• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:VMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:VMJ:"

Copied!
6
0
0

Teks penuh

(1)

2011, Том 13, Выпуск 1, С. 38–43

УДК512.555+517.982

A BECKENBACH–DRESHER TYPE INEQUALITY IN UNIFORMLY COMPLETEf-ALGEBRAS

A. G. Kusraev

To the memory of Gleb Akilov on the occasion of the 90th anniversary of his birth

A general form Beckenbach–Dresher inequality in uniformly completef-algebras is given.

Mathematics Subject Classification (2000): 06F25, 46A40.

Key words:f-algebra, vector lattice, lattice homomorphism, positive operator.

An easy modification of the continuous functional calculus on unitary f-algebras as de-fined in [3] makes it possible to translate the Fenchel–Moreau duality tof-algebra setting and to produce someenvelope representations results, see [8]. This machinery, often called quasi-linearization (see [2, 9]), yields the validity of some classical inequalities in every uniformly complete vector lattice [4, 5]. The aim of this note is to give general forms of Peetre–Persson and Beckenbach–Dresher inequalities in uniformly complete f-algebras.

The unexplained terms of use below can be found in [1] and [6].

1◦. We need a slightly improved version of continuous functional calculus on uniformly complete f-algebras constructed in [3, Theorem 5.2].

Denote by B(RN+) thef-algebra of continuous functions onRN+ with polynomial growth; i. e., ϕ ∈ B(RN

+) if and only if ϕ ∈ C(RN+) and there are n ∈ N and M ∈ R+ satisfying

|ϕ(t)|6M(1+w(t))n (tRN

+), where t:= (t1, . . . , tN),w(t) :=|t1|+. . .+|tN|and 1is the function identically equal to 1 onRN+. Denote by B0(RN+) the set of all functions in B(RN+) vanishing at zero. LetA(RN

+) stands for the set of allϕ∈B(RN+) such that limα↓0α−1ϕ(αt)

exists uniformly on bounded subsets of RN+. Evidently, A(R+N) ⊂ B0(RN+). Finally, let H(RN+) denotes the set of all continuous positively homogeneous functions onRN+.

Lemma 1. The sets B(RN+), B0(RN+), and A(RN+) are uniformly complete f-algebras with respect to pointwise operations and ordering. Anyϕ∈A(RN+)admits a unique decom-positionϕ=ϕ1+wϕ2 withϕ1 ∈H(RN+) and ϕ2 ∈B0(RN+), i. e.

A(RN

+) =H(RN+)⊕wB0(RN+).

Moreover, ϕ1(t) =ϕ′(0)t:= limα↓0α−1ϕ(αt) for all t∈RN.

⊳See [3, Lemma 4.8, Section 5]. ⊲

c

(2)

2◦.Consider an f-algebraE. Denote byH(E) the the set of all nonzeroR-valued lattice homomorphisms on E and byHm(E) the subset of H(E) consisting of multiplicative func-tionals. We say thatω ∈H(E) is singular if ω(xy) = 0 for all x, y∈E. Let Hs(E) denotes the set of singular members of H(E). Given a finite tuplex= (x1, . . . , xN)∈EN, denote by hhxii:=hhx1, . . . , xNii thef-subalgebra of E generated by{x1, . . . , xN}.

Definition. Let E be a uniformly complete f-algebra and x1, . . . , xN E+. Take a continuous functionϕ:RN+ R. Say that the elementϕ(xb 1, . . . , xN)exists or iswell-defined inE provided that there is y∈E satisfying

ω(y) =ϕ(ω(x1), . . . , ω(xN)) (ω ∈Hm(hhx1, . . . , xN, yii), ω(y) =ϕ1(ω(x1), . . . , ω(xN)) (ω∈Hs(hhx1, . . . , xN, yii),

(1)

cp. [3, Remark 5.3 (ii)]. This is written down asy=ϕ(xb 1, . . . , xN).

Lemma 2. Assume that E is a uniformly complete f-algebra and x1, . . . , xN ∈E+, and

x:= (x1, . . . , xN). Thenbx(ϕ) :=ϕ(xb 1, . . . , xN)exists for everyϕ∈A(RN+), and the mapping b

x : ϕ 7→ bx(ϕ) = ϕ(xb 1, . . . , xN) is the unique multiplicative lattice homomorphism from

A(RN+) to E such that dtbj(x1, . . . , xN) =xj for all j:= 1, . . . , N. Moreover, bx(A(RN+)) = hhx1, . . . , xNii.

⊳Takeϕ∈A(RN+). In view of Lemma 1ϕ=ϕ1+wϕ2 withϕ1 H(RN+),ϕ2 B0(RN+), and w(t) =|t1|+. . .+|tN|. For x ∈E denote by ˙x∈Orth(E) the multiplication operator y 7→ xy (x ∈ E). According to [5, Theorem 3.3] and [8, Theorem 2.10] we can define correctlyϕb1(x1, . . . , xN) inEandϕb2( ˙x1, . . . ,xN˙ ) in Orth(E), respectively. Now, it remains to

putϕ(xb 1, . . . , xN) :=ϕb1(x1, . . . , xN) +ϕb2( ˙x1, . . . ,x˙N)w(x1, . . . , xN) and check the soundness of this definition. Closer examination of the proof can be carried out as in the case of ϕ∈A(RN), see [3].⊲

Lemma 3. Assume that ϕ ∈ A(RN+) is convex. Then for all x:= (x1, . . . , xN) ∈ EN, y:= (y1, . . . , yN) ∈ EN, and π, ρ ∈ Orth(E)+ with π +ρ = IE we have ϕ(πxb +ρy) 6 πϕ(x) +b ρϕ(y),b where πx:= (πx1, . . . , πxN). The reverse inequality holds whenever ϕ is concave.

⊳ Let L be the order ideal generated by hhx1, . . . , yNii. Clearly, L is an f-subalgebra ofE. Ifπ0:=π|Land ρ0:=ρ|L thenπ0, ρ0Orth(L). For anyω∈H(L) there exists a unique e

ω∈Hm(Orth(L)) such thatω(πx) =ω(π)ω(x) for alle x∈Landπ ∈Orth(L), [3, Proposition 2.2 (i)]. Ifωis nonsingular thenαωis multiplicative for someα >0 [3, Corollary 2.5 (i)], and thus we may assume without loss of generality that ω∈Hm(L). By using (1), the convexity ofϕ, and the relation ω(π) +e ω(ρ) = 1 we deducee

ω(ϕ(πxb +ρy)) =ϕ ω(πe 0)ω(x) +ω(ρe 0)ω(y)6ω(πe 0)ϕ(ω(x)) +ω(ρe 0)ϕ(ω(y))

=ω(πe 0)ω(ϕ(x)) +b ω(ρe 0)ω(ϕ(y)) =b ω(πϕ(x) +b ρϕ(y)),b

whereω(x) := (ω(x1), . . . , ω(xN)). Ifωis singular then by above definition we haveω(ϕ(x)) =b ω(ϕb1(x)), ω(ϕ(y)) =b ω(ϕb1(y)), and ω(ϕ(πxb +ρy)) = ω(ϕb1(πx+ρy)). At the same time

ϕ1 is sublinear, since it coincides with the directional derivative of the convex function ϕat

zero, see Lemma 3. Thus, by replacing ϕ by ϕ1 in the above arguments we again obtain

ω(ϕ(πxb +ρy))6ω(πϕ(x) +b ρϕ(y)). It remains to observe that everyb ω0∈H(hhx1, . . . , xNii)

admits an extension toω ∈H(L) and thus H(L) separates the points of hhx1, . . . , xNii.⊲

Lemma 4. If ϕ ∈ A(RN+) is isotonic, then ϕb is also isotonic, i. e. x 6 y implies

b

ϕ(x)6ϕ(y)b for all x,y∈EN

+. (The order in EN is defined componentwise.)

(3)

3◦.Everywhere below (G,+) is a commutative semigroup, whileEis a uniformly complete f-algebra andf1, . . . , fN :G→E+. Let P(M) stands for the power set ofM. Assume that

some set-valued map F :GP(Orth(E)+) meets the following three conditions: (i) π−1 exists in Orth(E) for every π F(u), inequality holds for allu, v ∈G.

Theorem. Suppose that the operators g, h:G→E are defined as in(2). Then:

(1) g is subadditive whenever f1, . . . , fN are subadditive and ϕ ∈ A(RN+) is increasing

and convex;

(2)his superadditive wheneverf1, . . . , fN are superadditive andϕ∈A(RN+)is increasing

and concave.

⊳We restrict ourselves to the subadditivity ofg. The superadditivity ofh can be proved in a similar way. Take u, v ∈ G and let π ∈ F(u) and ρ F(v). By 3 (ii) we can choose σ ∈F(u+v) withσ>π+ρ. In view of 3 (i)π,ρ, andσare invertible. Taking subadditivity of f :G→EN and some elementary properties of orthomorphisms into account we have

σ−1f(u+v)6σ−1 f(u) +f(v)6πσ−1 π−1f(u)+ρσ−1 ρ−1f(v). Remark 1. Suppose that the hypotheses of 3 (i–iii) are fulfilled for some fixed u, v ∈G. Then the inequality g(u+v)6g(u) +g(v) (h(u+v)>h(u) +h(v)) holds.

Remark 2. An f-algebra E can be identified with Orth(E) if and only if E has a unit element. Thus, above theorem remains true if E is a uniformly complete unitary f-algebra and the mapF :GP(E+) satisfies the condition 3 (i–iii) with Orth(E) replaced byE.

5◦.For a single-valued map F(x) ={f

0(x)} (x∈ G) with f0 :G→ Orth(E)+ we have

the following particular case of the above Theorem, see [8].

Corollary 1. Suppose thatf1, . . . , fN are subadditive,f0 :G→Orth(E)+ is

superaddi-tive, andf0(u)is invertible inOrth(E)for everyu∈G. Then, given an increasing continuous

(4)

Remark 3.The above theorem in the particular case ofE =Rwas obtained by Persson [12, Theorems 1 and 2], while Corollary 2 covers the “single-valued case” by Peetre and Persson [11]. A short history of the Beckenbach–Dresher inequality is presented in [13]. Some instances of the inequality are also addressed in [9, 10].

6◦.We need two more auxiliary facts. First of them is a generalized Minkowski inequality. Lemma 6.LetEandF be uniformly complete vector lattices,f :E+ →F an increasing

sublinear operator. If either and0< α61or α <0, then for all x1, . . . , xN ∈E we have

Jensen inequality in vector lattices, see [4, Theorem 5.2] and [7, Theorem 4.2].⊲

LetAandBbe uniformly complete unitaryf-algebras, whileE ⊂Ais a vector sublattice. For every x∈A+ and 0< p∈R thep-power xp is well defined in A, see [3, Theorem 4.12].

Ifx∈A+ is invertible andp <0, then we can also definexp:= (x−1)−p. It can be easily seen

that ω(xp) = ω(x)p for any ω H

m(A0) with an f-subalgebra A0 ⊂ containing x. Assume

thatR :E→B is a positive operator. Givenx∈Awithxp ∈E, we defineRp(x) :=R(xp)1p.

This definition is sound provided thatx is invertible inA and R(xp) is invertible inB. Lemma 7. Ifp >1 and x1, . . . , xN ∈ A+ are such that xp1, . . . , xpN ∈E and (x1 +. . .+

xN)p∈E, then the inequality holds:

Rp(x1+. . .+xN)6Rp(x) +. . .+Rp(xN). (5)

The reversed inequality is true wheneverp61,p6= 0. (In casep <0the positive elementsxi and R(xpi) are assumed to be invertible inA.)

⊳Denote ui:=xpi,α:= 1/p, and observe that uα1 +. . .+uαN

1

α =φ

α(u1, . . . , uN) where φα(u1, . . . , uN) is understood in the sense of homogeneous functional calculus. In particular, (x1+. . .+xN)p = uα1 +. . .+uαN

1

α ∈E for every p6= 0. We need consider three cases. If

p>0 then by applying Lemma 6 to the right-hand side of the equality

Rp(x1+. . .+xN) =R immediately at the desired inequality (5). The same arguments involving the reversed version of (4) leads to the reversed inequality in (5) whenever 0< p <1. Finally, in the case p <0, again by Lemma 6, we have R (uα1 +. . .+uαN)α1

6 R(u1)α+. . .+R(uN)α

1

α and rising

both sides of this inequality to theαth power we get the reversed inequality (5). ⊲

(5)

β 616α,β 6= 0, and T(xβi) are invertible in Orth(F) whenever β <0, then

S PNi=1xi

αp/α

T PNi=1xi

β(p−1)/β 6 N

X

i=1

S xαip/α

T xβi(p−1)/β. (6)

⊳ Put G = E, f(x) := f(x) := S(xα)1/α, f

0(x) := T(xβ)1/β, N = 1, and ϕ(t) = tp in

Corollary 1. By Lemma 7 f is subadditive, f0 is superadditive, and f0(xi) is invertible in

Orth(F). Moreover, ϕ∈A(R+) is convex and increasing whenever p>1. Now, the desired inequality is deduced by induction.⊲

Remark 4. If 0 < p < 1 then the concave function ϕ(t) = tp is not in A(R+) and we cannot guarantee the reversed inequality in (6). Nevertheless, in the case thatF is a unitary f-algebra one can takeϕ∈B(RN+) in Peetre–Persson’s inequality (3) and thus the reversed inequality is true in (6) whenever 0< p 61,α, β61, andα, β 6= 0.

References

1. Aliprantis C. D., Burkinshaw O.Positive operators.—London etc.: Acad. Press Inc., 1985.—xvi+367 p. 2. Beckenbach E. F., Bellman R.Inequalities.—Berlin: Springer, 1983.

3. Buskes G., de Pagter B., van Rooij A.Functional calculus on Riesz spaces // Indag. Math.—1991.— Vol. 4, № 2.—P. 423–436.

4. Kusraev A. G.Homogeneous functional calculus on vector lattices.—Vladikavkaz: Southern Math. Inst. VSC RAS, 2008.—34 p.—(Preprint № 1).

5. Kusraev A. G. Functional calculus and Minkowski duality on vector lattices // Vladikavkaz Math. J.—2009.—Vol. 11, № 2.—P. 31–42.

6. Kusraev A. G., Kutateladze S. S. Subdifferentials: Theory and applications.—Dordrecht: Kluwer Academic Publ., 1995.—ix+398 p.

7. Kusraev A. G.Inequalities in vector lattices // Studies on Mathematical Analysis, Differential Equation, and their Applications / Eds. Korobe˘ınik Yu. F., Kusraev A. G.—Vladikavkaz: SMI VSC RAS, 2010.— P. 82–96.—(Review of Science: The South of Russia).

8. Kusraev A. G., Kutateladze S. S.Envelopes and inequalities in vector lattices.—(to appear).

9. Mitrinovi´c D. S., Peˇcari´c J. E., Fink A. M. Classical and new inequalities in analysis.—Dordrecht: Kluwer, 1993.—xvii+740 p.

10. Peˇcari´c J. E., Proschan F., Tong Y. L.Convex functions, partial orderings, and statistical application.— Boston a. o.: Academic Press, 1992.—xiii+469 p.

11. Peetre J., Persson L.-E. A general Beckenbach’s inequality with applications // Function Spaces, Differential Operators and Nonlinear Analysis. Pitman Res. Notes Math. Ser. 211.—1989.—P. 125–139. 12. Persson L.-E.Generalizations of some classical inequalities and their applications // Nonlinear Analysis, Function Spaces and Applications / Eds. Krbec M., Kufner A., Opic B., R´akosn´ık J.— Leipzig: Teubner, 1990.—P. 127–148.

13. Varoˇsanec S.A generalized Beckenbach–Dresher inequality // Banach J. Math. Anal.—2010.—Vol. 4, № 1.—13–20.

Anatoly G. Kusraev

Southern Mathematical Institute

(6)

НЕРАВЕНСТВО ТИПА БЕККЕНБАХА — ДРЕШЕРА В РАВНОМЕРНО ПОЛНЫХf-АЛГЕБРАХ

А. Г. Кусраев

Установлено общее неравенство типа Беккенбаха — Дрешера в равномерно полныхf-алгебрах.

Referensi

Dokumen terkait

Laporan keuangan pada dasarnya adalah hasil akhir dari proses akuntansi pada suatu periode tertentu yang merupakan hasil pengumpulan data keuangan yang disajikan dalam

Hasil uji tarik menunjukkan bahwa pada fraksi berat serat 30% memiliki kekuatan mekanik yang paling tinggi yaitu sebesar ±9 MPa.. Akan tetapi kekuatan

Bagi Peserta Lelang yang diundang tidak datang tepat pada waktunya dan ketidakmampuan Saudara dalam membuktikan pemenuhan persyaratan kualifikasi atau

– fasilitas ruang di dalam Pusat Kebudayaan Suku Dayak

Pekerjaan : Pengadaan Bahan Permakanan Penerima Manfaat PSBR Rumbai Pekanbaru Tahun Anggaran

Pokja Pengadaan Barang/Jasa ULP PSMP Handayani Jakarta pada Kementerian Sosial RI akan melaksanakan E-Lelang Sederhana dengan pascakualifikasi secara elektronik untuk paket

Kami mengucapkan terima kasih kepada Peserta Pengadaan Barang/Jasa yang belum mendapat kesempatan sebagai Pemenang Lelang dan berharap dapat berpartisipasi pada

Desain penelitian yang penulis gunakan adalah desain penelitian dengan data primer/sekunder, jenis penelitian yang penulis gunakan adalah penelitian akademik, jenis