat pertama dari iterasi tiga langkah pada pemetaan asimtotik non-ekspansif, disebut juga sebagai ketaksamaan Xu.

Teorema 3.1[22]Misalkan > 1, > 0sebarang bilangan real yang tetap.

sebuah ruang Banach yang konveks seragam jika dan hanya jika terdapat sebuah fungsi [0, ) [0, )yang kontinu, naik keras, konveks, dan (0) =

0sedemikian sehingga

+ (1 ) + (1 ) ( ) ( )

untuk semua , = { }, [0,1], dengan ( ) =

(1 ) + (1 ).

Teorema berikut ini mengenai ketaksamaan yang berlaku dalam iterasi tiga langkah pada pemetaan asimtotik non-ekspansif. Teorema ini memanfaatkan eksistensi titik tetap dan ketaksamaan Xu.

Teorema 3.2 Jika ruang Banach yang konveks seragam, tak kosong, tutup, terbatas, dan konveks, : asimtotik non-ekspansif, dan

{ }, { }, { }adalah barisan yang didefinisikan oleh sebarang

= + (1 ) = + (1 )

(4)

dengan{ }, { },dan{ }adalah barisan di[0, 1], maka terdapat >

0dan fungsi [0, ) [0, )yang kontinu, naik tegas, dan konveks, dengan

(0) = 0sedemikian sehingga untuk setiap berlaku

(1 ) ( ) + ( 1)

dan

(1 ) ( ) + ( 1),

dengan adalah titik tetap dari dan{ }barisan dengan ( ) = 1

dan .

Selanjutnya, teorema 3.2 ini mendasari lemma-lemma penting berikut ini. Lemma 3.3 Misalkan ruang Banach yang konveks seragam, tak kosong, tutup, terbatas, dan konveks, : asimtotik non-ekspansif dengan barisan { } dimana ( ) = 1, , dan ( 1) < , dan

{ }, { }, { }adalah barisan yang didefinisikan oleh sebarang

Jika terdapat , (0,1)dan sedemikian sehingga ,

, maka ( ) = 0

Bukti :

Berdasarkan teorema 3.2 dan untuk setiap berlaku

(1 ) ( ) + ( 1) .

Dengan demikian, untuk > diperoleh

(1 ) ( ) + ( 1)

− − ‖ − ‖ + ( − 1)

≤ − + ( − 1) .

Diketahui∑ ( − 1) < ∞ , dengan menerapkan teorema nilai rata-rata [2] pada fungsi ( ) = − 1pada interval[0, ], untuk setiap bilangan asli , maka berlaku juga∑ ( − 1) < ∞ .

(5)

( 1 − ) ( ‖ − ‖ ) ≤ − + ( − 1) < ∞ .

Karena (1 − ) ( ‖ − ‖ ) konver gen, maka lim ( ‖ − ‖ ) = 0 .

Karena naik keras, kontinu, dan ( 0) = 0,makalim( ‖ − ‖ ) = 0

.

Dengan cara serupa juga diperoleh lemma 3.4 sebagai berikut.

Lemma 3.4 Misalkan ruang Banach yang konveks seragam,tak kosong, tutup, terbatas, dan konveks, : → asimtotik non-ekspansif dengan barisan { } dimana ( ) = 1,, dan ∑ ( − 1) < ∞ , dan

{ },{ },{ }adalah barisan yang didefinisikan oleh

sebarang

ditunjukkan oleh sebuah lemma berikut ini.

Lemma 3.5 Jika ruang Banach yang konveks seragam,tak kosong, tutup, terbatas, dan konveks, : → asimtotik non-ekspansif dengan barisan { } dimana ( ) = 1,, dan ∑ ( − 1) < ∞ , dan

{ },{ },{ }adalah barisan yang didefinisikan oleh

sebarang

Dari teorema 3.2, untuk semua ∈ berlaku ketaksamaan

( 1 − ) ( ‖ − ‖ ) ≤ ‖ − ‖ − ‖ − ‖ + ( − 1)

(6)

Karena ( 1 − ) ( ‖ − ‖ ) ≥ 0maka

‖ − ‖ ≤ ‖ − ‖ + ( − 1)

Sebelumnya,telah diketahui bahwa ( − 1) < ∞ .

Oleh karena itu, berdasarkan lemma 1 pada [19], diperoleh bahwa

lim( ‖ − ‖ ) ada.

Dengan ditambahkan lagi syarat, yaitu kontinu lengkap sebagaimana definisi kontinu lengkap yang dijelaskan dalam [1,16], mengakibatkan barisan

{ },{ },dan{ } konvergen ke suatu titik tetap dari .

Teorema 3.6 Misalkan ruang Banach yang konveks seragam,tak kosong, tutup, terbatas, dan konveks, : → kontinu lengkap dan asimtotik non-ekspansif dengan barisan { } dimana ( ) = 1,, dan

Dari lemma 3.3 dan 3.4, maka diketahui bahwa :

lim ( ‖ − ‖ ) = 0, dan

lim ( ‖ − ‖ ) = 0

Diambil > 0 sebarang maka terdapat = ( ) ∈ sedemikian sehingga berlaku ‖ − ‖ < ,untuk semua ≥ , dan terdapat =

( ) ∈ sedemikian sehingga berlaku‖ − ‖ < ,untuk semua ≥ .

Kemudian dapat dipilih = max{ , , } sehingga untuk semua ≥

(7)

= ‖ − ‖ + ‖ − ‖

Akhirnya, diperoleh bahwa untuk semua ≥ berlaku

‖ − ‖ ≤ ‖ + − + ‖

≤ ‖ − ‖ + ‖ − ‖

≤ ‖ − ‖ + ‖ − ‖

< ( 1 + ) + 2 ( 1 + ) .

Dengan demikian,lim ( ‖ − ‖ ) = lim (‖ − ‖ ) = 0 .

Karena kontinu lengkap, maka terdapat barisan dari { }

sedemikian sehingga konvergen, misalkan ∗ ∈ dimana → ∗ ,

dan karena lim ( ‖ − ‖ ) = 0, maka juga konvergen ke ∗ . Karena

kekontinuan dari dan karena → ∗ , maka → ∗ = ∗ . Jadi, ∗

adalah sebuah titik tetap dari .

Selanjutnya, berdasarkan lemma 4.3.5, diketahui bahwa lim ( ‖ − ∗ ‖ )

ada. Sedangkan lim − ∗ = 0 dimana − ∗ dapat dipandang

sebagai subbarisan dari{‖ − ∗ ‖ }. Oleh karena itu, haruslahlim ( ‖ − ∗ ‖ ) = 0.Artinya,{ }konvergen ke suatu titik tetap ∗ dari .

Kemudian, karena

‖ − ‖ ≤ ‖ − ‖ → 0, dan

‖ − ‖ ≤ ‖ − ‖ → 0,

(8)

4.

ITERASI TIGA LANGKAH PADA PEMETAAN

ASIMTOTIK NON-EKSPANSIF DENGAN

BEBERAPA KASUS KHUSUS

Pada iterasi tiga langkah, ketika = 0,∀ ∈ , maka = , ∀ ∈ .

Dengan demikian, langkah pertama pada iterasi tiga langkah tidak menghasilkan perubahan titik. Jadi, untuk kasus = 0, ∀ ∈ berlaku iterasi seperti berikut :

∈ sebarang

= + ( 1 − )

= + ( 1 − ) ,

≥ 1 ,

dengan { },{ },dan { } adalah barisan di [0, 1]. Teorema berikut ini menjelaskan kekonvergenan barisan{ } dan{ } yang diperoleh dari iterasi di atas.

Teorema 4.1 Misalkan ruang Banach yang konveks seragam,tak kosong, tutup, terbatas, dan konveks, : → kontinu lengkap dan asimtotik non-ekspansif dengan barisan { } dimana ( ) = 1,, dan

Karena terdapat , ∈ ( 0,1)dan ∈ sedemikian sehingga ≤ ≤ untuk setiap ≥ , maka berdasarkan lemma 4.3.3, dengan{ } = {0}, berlaku

lim( ‖ − ‖ ) = 0 .

Dengan mengambil > 0 sebarang, maka dapat ditemukan = ( ) ∈

sedemikian sehingga untuk setiap ≥ berlaku ‖ − ‖ < .Jadi, untuk

≥ max{ , }berlaku

‖ − ‖ = ‖ − ‖

≤ ( ‖ − ‖ + ‖ − ‖ )

≤ ( ‖ − ‖ + ‖ − ‖ )

(9)

⇔ ‖ − ‖ − ‖ − ‖

Selanjutnya, untuk ≥ max{ , }juga berlaku

‖ − ‖ = ‖ − + − + − ‖

Akhirnya, diperoleh bahwa untuk semua ≥ max{ , }berlaku

‖ − ‖ ≤ ‖ + − + ‖

≤ ‖ − ‖ + ‖ − ‖

≤ ‖ − ‖ + ‖ − ‖

< ( 1 + ) + 2 ( 1 + ) .

Dengan demikian,lim ( ‖ − ‖ ) = lim ( ‖ − ‖ ) = 0 .

Karena kontinu lengkap, maka terdapat barisan dari { } sedemikian

sehingga konvergen, misalkan ∗ ∈ dimana → ∗ ,dan karena

lim ( ‖ − ‖ ) = 0, maka juga konvergen ke ∗ . Karena kekontinuan

dari dan → ∗ , maka → ∗ = ∗ . Jadi, ∗ adalah sebuah titik tetap dari .

Selanjutnya, berdasarkan lemma 4.3.5, diketahui bahwa lim ( ‖ − ∗ ‖ ) ada.

Sedangkanlim − ∗ = 0dimana − ∗ dapat dipandang sebagai

subbarisan dari {‖ − ∗ ‖ }. Oleh karena itu, haruslah lim ( ‖ − ∗ ‖ ) = 0.

Artinya,{ }konvergen ke suatu titik tetap ∗ dari . Kemudian, karena

‖ − ‖ ≤ ‖ − ‖ ,

maka{ } juga konvergen ke ∗ .

(10)

Teorema 4.2 Misalkan ruang Banach yang konveks seragam,tak kosong, tutup, terbatas, dan konveks, : → kontinu lengkap dan asimtotik non-ekspansif dengan barisan { } dimana ( ) = 1,, dan

Selanjutnya, dibahas mengenai kekonvergenan barisan yang diperoleh dari iterasi tiga langkah pada ruang Banach yang konveks seragam dan berdimensi hingga. Diketahui bahwa ruang Euclid berdimensi- ( ) adalah ruang Banach yang konveks seragam [5].

Dengan demikian, kriteria konveks seragam dan berdimensi hingga bukanlah dua kriteria yang saling bertentangan. Dengan memanfaatkan sifat kekompakan, dapat diperoleh lemma berikut ini.

Lemma 4.3 Misalkan ruang Banach yang konveks seragam dan berdimensi hingga,tak kosong, tutup, terbatas, dan konveks, : → kontinu dan

(11)

Dengan argumen yang serupa, kekonvergenan menuju titik tetap dari juga terjadi pada iterasi tiga langkah yang direduksi, yaitu iterasi sebagaimana pada lemma 4.1 dan 4.2. Dengan demikian, lemma-lemma berikut ini berlaku.

Lemma 4.4 Misalkan ruang Banach yang konveks seragam dan berdimensi hingga,tak kosong, tutup, terbatas, dan konveks, : → kontinu dan

Lemma 4.5 Misalkan ruang Banach yang konveks seragam dan berdimensi hingga,, tak kosong, tutup, terbatas, dan konveks, : → kontinu dan asimtotik non-ekspansif dengan barisan{ } dimana ( ) = 1,,

sedemikian sehingga ≤ ≤ untuk setiapmaka{ } konvergen ke suatu titik tetap dari .

5.

DAFTAR PUSTAKA

[1] Alexanderian, A. (2013). On Compact Operators. Texas: tidak diterbitkan.

[2] Bartle, R. G., & Sherbert, D. R. (2000). Introduction To Real Analysis Third Edition. Urbana: John Wiley & Sons, Inc.

[3] Browder, A. (1996). Mathematical Analysis An Introduction. New York: Springer-Verlag.

[4] Chidume, C. (2009). Geometric Properties of Banach Spaces and Non Linier Iterations. London: Springer-Verlag.

(12)

[6] Goebel, K., & Kirk, W. (1972). A Fixed Point Theorm for Asymptotically Nonexpansive Mappings. Proceedings of The American Mathematical Society, 171-174.

[7] Goldberg, R. (1976). Methods of Real Analysis Second Edition. Toronto: John Wiley & Sons, Inc.

[8] Gozali, S. M. (2010). Pengantar Analisis Fungsional. Bandung: tidak diterbitkan.

[9] Handayani, N. (2006). Teorema Titik Tetap di Ruang Banach dan Aplikasinya pada Bidang Ekonomi (Skripsi). Bogor: IPB.

[10] Hewwit, E., & Stromberg, K. (1969). Real and Abstract Analysis. Berlin: Springer-Verlag.

[11] Istratescu, V. I. (1979). Fixed Point Theory. D. Reidel Publishing Company.

[12] Kirk, W. A. (1965). A Fixed Point Theorm Which Are Not Increase Distance. American Math Monthly, 72(32), 1004-1006.

[13] Kreyzig, E. (1978). Introduction to Functional Analysis and Its Applications. New York: John Wiley and Sons.

[14] Osilike, M., & Aniagbosor, S. (2000). Weak and Strong Convergence Theorems for Fixed Points of Asymptotically Nonexpansive Mappings. Mathematical and Computer Modelling, 32, 1180-1191.

[15] Pata, V. (2014). Fixed Point Theorems and Applications. Milan: tidak diterbitkan.

[16] Precup, R. (2002). Methods in Nonlinear Integral Equations. Springer Netherlands.

[17] Royden, H. (1967). Real Analysis Third Edition. New Jersey: Prentice-Hall, Inc.

[18] Schu, J. (1991). Weak and Strong Convergence To Fixed Points of Asymptotically Nonexpansive Mappings. Bull. Austral. Math. Soc., 153-159.

(13)

[20] Tan, K.K., & Xu, H.K. (1994). Fixed Point Iteration Processes for Asymptotically Nonexpansive Mappings. Proceedings of The Am. Math. Soc., 122, 733-739.

[21] Xu, B., & Noor, M. (2002). Fixed-Point Iterations for Asymptotically Nonexpansive Mappings in Banach Spaces. Journal of Mathematical Analysis and Applications, 267, 444-453.

(14)

Judul Artikel : Iterasi Tiga Langkah pada Pemetaan Asimtotik Non-Ekspansif

Mahasiswa Penulis : Agung Anggoro (1200053) Bandung, Juni 2016 Penulis Penanggung Jawab,

Referensi

Dokumen terkait

c. Pada sistokel dijumpai di dinding vagina depan benjolan kistik lembek dan tidak nyeri tekan. Benjolan ini bertambah besar jika penderita mengejan. Jika dimasukkan kedalam

Pemerintah pusat kembali mengeluarkan regulasi tentang Pajak Daerah dan Retribusi Daerah, melalui Undang-undang Nomor 28 Tahun 2009. Berlakunya UU pajak dan

Dilihat dari asal hukum di atas, jika memang dalam akad nikah niat tersebut diutarakan, maka nikah tersebut yang asalnya mubah akan menjadi haram karena telah sama

peningkatan total kredit yang diberikan bank dengan persentase lebih besar.. dibandingkan persentase peningkatan dana pihak

Bank Umum Swasta Nasional Devisa periode triwulan I tahun 2011 sampai dengan.. triwulan II tahun 2016 yang menjadi sampel

Public triwulan I tahun 2011 sampai dengan triwulan II tahun 2016 dengan demikian hipotesis yang menyatakan bahwa ROA secara parsial memiliki pengaruh positif yang

Hasil dari penelitian ini menunjukkan bahwa responden adalah penderita DM yang tidak dapat mengontrol kadar glukosa darah sehingga mudah untuk terjadinya komplikasi

Berdasarkan penelitian yang telah dilakukan maka dapat disimpulakan bahwa Tidak terdapat hubungan antara nilai IMT dengan terjadinya penyakit batu saluran