• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:EJQTDE:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:EJQTDE:"

Copied!
13
0
0

Teks penuh

(1)

Electronic Journal of Qualitative Theory of Differential Equations

Proc. 8th Coll. QTDE, 2008, No.

3

1-13;

http://www.math.u-szeged.hu/ejqtde/

✁ ✂ ✁✄✁☎✆✁✝✂✞ ✟✠✟✡✝☛ ☞✄✁✡✂✆✁✆✁✌ ✁✄✁☎✄☞✂☎ ✡✝✞☛✟ ✞✝☎✂✡✝✍ ✡✄ ✂ ✎✏✆✍

✎✄✑ ☛✄✍✝☎

✒✓✔✕ ✖✗✘✗✙✚✗✛

✜✢✣✤✥✦✧✤

★✩ ✪✫✬✭✮✯✩✰ ✱ ✬✫✬✲✮✬✩✱✰ ✭✳✭✴✩✵ ✫✶ ✯✮✷✩✰✩✬✴✮✱✲ ✩✸✹✱✴✮✫✬✭ ✺✻✩✰✩ ✴✻✩ ✵✱✮✬ ✼✱✰✴✭ ✵✱✳ ✪✫✬✴✱✮✬ ✬✫✬✲✫✪✱✲

✯✩✼✩✬✯✩✬✪✩ ✫✬ ✴✻✩ ✹✬✽✬✫✺✬✭✾ ✿✻✮✭ ✭✳✭✴✩✵ ✮✭ ✱ ❀✩✬✩✰✱✲✮❁✱✴✮✫✬ ✫✶ ✱ ✵✫✯✩✲ ✯✩✭✪✰✮❂✮✬❀ ❃✹✮✯ ❃✫✺ ✮✬ ✼✫✰✫✹✭

✵✩✯✮✹✵✾❄❅✮✭✴✩✬✪✩✫✶✺✩✱✽✭✫✲✹✴✮✫✬✭❆❂✫✹✬✯✩✯✬✩✭✭✱✬✯✭✴✱❂✮✲✮❁✱✴✮✫✬ ✫✶✭✫✲✹✴✮✫✬✭✱✭

t

→ ∞

✮✭✭✻✫✺✬ ❂✳✹✭✮✬❀

✴✻✩✴✻✩✫✰✳ ✫✶ ✵✫✬✫✴✫✬✩✫✼✩✰✱✴✫✰✭❆✱✬✯ ✭✫✵✩ ✩❅✱✵✼✲✩✭✱✰✩ ❀✮❇✩✬✾

❈ ❉❊❋●❍■❏❑❋▲❍❊

▼◆❖P ◗❘◗❙❚ ❯❘P ❱❲❳❖❨❘❳❙❩ ❬❭ ❳◆❙ ❯❲❚❪ ❫ ❴❵ ❛❜ ▼◆❙❚❙ ❳◆❙ ❘❝❳◆❲❚P ❖❞❨❙P❳❖❡❘❳❙❩ ❢❝❖❩ ❢❲❯ ❖❞ ◗❲❚❲❝P ❱❙❩❖❘❜ ❣

◗❲❚❲❝P ❱❙❩❖❝❱ ❖P ❘ P❲❤❖❩ ❱❙❩❖❝❱ ❯❖❳◆ ❤❲❳P ❲✐ ❳❖❞❭ ◆❲❤❙P ❥❙❜❡❜❦ ❤❖❱❙P❳❲❞❙❧❜ ▼◆❙ ❢❲❯ ❲✐ ❘ ❢❝❖❩ ❳◆❚❲❝❡◆ ❳◆❙

❱❙❩❖❝❱ ❖P ❩❙❳❙❚❱❖❞❙❩ ❬❭ ❳◆❙ ❤❘❚❡❙ P❝❚✐❘♠❙ ❲✐ ❳◆❙ P❲❤❖❩ ❱❘❳❚❖♥ ❘❞❩ ❳◆❙ ♠❤❲P❙❞❙PP ❲✐ ❳◆❙ ◆❲❤❙P❜ ♦❲❚ ❘ ❩❙❳❘❖❤❙❩

❖❞❳❚❲❩❝♠❳❖❲❞ ❳❲ ❳◆❖P ❳❲◗❖♠❦ P❙❙ ❫♣❛❜ q✐ ❳◆❙ ❢❝❖❩ ♠❘❚❚❖❙P ❩❖PP❲❤❨❙❩ ♠◆❙❱❖♠❘❤ P◗❙♠❖❙P❦ ♠◆❙❱❖♠❘❤ ❚❙❘♠❳❖❲❞P ♠❘❞ ❲♠♠❝❚❦

P❙❙ ❫❵r❛❜ ❣❱❲❞❡ ❳◆❙P❙ ❖❞♠❤❝❩❙ ❚❙❘♠❳❖❲❞P ❳◆❘❳ ♠❘❞ ♠◆❘❞❡❙ ❳◆❙ ◗❲❚❲P❖❳❭❜ q❞ ❳◆❙ ♠❖❳❙❩ ◗❘◗❙❚ ❳◆❙ ✐❲❤❤❲❯❖❞❡ ❱❲❩❙❤

❯❘P ❩❙❚❖❨❙❩ ✐❲❚P❝♠◆ ❢❲❯ ❖❞ ❲❞❙ ❩❖❱❙❞P❖❲❞s

ω

(

t, x

)

ut

(

t, x

) =

α

·

(|

v

(

t, x

)|

ux

(

t, x

))

x

+

K

(

ω

(

t, x

))

px

(

t, x

)

ux

(

t, x

)

ku

(

t, x

)

g

(

ω

(

t, x

))

❥❵❧

ωt

(

t, x

) =

bu

(

t, x

)

g

(

ω

(

t, x

))

❥❴❧

(

K

(

ω

(

t, x

))

px

(

t, x

))

x

=

bu

(

t, x

)

g

(

ω

(

t, x

))

,

❥ ♣❧

v

(

t, x

) =

K

(

ω

(

t, x

))

px

(

t, x

)

,

t >

0

, x

(0

,

1)

,

❥t❧

❯❖❳◆ P❲❱❙ ❖❞❖❳❖❘❤ ❘❞❩ ❬❲❝❞❩❘❚❭ ♠❲❞❩❖❳❖❲❞P ❯◆❙❚❙

ω

❖P ❳◆❙ ◗❲❚❲P❖❳❭❦

u

❖P ❳◆❙ ♠❲❞♠❙❞❳❚❘❳❖❲❞ ❲✐ ❳◆❙ ❩❖PP❲❤❨❙❩ ♠◆❙❱❖♠❘❤ P❲❤❝❳❙ ♠❘❚❚❖❙❩ ❬❭ ❳◆❙❢❝❖❩❦

p

❖P ❳◆❙ ◗❚❙PP❝❚❙❦

v

❖P ❳◆❙❨❙❤❲♠❖❳❭❦✐❝❚❳◆❙❚❦

α

k

b

❘❚❙❡❖❨❙❞ ♠❲❞P❳❘❞❳P❦

K

❘❞❩

g

❘❚❙ ❡❖❨❙❞ ❚❙❘❤ ✐❝❞♠❳❖❲❞P❜ ✉❬P❙❚❨❙❳◆❘❳ ❘✐❳❙❚ ❙❤❖❱❖❞❳❘❖❲❞ ❲✐❳◆❙✐❲❝❚❳◆ ❙✈❝❘❳❖❲❞ ❲❞❙ ❲❬❳❘❖❞P ❘ P❭P❳❙❱ ❳◆❘❳ ♠❲❞❳❘❖❞P ❳◆❚❙❙ ❩❖✇❙❚❙❞❳❳❭◗❙P ❲✐ ❩❖✇❙❚❙❞❳❖❘❤ ❙✈❝❘❳❖❲❞Ps ❘❞ ❲❚❩❖❞❘❚❭❦❘ ◗❘❚❘❬❲❤❖♠❘❞❩ ❘❞ ❙❤❤❖◗❳❖♠ ❲❞❙❦P❙❙ ❫❵❵❦❴❵❛❜

①❖❱❖❤❘❚❱❲❩❙❤❯❘P P❳❝❩❖❙❩ ❖❞ ❫❵❵ ❛❬❭ ❝P❖❞❡ ❳◆❙ ❱❙❳◆❲❩ ❲✐②❲❳◆❙❜①❲❱❙ ❞❝❱❙❚❖♠❘❤ ❙♥◗❙❚❖❱❙❞❳P ❯❙❚❙❩❲❞❙❖❞ ❫❴❵❛

♠❲❞♠❙❚❖❞❡❳◆❙❘❬❲❨❙P❭P❳❙❱❦◆❲❯❙❨❙❚❦♠❲❚❚❙♠❳ ◗❚❲❲✐❲❞ ❙♥❖P❳❙❞♠❙❲✐ P❲❤❝❳❖❲❞P ❯❘P❞❲❳❱❘❩❙ ❥❘❞❩ ❲❞❙♠❘❞ ◆❘❚❩❤❭

③❞❩ ◗❘◗❙❚P ❩❙❘❤❖❞❡ ❯❖❳◆ P❝♠◆ ❪❖❞❩ ❲✐ P❭P❳❙❱P ❖❞ ❚❖❡❲❚❲❝P ❱❘❳◆❙❱❘❳❖♠❘❤ ❯❘❭❧❜ q❞ ❳◆❙ ✐❲❤❤❲❯❖❞❡❦ ❯❙ ♠❲❞P❖❩❙❚

❘ ❡❙❞❙❚❘❤❖④❘❳❖❲❞ ❲✐ ❳◆❙ ❘❬❲❨❙ P❭P❳❙❱❜ ⑤❘❱❙❤❭❦ ❯❙ ❘❩❱❖❳ ❘❤P❲ ❞❲❞❤❲♠❘❤ ❩❙◗❙❞❩❙❞♠❙ ❲❞ ❳◆❙ ❝❞❪❞❲❯❞P❜ ①❝♠◆

❞❲❞❤❲♠❘❤❖❳❭ ❖P ❙P◗❙♠❖❘❤❤❭ ❚❙❘P❲❞❘❬❤❙ ✐❲❚ ❩❖✇❝P❖❲❞ ◗❚❲♠❙PP❙P ❥◆❙❘❳ ❲❚ ◗❲◗❝❤❘❳❖❲❞❧ ❯◆❙❚❙ ❳◆❙ ❩❖✇❝P❖❲❞ ♠❲❙⑥♠❖❙❞❳

❱❘❭ ❩❙◗❙❞❩ ❲❞ ❳❙❚❱P ❯◆❖♠◆ ❩❙◗❙❞❩ ❲❞ ❳◆❙ ❝❞❪❞❲❯❞P ❖❞ ❘ ❞❲❞❤❲♠❘❤ ❯❘❭ ❥❙❜❡❜❦ ❲❞ ❳◆❙ ❖❞❳❙❡❚❘❤ ❲✐❳◆❙ ❩❙❞P❖❳❭❧❜

♦❝❚❳◆❙❚❱❲❚❙❦❞❲❞❤❲♠❘❤❱❲❩❙❤P❘❚❖P❙❘❤P❲ ❖❞ ♠❤❖❱❘❳❲❤❲❡❭❦P❙❙❳◆❙◗❘◗❙❚P ❫❴❦ ❵❴❦❵♣❦ ❵t❛ ❯◆❙❚❙❘ ♠❤❖❱❘❳❲❤❲❡❭❱❲❩❙❤

♠❲❞❳❘❖❞❖❞❡✐❝❞♠❳❖❲❞❘❤ ❩❖✇❙❚❙❞❳❖❘❤❙✈❝❘❳❖❲❞P❯❘PP❳❝❩❖❙❩❜♦❲❚ P❲❱❙❲❳◆❙❚◗❚❲❬❤❙❱P❖❞❨❲❤❨❖❞❡ ❞❲❞❤❲♠❘❤ ❩❖✇❙❚❙❞❳❖❘❤

❙✈❝❘❳❖❲❞P❦P❝♠◆ ❘P❳❚❘❞P❱❖PP❖❲❞ ◗❚❲❬❤❙❱P❦P❙❙ ❫❵⑦❦ ❵⑧❦❵⑨❛❦❘❞❩ ❘P ❞❲❞❤❲♠❘❤❬❲❝❞❩❘❚❭♠❲❞❩❖❳❖❲❞P❦P❙❙ ❫❴r❦❴⑩❦❴♣❛❜

q❞ ❳◆❙✐❲❤❤❲❯❖❞❡ ❯❙P◆❲❯ ❙♥❖P❳❙❞♠❙ ❘❞❩ ◗❚❲◗❙❚❳❖❙P ❲✐❯❙❘❪ P❲❤❝❳❖❲❞P ❥P❝♠◆ ❘P ❬❲❝❞❩❙❩❞❙PP ❘❞❩ P❳❘❬❖❤❖④❘❳❖❲❞

❘P

t

→ ∞

❧ ❳❲ ❘ ❞❲❞❤❲♠❘❤ ❡❙❞❙❚❘❤❖④❘❳❖❲❞❲✐❳◆❙ ❘❬❲❨❙ P❭P❳❙❱ ❬❭❝P❖❞❡ ❳◆❙ ❳◆❙❲❚❭❲✐❲◗❙❚❘❳❲❚P❲✐❱❲❞❲❳❲❞❙❳❭◗❙❜ ✉❝❚ ❘PP❝❱◗❳❖❲❞P ❯❖❤❤ ❬❙ ❳◆❙ ❡❙❞❙❚❘❤❖④❘❳❖❲❞P ❲✐ ❳◆❙ ♠❤❘PP❖♠❘❤ ♠❲❞❩❖❳❖❲❞P❜ ❶❲❯❙❨❙❚ ❳◆❙P❙ ❘❚❙ P❳❚❖♠❳ ❘PP❝❱◗❳❖❲❞P❦

❳◆❙ ❙♥❘❱◗❤❙P❡❖❨❙❞ ❘✐❳❙❚ ❙❘♠◆ P❳❘❳❙❱❙❞❳ ❯❖❤❤ P◆❲❯ ❳◆❘❳❳◆❙❚❙P❝❤❳P ❘◗◗❤❭ ❖❞ ❘ ❤❘❚❡❙♠❤❘PP❲✐◗❚❲❬❤❙❱P❜

❷❸❷ ❹❺❻❼❻❽❺❾

❿❙❳

R

n

❬❙❘❬❲❝❞❩❙❩ ❩❲❱❘❖❞❯❖❳◆❳◆❙❝❞❖✐❲❚❱

C

1

❚❙❡❝❤❘❚❖❳❭◗❚❲◗❙❚❳❭ ❥P❙❙ ❫❵❛❧❦✐❝❚❳◆❙❚❦❤❙❳

0

< T <

2

p1, p2

<

❬❙ ❚❙❘❤ ❞❝❱❬❙❚P❜ q❞ ❳◆❙ ✐❲❤❤❲❯❖❞❡❦

QT

:= (0

, T

)

×

Q

:= (0

,

∞)

×

❜ ➀❙❞❲❳❙ ❬❭

W

1,p

i

(Ω)

❳◆❙ ❝P❝❘❤ ①❲❬

❲❤❙❨ P◗❘♠❙ ❯❖❳◆ ❳◆❙❞❲❚❱

k

v

k

W

1

,pi

(Ω)

=

Z

(|

v

|

p

i

+

n

X

j=1

|

Djv

|

p

i

)

1/p

i

➁➂➃➄ ➅➆➇➈ ➅➉➄ ➄➊➋➋➆➇➌➍➎ ➏➐➌➂➍ ➑➊➒➓➉➇➃➉➒ ➔➉➌➃➆➒➉→ ➣➆➊➒➎➉➌➃➆➒ ↔➆➇ ↕➙➃➍➒➌➃➛➙ ➜➍➄➍➉➇➙➂ ➊➒➎➍➇ ➓➇➉➒➌ ➝➁➞➟ ➁ ➠➡➢➤➥➢➦➁➂➃➄

➋➉➋➍➇➃➄ ➃➒➛➒➉→↔➆➇➧ ➉➒➎➒➆ ➨➍➇➄➃➆➒➆↔ ➃➌➃➄➄➊➏➧➃➌➌➍➎↔➆➇ ➋➊➏→➃➙➉➌➃➆➒ ➍→➄➍➅➂➍➇➍➦ ➩➫➫➫ ➭➯➲➳➵➸➯➲➺➻➼➽

➾➚➪ ➵➻➲ ➶➹➯

➼➼➺➘

➻➯➲➺➴➷➬➮➱ ➞✃➠❐

➮➱❒ ✃➠ ❮➵❰ Ï➴ÐÑ➼ ➯➷ÑÒ➳Ð➯➼➵➼➬Ó

(2)

❯◆❙❚❙

Dj

❩❙❞❲❳❙P ❳◆❙ ❩❖P❳❚❖❬❝❳❖❲❞❘❤ ❩❙❚❖❨❘❳❖❨❙ ❯❖❳◆ ❚❙P◗❙♠❳ ❳❲ ❳◆❙

j

❳◆ ❨❘❚❖❘❬❤❙ ❥❬❚❖❙❢❭

D

= (

D1, . . . , Dn

)

❧❜ q❞ ❘❩❩❖❳❖❲❞❦ ❤❙❳

Vi

❬❙ ❘ ♠❤❲P❙❩ ❤❖❞❙❘❚ P❝❬P◗❘♠❙ ❲✐

W

1,p

i

(Ω)

❯◆❖♠◆ ♠❲❞❳❘❖❞P

W

1,p

i

0

(Ω)

❥❳◆❙ ♠❤❲P❝❚❙ ❲✐

C

0

(Ω)

❖❞

W

1,p

i

(Ω)

❧❦❘❞❩ ❤❙❳

L

p

i

(0

, T

;

Vi

)

❬❙ ❳◆❙ ✁❘❞❘♠◆ P◗❘♠❙ ❲✐ ❱❙❘P❝❚❘❬❤❙✐❝❞♠❳❖❲❞P

u

: (0

, T

)

Vi

P❝♠◆ ❳◆❘❳

k

u

k

p

i

V

i

❖P

❖❞❳❙❡❚❘❬❤❙ ❘❞❩ ❳◆❙❞❲❚❱ ❖P❡❖❨❙❞ ❬❭

k

u

k

L

pi

(0,T;V

i

)

=

Z

T

0

k

u

(

t

)k

p

i

V

i

dt

1/p

i

.

▼◆❙ ❩❝❘❤ P◗❘♠❙ ❲✐

L

p

i

(0

, T

;

Vi

)

❖P

L

q

i

(0

, T

;

V

i

)

❯◆❙❚❙

1

p

i

+

1

q

i

= 1

❘❞❩

V

i

❖P ❳◆❙ ❩❝❘❤ ❲✐

Vi

❜ ✂❙ ❯❚❖❳❙ ❬❚❖❙❢❭

Xi

:=

L

p

i

(0

, T

;

Vi

)

❜▼◆❙ ◗❘❖❚❖❞❡ ❬❙❳❯❙❙❞

V

i

Vi

❘❞❩

X

i

Xi

❖P ❩❙❞❲❳❙❩ ❬❭

,

·i

❘❞❩

,

·]

❦ ❚❙P◗❙♠❳❖❨❙❤❭❦ ✐❝❚❳◆❙❚❦

Dtu

P❳❘❞❩P✐❲❚❳◆❙❩❙❚❖❨❘❳❖❨❙❲✐ ❘✐❝❞♠❳❖❲❞

u

L

p

i

(0

, T

;

Vi

)

❜q❳ ❖P❯❙❤❤ ❪❞❲❯❞ ❥P❙❙❫ ❴⑦❛❧❳◆❘❳ ❖✐

u

Xi

Dtu

X

i

❳◆❙❞

u

C

([0

, T

]

, L

2

(Ω))

P❲ ❳◆❘❳

u

(0)

❱❘❪❙P P❙❞P❙❜

❷❸✄ ☎❺✆✝✞✟❼❻❽❺❾ ❺✠ ❻✡☛ ☞✆❺✌✟☛✝

❿❙❳ ❝P ♠❲❞P❖❩❙❚ ❳◆❙ ✐❲❤❤❲❯❖❞❡ P❭P❳❙❱ ❲✐❙✈❝❘❳❖❲❞Ps

Dtω

(

t, x

) =

f

(

t, x, ω

(

t, x

)

, u

(

t, x

);

u

)

,

ω

(0

, x

) =

ω0

(

x

)

,

❥⑩❧

Dtu

(

t, x

)

n

X

i=1

Di

[

ai

(

t, x, ω

(

t, x

)

, u

(

t, x

)

, Du

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

ω, u,

p

)] +

❥ r❧

+

a0

(

t, x, ω

(

t, x

)

, u

(

t, x

)

, Du

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

ω, u,

p

) =

g

(

t, x

)

,

u

(0

, x

) = 0

,

n

X

i=1

Di

[

bi

(

t, x, ω

(

t, x

)

, u

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

ω, u,

p

)] +

❥⑦❧

+

b0

(

t, x, ω

(

t, x

)

, u

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

ω, u,

p

) =

h

(

t, x

)

❯❖❳◆ P❲❱❙ ❬❲❝❞❩❘❚❭ ♠❲❞❩❖❳❖❲❞P❜ ▼◆❖P P❭P❳❙❱ ❖P ❘ ❡❙❞❙❚❘❤❖④❘❳❖❲❞ ❲✐ ❳◆❙ ❱❲❩❙❤ ❥❵❧✍❥t❧❦ ✐❝❞♠❳❖❲❞P

f, ai, bi

❱❘❭ ♠❲❞❳❘❖❞ ❞❲❞❤❲♠❘❤ ❩❙◗❙❞❩❙❞♠❙ ❲❞ ❳◆❙ ❝❞❪❞❲❯❞ ✐❝❞♠❳❖❲❞P

ω, u,

p

❯◆❖♠◆ ❘❚❙ ❯❚❖❳❳❙❞ ❘✐❳❙❚ ❳◆❙ P❭❱❬❲❤ ✎✏✎❜ q❞ ❳◆❙

❞❙♥❳ P❙♠❳❖❲❞ ❯❙✐❲❚❱❝❤❘❳❙P❲❱❙❘PP❝❱◗❳❖❲❞P❲❞ ❳◆❙P❙✐❝❞♠❳❖❲❞P❳◆❙❞ ❯❙❱❘❭❩❙③❞❙❳◆❙ ❯❙❘❪✐❲❚❱ ❲✐❳◆❙❘❬❲❨❙

P❭P❳❙❱ ❘❞❩ ◗❚❲❨❙❙♥❖P❳❙❞♠❙ ❲✐ ❯❙❘❪P❲❤❝❳❖❲❞P❜

❷❸✑ ✒✓✓✞✝☞❻❽❺❾✓

q❞ ❯◆❘❳ ✐❲❤❤❲❯P❦

ξ

(

ζ0, ζ

)

(

η0, η

)

❚❙✐❙❚ ✐❲❚ ❳◆❙❨❘❚❖❘❬❤❙P

ω

(

u, Du

)

❘❞❩

(

p

, D

p

)

❦ ❚❙P◗❙♠❳❖❨❙❤❭❦✐❝❚❳◆❙❚❦

w

v1

❘❞❩

v2

✐❲❚ ❳◆❙ ❞❲❞❤❲♠❘❤ ❩❙◗❙❞❩❙❞♠❙❲❞

ω

u

❘❞❩

p

❥❣❵❧ ♦ ❲❚③♥❙❩

(

w, v1, v2

)

L

(

QT

)

×

X1

×

X2

✐❝❞♠❳❖❲❞P

ai

:

QT

×

R

×

R

n+1

×

R

n+1

×

L

(

QT

)

×

X1

×

X2

R

i

= 0

, . . . , n

❧ ◆❘❨❙ ❳◆❙ Ú❘❚❘❳◆✔❲❩❲❚❭ ◗❚❲◗❙❚❳❭❦ ❖❜❙❜❦ ❳◆❙❭ ❘❚❙ ❱❙❘P❝❚❘❬❤❙ ❖❞

(

t, x

)

QT

✐❲❚ ❙❨❙❚❭

(

ξ, ζ0, ζ, η0, η

)

R

×

R

n+1

×

R

n+1

❘❞❩ ♠❲❞❳❖❞❝❲❝P❖❞

(

ξ, ζ0, ζ, η0, η

)

R

×

R

n+1

×

R

n+1

✐❲❚❘❜❘❜

(

t, x

)

QT

❥❣❴❧ ▼◆❙❚❙ ❙♥❖P❳ ❘ ♠❲❞❳❖❞❝❲❝P ✐❝❞♠❳❖❲❞

c1

:

R

R

+

❘❞❩ ❬❲❝❞❩❙❩ ❲◗❙❚❘❳❲❚P

c

1

:

L

(

QT

)

×

X1

×

X2

R

+

k1

:

L

(

QT

)

×

X1

×

X2

L

q

1

(

QT

)

P❝♠◆ ❳◆❘❳

|

ai

(

t, x, ξ, ζ0, ζ, η0, η

;

w, v1, v2

)| ≤

c

1

(

w, v1, v2

)

c1

(

ξ

)

|

ζ0

|

p

1

1

+

|

ζ

|

p

1

1

+

|

η0

|

p

2

q

1

+

|

η

|

p

2

q

1

+ [

k1

(

w, v1, v2

)](

t, x

)

,

✐❲❚ ❘❜❘❜

(

t, x

)

QT

❦ ❙❨❙❚❭

(

ξ, ζ0, ζ, η0, η

)

R

×

R

n+1

×

R

n+1

❘❞❩

(

w, v1, v2

)

L

(

QT

)

×

X1

×

X2

i

= 0

, . . . , n

❧❜

❥❣♣❧ ▼◆❙❚❙ ❙♥❖P❳P ❘ ♠❲❞P❳❘❞❳

C >

0

P❝♠◆ ❳◆❘❳ ✐❲❚ ❘❜❘❜

(

t, x

)

QT

❦ ❙❨❙❚❭

(

ξ, ζ0, ζ, η0, η

)

(

ξ, ζ0,

ζ, η0, η

˜

)

R

×

R

n+1

×

R

n+1

❘❞❩

(

w, v1, v2

)

L

(

QT

)

×

X1

×

X2

n

X

i=1

ai

(

t, x, ξ, ζ0, ζ, η0, η

;

w, v1, v2

)

ai

(

t, x, ξ, ζ0,

ζ, η0, η

˜

;

w, v1, v2

)

(

ζi

ζi

˜

)

C

· |

ζ

ζ

˜

|

p

1

.

❥❣t❧ ▼◆❙❚❙ ❙♥❖P❳ ❘ ♠❲❞P❳❘❞❳

c2

>

0

❦ ❘ ♠❲❞❳❖❞❝❲❝P ✐❝❞♠❳❖❲❞

γ

:

R

R

❘❞❩ ❬❲❝❞❩❙❩ ❲◗❙❚❘❳❲❚P

Γ :

L

(

QT

)

L

(

QT

)

k2

:

X1

L

1

(

QT

)

P❝♠◆ ❳◆❘❳

n

X

i=0

(3)

✐❲❚❘❜❘❜

(

t, x

)

QT

❘❞❩ ❙❨❙❚❭

(

ξ, ζ0, ζ, η0, η

)

R

×

R

n+1

×

R

n+1

(

w, v1, v2

)

L

(

QT

X1

×

X2

❜♦❝❚❳◆❙❚❦

lim

k

v

1

k

X

1

+

k

k2

(

v1

)k

L

1

(Q

T

)

k

v1

k

p

1

X

1

= 0

.

❥ ⑧❧

❥❣⑩❧ q✐

(

ωk

)

❖P❬❲❝❞❩❙❩❖❞

L

(

QT

)

ωk

ω

❘❜❙❜❖❞

QT

❘❞❩

uk

u

❯❙❘❪❤❭❖❞

X1

❦P❳❚❲❞❡❤❭❖❞

L

p

1

(

QT

)

❦✐❝❚❳◆❙❚❦

p

k

p

P❳❚❲❞❡❤❭❖❞

X2

❳◆❙❞

lim

k

→∞

k

ai

, ωk

, uk, Duk

,

p

k, D

p

k

;

ωk

, uk,

p

k

)

ai

, ωk, uk

, Duk,

p

k, D

p

k

;

ω, u,

p

)k

L

q

1

(Q

T

)

= 0

.

❥✁❵❧ ♦ ❲❚ ③

♥❙❩

(

w, v1, v2

)

L

(

QT

)

×

X1

×

X2

✐❝❞♠❳❖❲❞P

bi

:

QT

×

R

×

R

×

R

n+1

×

L

(

QT

)

×

X1

×

X2

R

i

= 0

, . . . , n

❧ ◆❘❨❙ ❳◆❙ Ú❘❚❘❳◆✔❲❩❲❚❭ ◗❚❲◗❙❚❳❭❦ ❖❜❙❜❦ ❳◆❙❭ ❘❚❙ ❱❙❘P❝❚❘❬❤❙ ❖❞

(

t, x

)

QT

✐❲❚ ❙❨❙❚❭

(

ξ, ζ0, η0, η

)

R

×

R

×

R

n+1

❘❞❩ ♠❲❞❳❖❞❝❲❝P ❖❞

(

ξ, ζ0, η0, η

)

R

×

R

×

R

n+1

✐❲❚ ❘❜❘❜

(

t, x

)

QT

❥✁❴❧ ▼◆❙❚❙ ❙♥❖P❳ ❘ ♠❲❞❳❖❞❝❲❝P ✐❝❞♠❳❖❲❞

ˆ

c1

:

R

R

+

❘❞❩ ❬❲❝❞❩❙❩ ❲◗❙❚❘❳❲❚P

ˆ

c

1

:

L

(

QT

)

×

X1

×

X2

R

+

ˆ

k1

:

L

(

QT

)

×

X1

×

X2

L

q

2

(

QT

)

P❝♠◆ ❳◆❘❳

|

bi

(

t, x, ξ, ζ0, η0, η

;

w, v1, v2

)| ≤

ˆ

c

1

(

w, v1, v2

c1

(

ξ

)

|

η0

|

p

2

1

+

|

η

|

p

2

1

+

|

ζ0

|

p

1

q

2

+ [ˆ

k1

(

w, v1, v2

)](

t, x

)

✐❲❚❘❜❘❜

(

t, x

)

Q

T

❘❞❩❙❨❙❚❭

(

ξ, ζ

0

, η

0

, η

)

R

×

R

×

R

n+1

(

w, v

1

, v

2

)

L

(

Q

T

)

×

X

1

×

X

2

i

= 0

, . . . , n

❧❜

❥✁♣❧ ▼◆❙❚❙❙♥❖P❳P❘♠❲❞P❳❘❞❳

ˆ

C >

0

P❝♠◆❳◆❘❳✐❲❚❘❜❘❜

(

t, x

)

QT

❦❙❨❙❚❭

(

ξ, ζ0, η0, η

)

(

ξ, ζ0,

η0,

˜

η

˜

)

R

×

R

×

R

n+1

❘❞❩

(

w, v1, v2

)

L

(

QT

)

×

X1

×

X2

n

X

i=0

(

bi

(

t, x, ξ, ζ0, η0, η

;

w, v1, v2

)

bi

(

t, x, ξ, ζ0,

η0,

˜

η

˜

;

w, v1, v2

)) (

ηi

ηi

˜

)

C

ˆ

·

(|

η0

η0

˜

|

p

2

+

|

η

η

˜

|

p

2

)

.

❥✁t❧ ▼◆❙❚❙ ❙♥❖P❳ ❘ ♠❲❞P❳❘❞❳

ˆ

c2

>

0

❦ ❘ ♠❲❞❳❖❞❝❲❝P ✐❝❞♠❳❖❲❞

ˆ

γ

:

R

R

❘❞❩ ❬❲❝❞❩❙❩ ❲◗❙❚❘❳❲❚P

ˆ

Γ :

L

(

QT

)

L

(

QT

)

ˆ

k2

:

X2

L

1

(

QT

)

P❝♠◆ ❳◆❘❳

n

X

i=0

bi

(

t, x, ξ, ζ0, η0, η

;

w, v1, v2

)

ηi

c2

ˆ

(|

η0

|

p

2

+

|

η

|

p

2

)

γ

ˆ

(

ξ

)[ˆ

Γ(

w

)](

t, x

)

|

ζ0

|

p

1

+ [ˆ

k2

(

v2

)](

t, x

)

✐❲❚ ❘❜❘❜

(

t, x

)

QT

❦ ❘❞❩ ❙❨❙❚❭

(

ξ, ζ0, η0, η

)

R

×

R

×

R

n+1

(

w, v1, v2

)

L

(

QT

)

×

X1

×

X2

❜ ♦❝❚❳◆❙❚❦

lim

k

v

2

k

X

2

→∞

k

k2

ˆ

(

v2

)k

L

1

(Q

T

)

k

v2

k

p

2

X

2

= 0

.

❥ ⑨❧

❥✁⑩❧ q✐

(

ωk

)

❖P❬❲❝❞❩❙❩❖❞

L

(

QT

)

ωk

ω

❘❜❙❜❖❞

QT

❘❞❩

uk

u

❯❙❘❪❤❭❖❞

X1

❦P❳❚❲❞❡❤❭❖❞

L

p

1

(

QT

)

❦✐❝❚❳◆❙❚❦

p

k

p

❯❙❘❪❤❭ ❖❞

X2

❳◆❙❞

lim

k

→∞

k

bi

, ωk, uk

,

p

k, D

p

k

;

ωk

, uk,

p

k

)

bi

, ωk

, uk,

p

k

, D

p

k

;

ω, u,

p

)k

L

q

2

(Q

T

)

= 0

.

❥♦❵❧ ♦ ❲❚③♥❙❩

v

X1

✐❝❞♠❳❖❲❞

f

:

QT

×

R

2

×

L

(

QT

X1

R

❖P❘Ú❘❚❘❳◆✔❲❩❲❚❭✐❝❞♠❳❖❲❞❦❖❜❙❜❦❖❳❖P❱❙❘P❝❚❘❬❤❙ ❖❞

(

t, x

)

QT

✐❲❚ ❙❨❙❚❭

(

ξ, ζ0

)

R

2

❘❞❩ ♠❲❞❳❖❞❝❲❝P ❖❞

(

ξ, ζ0

)

R

2

✐❲❚ ❘❜❘❜

(

t, x

)

QT

❜ ♦ ❝❚❳◆❙❚❦ ❳◆❙❚❙ ❙♥❖P❳P ❘ ❬❲❝❞❩❙❩ ❲◗❙❚❘❳❲❚

K

1

:

X1

R

+

P❝♠◆ ❳◆❘❳ ❥❖❧ ✐❲❚ ❙❨❙❚❭ ❬❲❝❞❩❙❩ P❙❳

I

R

❳◆❙❚❙ ❖P ❘ ♠❲❞❳❖❞❝❲❝P ✐❝❞♠❳❖❲❞

K1

:

R

R

+

P❘❳❖P✐❭❖❞❡

|

K1

(

ζ0

)| ≤

d1

|

ζ0

|

p

q

1

2

+

d2

✐❲❚❙❨❙❚❭

ζ0

R

❦❯❖❳◆ P❲❱❙ ❞❲❞❞❙❡❘❳❖❨❙ ♠❲❞P❳❘❞❳P

d1, d2

❥❩❙◗❙❞❩❖❞❡ ❲❞

I

❧❦ ❥❖❖❧ ✐❲❚ ❘❜❘❜

(

t, x

)

QT

❦❙❨❙❚❭

(

ξ, ζ0

)

,

( ˜

ξ, ζ0

)

I

×

R

❘❞❩ ❙❨❙❚❭

v

X1

|

f

(

t, x, ξ, ζ0

;

v

)

f

(

t, x,

ξ, ζ0

˜

;

v

)| ≤

K

1

(

v

)

K1

(

ζ0

)

· |

ξ

ξ

˜

|

.

❥♦❴❧ ▼◆❙❚❙ ❙♥❖P❳ ❘ ❬❲❝❞❩❙❩ ❲◗❙❚❘❳❲❚

K

2

:

X1

R

+

❘❞❩ ❘ ♠❲❞❳❖❞❝❲❝P✐❝❞♠❳❖❲❞

K2

:

R

R

+

P❝♠◆ ❳◆❘❳ ✐❲❚ ❘❜❘❜

(

t, x

)

QT

❦ ❙❨❙❚❭

(

ξ, ζ0

)

,

(

ξ,

ζ0

˜

)

R

2

❘❞❩

v

X1

|

f

(

t, x, ξ, ζ0

;

v

)

f

(

t, x, ξ,

ζ0

˜

;

v

)| ≤

K

2

(

v

)

K2

(

ξ

)

· |

ζ0

ζ0

˜

|

.

❥♦♣❧ ▼◆❙❚❙ ❙♥❖P❳P

ω

L

(Ω)

P❝♠◆ ❳◆❘❳✐❲❚❘❜❘❜

(

t, x

)

QT

❦❙❨❙❚❭

(

ξ, ζ0

)

R

2

❘❞❩

v

X1

(

ξ

ω

(

x

))

·

f

(

t, x, ξ, ζ0

;

v

)

0

.

❥♦t❧ q✐

(

ωk

)

❖P ❬❲❝❞❩❙❩ ❖❞

L

(

QT

)

❘❞❩

uk

u

P❳❚❲❞❡❤❭ ❖❞

L

p

1

(

QT

)

❳◆❙❞

lim

(4)

q✐❳◆❙❘❬❲❨❙❘PP❝❱◗❳❖❲❞P❘❚❙P❘❳❖P③❙❩ ❯❙❱❘❭❩❙③❞❙❲◗❙❚❘❳❲❚P

A

:

L

(

QT

X1

×

X2

X

1

B

:

L

(

QT

)

×

X1

×

X2

X

2

❬❭s

[

A

(

ω, u,

p

)

, v1

] :=

Z

Q

T

n

X

i=1

ai

(

t, x, ω

(

t, x

)

, u

(

t, x

)

, Du

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

ω, u,

p

)

Div1

(

t, x

)

dt dx

+

+

Z

Q

T

a0

(

t, x, ω

(

t, x

)

, u

(

t, x

)

, Du

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

ω, u,

p

)

v1

(

t, x

)

dt dx,

❥❵Û❧

[

B

(

ω, u,

p

)

, v2

] :=

Z

Q

T

n

X

i=1

bi

(

t, x, ω

(

t, x

)

, u

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

ω, u,

p

)

Di

v2

(

t, x

)

dt dx

+

+

Z

Q

T

b0

(

t, x, ω

(

t, x

)

, u

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

ω, u,

p

)

v2

(

t, x

)

dt dx,

❥❵❵❧

✐❲❚

v1

X1

❘❞❩

v2

X2

❜q❞ ❘❩❩❖❳❖❲❞❦❤❙❳ ❝P ❖❞❳❚❲❩❝♠❙ ❳◆❙ ❤❖❞❙❘❚❲◗❙❚❘❳❲❚

L

:

D

(

L

)

X

1

❬❭

D

(

L

) =

{

u

X1

:

Dtu

X

1

, u

(0) = 0}

,

Lu

=

Dtu.

❥❵❴❧

✁❭ ❳◆❙ ❲◗❙❚❘❳❲❚P ❘❬❲❨❙❯❙ ❱❘❭❩ ❙③

❞❙❳◆❙❯❙❘❪ ✐❲❚❱ ❲✐ P❭P❳❙❱ ❥⑩❧✍❥⑦❧❘P

ω

(

t, x

) =

ω

0

(

x

) +

Z

t

0

f

(

s, x, ω

(

s, x

)

, u

(

s, x

);

u

)

ds

✐❲❚ ❘❜❘❜

(

t, x

)

Q

T

❥❵♣❧

Lu

+

A

(

ω, u,

p

) =

G

❥❵t❧

B

(

ω, u,

p

) =

H

❥❵⑩❧

❯◆❙❚❙

G

X

1

❘❞❩

H

X

2

❘❚❙❡❖❨❙❞ ❬❭

[

G, v1

] =

Z

Q

T

g

(

t, x

)

v1

(

t, x

)

dt dx,

[

H, v2

] =

Z

Q

T

h

(

t, x

)

v2

(

t, x

)

dt dx

❯◆❙❚❙

vi

Xi

i

= 1

,

2

❧❜ q❳ ❖P ❯❙❤❤ ❪❞❲❯❞ ❥P❙❙❦ ❙❜❡❜❦ ❫❴Û❛❧ ❳◆❘❳ ❲❞❙ ❲❬❳❘❖❞P ❳◆❙ ❘❬❲❨❙ ❯❙❘❪ ✐❲❚❱ ❬❭ ❳❘❪❖❞❡ P❝⑥♠❖❙❞❳❤❭ P❱❲❲❳◆ P❲❤❝❳❖❲❞P❦ ❝P❖❞❡ ✄❚❙❙❞☎P ❳◆❙❲❚❙❱ ❘❞❩

❞❘❤❤❭ ♠❲❞P❖❩❙❚❖❞❡ ❳◆❙ ❯◆❲❤❙ P❭P❳❙❱ ❖❞ ❳◆❙ P◗❘♠❙

L

p

(0

, T

;

V

)

❜Ú❤❙❘❚❤❭❦❖✐❳◆❙❬❲❝❞❩❘❚❭♠❲❞❩❖❳❖❲❞❖P◆❲❱❲❡❙❞❙❲❝P⑤❙❝❱❘❞❞❳◆❙❞

V

=

W

1,p

(Ω)

❥ P❖❞♠❙❳◆❙❬❲❝❞❩❘❚❭ ❳❙❚❱ ❨❘❞❖P◆❙P❖❞ ✄❚❙❙❞☎P ❳◆❙❲❚❙❱❧❘❞❩❖✐❯❙◆❘❨❙◆❲❱❲❡❙❞❙❲❝P➀❖❚❖♠◆❤❙❳❬❲❝❞❩❘❚❭♠❲❞❩❖❳❖❲❞❳◆❙❞

V

=

W

0

1,p

(Ω)

❥❖❞ ❲❚❩❙❚❳❲ ❙❤❖❱❖❞❘❳❙❳◆❙❬❲❝❞❩❘❚❭❳❙❚❱ ❖❞ ✄❚❙❙❞☎P❳◆❙❲❚❙❱❧❜♦ ❝❚❳◆❙❚❦❖✐❯❙◆❘❨❙❘ ◗❘❚❳❖❳❖❲❞❦✐❲❚❙♥❘❱◗❤❙❖❞❲❞❙

❩❖❱❙❞P❖❲❞ ❯❖❳◆ ◆❲❱❲❡❙❞❲❝P ➀❖❚❖♠◆❤❙❳ ❘❞❩ ⑤❙❝❱❘❞❞ ❬❲❝❞❩❘❚❭ ♠❲❞❩❖❳❖❲❞P ❳◆❙❞

V

=

{

v

W

1,p

1

(0

,

1) :

v

(0) =

0

, Dxv

(1) = 0}

✆ ✝✞▲✟❋✠❊❑✠ ❍✡ ✟❍☛❏❋▲❍❊✟

q❞ ❳◆❖P P❙♠❳❖❲❞ ❯❙◗❚❲❨❙

☞✌✍✎✏✍✑ ✒✓ ✔✕ ✖✖✗✘✙ ✚✛✜✚ ✢✗✣✤✥✚✥✗✣✘

✦✧★✩✪✦✧✫✩✬ ✦✭

★✩✪ ✦✭

✫✩✬ ✦✮

★✩✪ ✦✮

✯✩ ✜✰✙ ✱

✕✲✳

✲✲✙✤✴ ✵✛✙✣ ✱✗✰ ✙✶✙✰✷

ω0

L

(Ω)

G

X

1

✜✣✤

H

X

2

✚✛✙✰✙ ✙ ✸✥✘✚✘ ✜ ✘✗✲✕✚✥✗✣

ω

L

(

QT

)

, u

D

(

L

)

,

p

L

p

2

(0

, T

;

V2

)

✗✱ ✖✰✗✹✲✙✺

❥❵♣ ❧✪❥❵⑩

❧✴

♦❖❚P❳ ❯❙ ✐❲❚❱❝❤❘❳❙ P❲❱❙ P❳❘❳❙❱❙❞❳P ❚❙❤❘❳❙❩ ❳❲ ❳◆❙ P❲❤❨❘❬❖❤❖❳❭ ❲✐❳◆❙ ❘❬❲❨❙❙✈❝❘❳❖❲❞P ❥❵♣❧ ✍❥❵⑩❧❜

✻✏✎✼✎✽✾✿✾✎❀ ❁✓ ✧✘✘✕✺✙ ✚✛✜✚ ✢✗✣✤✥✚✥✗✣✘ ✦✮ ★✩✬

✦✮ ❂✩

✜✰✙ ✘✜✚✥✘✳✙✤✴ ✵✛✙✣✱✗✰ ✙✶✙✰✷✳✸✙✤

u

L

p

1

(

QT

)

✜✣✤

ω0

L

(

QT

)

✚✛✙✰✙ ✙ ✸✥✘✚✘ ✜ ✕✣✥❃✕✙ ✘✗✲✕✚✥✗✣

ω

L

(

QT

)

✗✱ ✚✛✙ ✥✣✚✙ ❄

✰✜✲ ✙❃✕✜✚✥✗✣ ❥❵♣❧✬

✱✕✰✚✛ ✙✰✬

✱✗✰ ✚✛✙ ✘✗✲✕✚✥✗✣

ω

✙✘✚✥✺✜✚✙

k

ω

k

L

(Q

T

)

≤ k

ω0

k

L

(Ω)

+

k

ω

k

L

(Ω)

✛✗✲✤✘✴

❅✰✗✗✱✴ q❱❱❙❩❖❘❳❙❤❭✐❲❤❤❲❯P✐❚❲❱ Ù❚❲◗❲P❖❳❖❲❞ ❴❜♣ ❖❞ ❫r❛ P❖❞♠❙ ✐❲❚ ③♥

❙❩ ❞❲❞❤❲♠❘❤ ❨❘❚❖❘❬❤❙

u

❦ ♠❲❞❩❖❳❖❲❞ ❥ ♦❵❧ ❖P❳◆❙ P❘❱❙ ❘P ❖❞ ❳◆❙♠❖❳❙❩ ◗❘◗❙❚❜

✻✏✎✼✎✽✾✿✾✎❀ ❆✓ ✧

✘✘✕✺✙✦✮ ★✩✪

✦✮ ✯✩

✜✣✤ ✲✙✚

(

u

k

)

L

p

1

(

Q

T

)

✬ ✱✕✰✚✛

✙✰✬ ✲✙✚

ω

k

✹✙✚✛✙✘✗✲✕✚✥✗✣ ✗✱ ❥❵♣❧✢✗✰✰✙✘✖✗✣✤✥✣ ❄

✚✗

u

k

✴❇✱

u

k

u

✥✣

L

p

1

(

Q

T

)

✚✛✙✣

ω

k

ω

✜✴✙✴ ✥✣

Q

T

❈ ✛✙✰✙

ω

✥✘ ✚✛✙ ✘✗✲✕✚✥✗✣ ✗✱ ❥❵♣❧ ✢✗✰✰✙✘✖✗✣✤✥✣ ❄

✚✗

(5)

❅✰✗✗✱✴ ✂❙ ❱❘❭ ❘PP❝❱❙ ❳◆❘❳ ✐❲❚ ❘❜❘❜

x

uk

, x

)

u

, x

)

❜ ♦❖♥ P❝♠◆ ❘ ◗❲❖❞❳

x

❜ Ú❲❞P❖❩❙❚ ❳◆❙ ✐❲❤❤❲❯❖❞❡ ❙P❳❖❱❘❳❙s

|

ωk

(

t, x

)

ω

(

t, x

)| ≤

Z

t

0

|

f

(

s, x, ωk

(

s, x

)

, uk

(

s, x

);

uk

)

f

(

s, x, ωk

(

s, x

)

, uk

(

s, x

);

u

)|

ds

+

Z

t

0

|

f

(

s, x, ωk

(

s, x

)

, uk

(

s, x

);

u

)

f

(

s, x, ω

(

s, x

)

, u

(

s, x

);

u

)|

ds.

▼◆❙ ③❚P❳ ❖❞❳❙❡❚❘❤ ♠❲❞❨❙❚❡❙P❳❲ Û ✐❲❚ ❘❜❘❜

x

❬❭ ♠❲❞❩❖❳❖❲❞ ❥♦t❧❦✐❝❚❳◆❙❚❦❬❭ ❥♦❵❧❦ ❥♦❴❧❖❳ ❖P ❙❘P❭ ❳❲ P◆❲❯ ❳◆❘❳ ❳◆❙ P❙♠❲❞❩ ❖❞❳❙❡❚❘❤ ❖P ❤❙PP❳◆❙❞

const

·

Z

t

0

|

ωk

(

s, x

)

ω

(

s, x

)|

p

2

ds

1/p

2

+ const

·

Z

T

0

|

uk

(

s, x

)

u

(

s, x

)|

ds.

❶❙❞♠❙

|

ωk

(

t, x

)

ω

(

t, x

)|

p

2

const

·

Z

t

0

|

ωk

(

s, x

)

ω

(

s, x

)|

p

2

ds

+

r

(

uk, ωk

)

❯◆❙❚❙ ❳◆❙ ❚❙❱❘❖❞❩❙❚❳❙❚❱

r

(

uk, ωk

)

❳❙❞❩P ❳❲ Û ❘P

k

→ ∞

❜▼◆❝P ✄❚❲❞❯❘❤❤☎P ❤❙❱❱❘ ❭❖❙❤❩P

|

ωk

(

t, x

)

ω

(

t, x

)| ≤

const

·

r

(

uk

)

0

❯◆❖♠◆ ❖❱◗❤❖❙P ❳◆❙ ❩❙P❖❚❙❩ ❘❜❙❜♠❲❞❨❙❚❡❙❞♠❙ ❲✐

(

ωk

)

✻✏✎✼✎✽✾✿✾✎❀ ✓ ✧✘✘✕✺✙ ✦✧ ★✩✪

✦✧ ✫✩

✴ ✵✛✙✣ ✱✗✰ ✙✶✙✰✷ ✳✸✙✤

ω

L

(

QT

)

p

X2

✜✣✤

G

X

1

✚✛✙✰✙ ✙ ✸✥✘✚✘ ✜

✘✗✲✕✚✥✗✣

u

D

(

L

)

✗✱ ✖✰✗✹✲✙✺

Lu

+

A

(

ω, u,

p

) =

G

❅✰✗✗✱✴ ▼◆❙ ◗❚❲❲✐ ✐❲❤❤❲❯P ✐❚❲❱ ▼◆❙❲❚❙❱ ❵❜❵ ❖❞ ❫❴❴❛ ❥❬❘P❙❩ ❲❞ ❳◆❙ ❳◆❙❲❚❭ ❲✐ ❱❲❞❲❳❲❞❙ ❳❭◗❙ ❲◗❙❚❘❳❲❚P❦ P❙❙ ❫t❛❧

P❖❞♠❙ ✐❲❚ ③♥❙❩

ω

L

(

QT

)

❘❞❩

p

X2

♠❲❞❩❖❳❖❲❞P ❥❣❵❧✍❥❣⑩❧❖❱◗❤❭ ❳◆❘❳ ❲◗❙❚❘❳❲❚

A

(

ω,

·

,

p

) :

X1

X

1

✐❝❤③❤P

♠❲❞❩❖❳❖❲❞P q✍✁ ❲✐ ❳◆❙ ❱❙❞❳❖❲❞❙❩ ❳◆❙❲❚❙❱❜

✏✎✼✎✽✾✿✾✎❀ ✂✓ ✔✕ ✖✖✗✘✙ ✚✛✜✚ ✦✭

★✩✪ ✦✭

✫✩

✛✗✲✤✴ ✵✛✙✣ ✱✗✰ ✙✶✙✰✷ ✳

✸✙✤

ω

L

(

QT

)

u

X1

✜✣✤

H

X

2

✚✛✙✰✙

✙✸✥✘✚✘ ✜ ✘✗✲✕✚✥✗✣

p

X2

✗✱ ✖✰✗✹✲✙✺

B

(

ω, u,

p

) =

H

❅✰✗✗✱✴ ▼◆❙ P❳❘❳❙❱❙❞❳ ✐❲❤❤❲❯P ✐❚❲❱ ❳◆❙ ❳◆❙❲❚❭ ❲✐ ❱❲❞❲❳❲❞❙ ❲◗❙❚❘❳❲❚P ❥P❙❙ ❫ ❴⑦❛❧ P❖❞♠❙ ♠❲❞❩❖❳❖❲❞P ❥ ✁❵❧✍❥✁⑩❧

❖❱◗❤❭ ❳◆❙ ❬❲❝❞❩❙❩❞❙PP❦❩❙❱❖♠❲❞❳❖❞❝❖❳❭❦◗P❙❝❩❲❱❲❞❲❳❲❞❖♠❖❳❭❘❞❩ ♠❲❙❚♠❖❨❙❞❙PP ❲✐ ❲◗❙❚❘❳❲❚

B

(

ω, u,

·) :

X2

X

2

✐❲❚ ③♥❙❩

ω

L

(

QT

)

, u

X1

✰✗✗✱ ✗✱ ✵✛✙✗✰✙✺ ★

▼◆❙❖❩❙❘❖PP❖❱❖❤❘❚❘P❖❞ ❫r❛❜✂❙❩❙③❞❙P❙✈❝❙❞♠❙P❲✐❘◗◗❚❲♥❖❱❘❳❙P❲❤❝❳❖❲❞P❲✐◗❚❲❬❤❙❱ ❥❵♣❧✍

❥❵⑩❧ ❘❞❩ ❯❙ P◆❲❯ ❳◆❙ ❬❲❝❞❩❙❩❞❙PP ❲✐ ❳◆❙P❙ P❙✈❝❙❞♠❙P❜ ✁❭ ❝P❖❞❡ ❳◆❙ ❩❖❘❡❲❞❘❤ ❱❙❳◆❲❩ ❯❙ ❯❖❤❤ ♠◆❲❲P❙ ❯❙❘❤❪❭

♠❲❞❨❙❚❡❙❞❳ P❝❬P❙✈❝❙❞♠❙P ❘❞❩ ❯❙ ❨❙❚❖✐❭ ❳◆❘❳ ❳◆❙ ❯❙❘❪ ❤❖❱❖❳P ❲✐ ❳◆❙ P❝❬P❙✈❝❙❞♠❙P ❘❚❙ P❲❤❝❳❖❲❞P ❲✐ ❳◆❙ ◗❚❲❬❤❙❱❜

♦❲❚ P❖❱◗❤❖♠❖❳❭❦❖❞ ❳◆❙◗❚❲❲✐ ❯❙❲❱❖❳ ❳◆❙ ❨❘❚❖❘❬❤❙

(

t, x

)

❲✐✐❝❞♠❳❖❲❞P

ai

bi

❖✐ ❖❳ ❖P ❞❲❳ ♠❲❞✐❝P❖❞❡❜ ✔✚✙✖

★✄

✜✖✖✰✗✸✥✺✜✚✥✗✣✴

➀❙③❞❙❳◆❙ P❙✈❝❙❞♠❙P

(

ωk

)

,

(

uk

)

,

(

p

k

)

❘P✐❲❤❤❲❯P❜❿❙❳

ω0

(

t, x

)

u0

(

t, x

)

p

0

(

t, x

)

0

(

t, x

)

QT

❧ ❘❞❩ ✐❲❚

k

= 0

,

1

, . . .

❤❙❳

ωk+1, uk+1,

p

k+1

❬❙ ❘ P❲❤❝❳❖❲❞ ❲✐ ❳◆❙ P❭P❳❙❱s

ωk+1

(

t, x

) =

ω0

(

x

) +

Z

t

0

f

(

s, x, ωk+1

(

s, x

)

, uk

(

s, x

);

uk

)

ds

❥❵r❧

Luk+1

+

A

(

ωk, uk+1,

p

k

) =

G

❥❵⑦❧

B

(

ωk, uk

,

p

k+1

) =

H.

❥❵⑧❧

✁❭ Ù❚❲◗❲P❖❳❖❲❞P ❴❦ t❦ ⑩ ❯❙ ◆❘❨❙ P❲❤❝❳❖❲❞P

ωk+1

L

(

QT

)

uk+1

X1

p

k+1

X2

P❲ ❳◆❙ ❘❬❲❨❙ ❚❙♠❝❚❚❙❞♠❙

❭❖❙❤❩P❳◆❙ P❙✈❝❙❞♠❙P

(

ωk

)

L

(

QT

)

,

(

uk

)

X1,

(

p

k

)

X2

✔✚✙✖ ☎ ✄

✹✗✕✣✤✙✤✣✙✘✘✴✂❙ P◆❲❯ ❳◆❘❳ ❳◆❙ ❘❬❲❨❙ ❩❙③

❞❙❩ P❙✈❝❙❞♠❙P ❘❚❙ ❬❲❝❞❩❙❩❜ ✁❭ Ù❚❲◗❲P❖❳❖❲❞ ❴ ✐❲❚ ③♥❙❩

ω0

L

(Ω)

✐❲❚❳◆❙P❲❤❝❳❖❲❞❲✐❙✈❝❘❳❖❲❞ ❥❵r❧❙P❳❖❱❘❳❙

k

ωk+1

k

L

(Q

T

)

≤ k

ω0

k

L

(Ω)

+

k

ω

k

L

(Ω)

◆❲❤❩P❳◆❝P

(

ωk

)

❖P❬❲❝❞❩❙❩ ❖❞

L

(

QT

)

⑤❲❯ ❬❭ ♠◆❲❲P❖❞❡ ❳◆❙ ❳❙P❳ ✐❝❞♠❳❖❲❞

v

=

uk+1

❖❞ ❥❵⑦❧ ❘❞❩ ❬❭ ❝P❖❞❡ ♠❲❞❩❖❳❖❲❞ ❥❣t❧ ❘❞❩ ❳◆❙ ❱❲❞❲❳❲❞❖♠❖❳❭ ❲✐ ❲◗❙❚❘❳❲❚

L

❯❙ ❲❬❳❘❖❞

[

G, uk+1

] = [

Luk+1, uk+1

] + [

A

(

ωk, uk+1,

p

k

)

, uk+1

]

c2

Z

Q

T

(|

uk+1

|

p

1

+

|

Duk+1

|

p

1

γ

(

ωk

)Γ(

ωk

)

k2

(

uk+1

))

c2

k

uk+1

k

X

1

k

uk+1

k

p

1

1

X

1

− k

γ

(

ωk

)Γ(

ωk

)k

L

(Q

T

)

·

k

k2

(

uk+1

)k

L

1

(Q

T

)

k

uk+1

k

X

1

.

✂◆❙❞♠❙❬❭ ❳◆❙ ❬❲❝❞❩❙❩❞❙PP❲✐

(

ωk

)

❯❙ ♠❲❞♠❤❝❩❙ ✐❲❚ P❲❱❙

K >

0

k

uk+1

k

p

1

1

X

1

1

K

·

k

k2

(

uk+1

)k

L

1

(Q

T

)

k

uk+1

k

p

1

X

1

(6)

⑤❲❯ ❥⑧❧ ❖❱◗❤❖❙P ❳◆❘❳

(

uk

)

❖P❬❲❝❞❩❙❩ ❖❞

X1

❜ ▼◆❙ ❬❲❝❞❩❙❩❞❙PP ❲✐

(

p

k

)

❖❞

X2

✐❲❤❤❲❯P ❬❭ P❖❱❖❤❘❚ ❘❚❡❝❱❙❞❳P ❘P ❘❬❲❨❙ ❬❭ ❝P❖❞❡ ♠❲❞❩❖❳❖❲❞ ❥ ✁t❧ ❘❞❩ ❳◆❙ ❬❲❝❞❩❙❩❞❙PP ❲✐ ❳◆❙ P❙✈❝❙❞♠❙P

(

ωk

)

(

uk

)

✂❙ ❞❙❙❩ ❘❤P❲ ❳◆❙ ❬❲❝❞❩❙❩❞❙PP ❲✐ ❳◆❙ P❙✈❝❙❞♠❙

(

Luk

)

❖❞

X

1

❜✁❭ ❶ ❤❩❙❚☎P❖❞❙✈❝❘❤❖❳❭

|[

A

(

ωk

, uk+1,

p

k

)

, v

]| ≤

n

X

i=0

k

ai

(

ωk, uk+1, Duk+1,

p

k

, D

p

k

;

ωk, uk+1,

p

k

)k

L

q

1

(Q

T

)

!

· k

v

k

X

1

.

❘❞❩ ✐❚❲❱ ♠❲❞❩❖❳❖❲❞ ❥❣❴❧ ❖❳✐❲❤❤❲❯P❳◆❘❳ ✐❲❚ ❘❤❤

i

k

ai

(

ωk

, uk+1, Duk+1,

p

k

, D

p

k

;

ωk, uk+1,

p

k

)k

L

q

1

(Q

T

)

const

·

c1

(

ωk

)

c

1

(

ωk

, uk+1,

p

k

)

k

uk+1

k

p

1

X

1

+

k

p

k

k

p

2

X

2

+

k

k1

(

ωk

, uk+1,

p

k

)k

L

q

1

(Q

T

)

.

▼◆❙❚❙✐❲❚❙❬❭ ❳◆❙ ❬❲❝❞❩❙❩❞❙PP ❲✐❳◆❙ P❙✈❝❙❞♠❙P

(

ωk

)

,

(

uk

)

,

(

p

k

)

❘❞❩ ❳◆❙ ❬❲❝❞❩❙❩❞❙PP ❲✐ ❲◗❙❚❘❳❲❚P

c1,

c

1, k2

❯❙

♠❲❞♠❤❝❩❙

|[

Luk+1, v

]|

=

|[

A

(

ωk

, uk+1,

p

k

) +

G, v

]| ≤

const

· k

v

k

X

1

P❲

(

Luk

)

❖P ❘ ❬❲❝❞❩❙❩ P❙✈❝❙❞♠❙❖❞

X

1

✔✚✙✖ ❂✄

✢✗✣✶✙✰ ❄

✙✣✢✙✴ ➀❝❙❳❲❳◆❙❬❲❝❞❩❙❩❞❙PP❲✐❳◆❙ P❙✈❝❙❞♠❙P

(

uk

)

,

(

Luk

)

,

(

p

k

)

❥❖❞ ❚❙❢❙♥❖❨❙✁❘❞❘♠◆ P◗❘♠❙P❧

❙❘♠◆ ◆❘P ❘ ❯❙❘❪❤❭ ♠❲❞❨❙❚❡❙❞❳ P❝❬P❙✈❝❙❞♠❙❦ ✐❝❚❳◆❙❚❦ ❬❭ ❘◗◗❤❭❖❞❡ ❘ ❯❙❤❤ ❪❞❲❯❞ ❙❱❬❙❩❩❖❞❡ ❳◆❙❲❚❙❱ ❥P❙❙ ❫ ❴Û❛❧

❖❳ ✐❲❤❤❲❯P ❳◆❘❳ ❳◆❙❚❙ ❙♥❖P❳ P❝❬P❙✈❝❙❞♠❙P ❥❯◆❖♠◆ ❯❖❤❤ ❬❙ ❩❙❞❲❳❙❩ P❘❱❙ ❘P ❳◆❙ ❲❚❖❡❖❞❘❤ P❙✈❝❙❞♠❙P❧ ❘❞❩ ✐❝❞♠❳❖❲❞P

ω

L

(

QT

)

u

X1

p

X2

P❝♠◆ ❳◆❘❳

uk

u

❯❙❘❪❤❭❖❞

X1,

P❳❚❲❞❡❤❭❖❞

L

p

1

(

QT

)

,

❘❜❙❜❖❞

QT

;

Luk

Lu

❯❙❘❪❤❭ ❖❞

X

1

;

p

k

p

❯❙❘❪❤❭❖❞

X2.

q❞ ❯◆❘❳✐❲❤❤❲❯P❦❯❙ P◆❲❯ ❳◆❘❳

ω, u,

p

❘❚❙P❲❤❝❳❖❲❞P ❲✐ ◗❚❲❬❤❙❱ ❥❵♣❧ ✍❥❵⑩❧❜

①❖❞♠❙

uk

u

❖❞

L

p

1

(

QT

)

❦ ✐❝❚❳◆❙❚❦

ωk+1

❖P ❳◆❙ P❲❤❝❳❖❲❞ ❲✐ ❙✈❝❘❳❖❲❞ ❥❵r❧❦ ❬❭ Ù❚❲◗❲P❖❳❖❲❞ ♣ ❖❳ ✐❲❤❤❲❯P ❳◆❘❳

ωk

ω

❘❜❙❜ ❖❞

QT

❘❞❩ ✐❝❞♠❳❖❲❞P

ω, u

P❘❳❖P✐❭ ❳◆❙ ❖❞❳❙❡❚❘❤ ❙✈❝❘❳❖❲❞ ❥❵♣❧❜ ⑤❲❯ ❤❙❳ ❝P ♠❲❞P❖❩❙❚❙✈❝❘❳❖❲❞ ❥❵⑧❧❜♦❖❚P❳ ❯❙ P◆❲❯ ❳◆❘❳

p

k

p

❖❞

X2

❜ ▼❲ ❳◆❖P ❙❞❩❦❤❙❳ ❝P ❖❞❳❚❲❩❝♠❙❲◗❙❚❘❳❲❚

˜

B

:

L

(

QT

)

×

X1

×

X2

×

L

(

QT

)

×

X1

×

X2

X

2

❬❭

[ ˜

B

(

ω, u,

p

;

w, v1, v2

)

, z2

] :=

Z

Q

T

n

X

i=1

bi

(

t, x, ω

(

t, x

)

, u

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

w, v1

, v2

)

Diz2

(

t, x

)

dt dx

+

+

Z

Q

T

b0

(

t, x, ω

(

t, x

)

, u

(

t, x

)

,

p

(

t, x

)

, D

p

(

t, x

);

w, v1

, v2

)

z2

(

t, x

)

dt dx

❥❵⑨❧

✐❲❚

z2

X2

❜ ✉❬P❙❚❨❙

B

(

ω, u,

p

) = ˜

B

(

ω, u,

p

;

ω, u,

p

)

❜✁❭ ♠❲❞❩❖❳❖❲❞ ❥ ✁♣❧❯❙◆❘❨❙

[ ˜

B

(

ωk, uk,

p

k+1

;

ω, u,

p

)

B

˜

(

ωk, uk,

p

;

ω, u,

p

)

,

p

k+1

p

]

C

ˆ

· k

p

k+1

p

k

p

X

2

2

.

❥❴Û❧

✉❞ ❳◆❙ ❤❙✐❳ ◆❘❞❩ P❖❩❙❲✐❳◆❙ ❘❬❲❨❙ ❖❞❙✈❝❘❤❖❳❭ ❯❙ ◆❘❨❙❳◆❙ ✐❲❤❤❲❯❖❞❡ ❩❙♠❲❱◗❲P❖❳❖❲❞s

[ ˜

B

(

ωk

, uk,

p

k+1

;

ω, u,

p

)

B

˜

(

ωk, uk,

p

;

ω, u,

p

)

,

p

k+1

p

] = [ ˜

B

(

ωk, uk

,

p

k+1

;

ωk

, uk,

p

k+1

)

,

p

k+1

p

]+

+ [ ˜

B

(

ωk, uk

,

p

k+1

;

ω, u,

p

)

B

˜

(

ωk, uk,

p

k+1

;

ωk, uk,

p

k+1

)

,

p

k+1

p

]+

+ [ ˜

B

(

ω, u,

p

;

ω, u,

p

)

B

˜

(

ωk, uk,

p

;

ω, u,

p

)

,

p

k+1

p

]

[ ˜

B

(

ω, u,

p

;

ω, u,

p

)

,

p

k+1

p

]

.

❥❴❵❧

✂❙P◆❲❯❳◆❘❳❙❘♠◆❳❙❚❱ ❲❞❳◆❙❚❖❡◆❳◆❘❞❩P❖❩❙❳❙❞❩P❳❲ Û❜✁❭❚❙♠❝❚❚❙❞♠❙❥❵⑧❧❦

˜

B

(

ωk

, uk,

p

k+1

;

ωk, uk

,

p

k+1

) =

H

✐❝❚❳◆❙❚❦

p

k+1

p

❯❙❘❪❤❭❖❞

X2

❯◆❖♠◆ ❖❱◗❤❖❙P❳◆❙♠❲❞❨❙❚❡❙❞♠❙❲✐ ❳◆❙ ③❚P❳

❘❞❩ ❳◆❙ ❤❘P❳ ❳❙❚❱❜▼◆❙ ♠❲❞❨❙❚❡❙❞♠❙

❲✐ ❳◆❙ P❙♠❲❞❩ ❳❙❚❱ ✐❲❤❤❲❯P ✐❚❲❱ ♠❲❞❩❖❳❖❲❞ ❥✁⑩❧❜ q❞ ❲❚❩❙❚ ❳❲ ❨❙❚❖✐❭ ❳◆❙ ♠❲❞❨❙❚❡❙❞♠❙ ❲✐ ❳◆❙ ❳◆❖❚❩ ❳❙❚❱❦ ❲❬P❙❚❨❙

❳◆❘❳

|[ ˜

B

(

ωk, uk,

p

;

ω, u,

p

)

B

˜

(

ω, u,

p

;

ω, u,

p

)

,

p

k+1

p

]| ≤

n

X

i=0

k

bi

(

ωk

, uk,

p

, D

p

;

ω, u,

p

)

bi

(

ω, u,

p

, D

p

;

ω, u,

p

)k

L

q

2

(Q

T

)

· k

p

k+1

p

k

X

2

❥❴❴❧

❘❞❩ ❬❭ ♠❲❞❩❖❳❖❲❞ ❥✁❴❧

|

bi

(

ωk, uk

,

p

, D

p

;

ω, u,

p

)

bi

(

ω, u,

p

, D

p

;

ω, u,

p

)|

q

2

const

·

ˆ

c

1

(

ω, u,

p

)

·

(|ˆ

c1

(

ωk

)|

q

2

+

c1

(

ω

)|

q

2

)

|

p

|

p

2

+

|

D

p

|

p

2

+

|

uk

|

p

1

+

|

u

|

p

1

+

|

ˆ

k1

(

ω, u,

p

)|

q

2

(7)

➀❝❙ ❳❲ ❳◆❙ ❬❲❝❞❩❙❩❞❙PP ❲✐

(

ωk

)

❖❞

L

(

QT

)

❘❞❩ ❳◆❙ ♠❲❞❨❙❚❡❙❞♠❙❲✐

(

uk

)

❖❞

L

p

1

(

QT

)

❳◆❙ ❤❙✐❳ ◆❘❞❩ P❖❩❙ ❲✐ ❳◆❙

❘❬❲❨❙❖❞❙✈❝❘❤❖❳❭❖P❙✈❝❖ ❖❞❳❙❡❚❘❬❤❙ ❥P❙❙❫❵Û❛❧❦❖❞ ❘❩❩❖❳❖❲❞❦❖❳ ❘❜❙❜♠❲❞❨❙❚❡❙P❳❲ Û❦❳◆❙❚❙✐❲❚❙❬❭✁❖❳❘❤❖☎P❳◆❙❲❚❙❱ ❳◆❙

❤❙✐❳ ◆❘❞❩ P❖❩❙ ♠❲❞❨❙❚❡❙P ❖❞

L

1

(

QT

)

❳❲ ❳◆❙ ④❙❚❲ ✐❝❞♠❳❖❲❞❜ ▼◆❝P ❥❬❙♠❘❝P❙ ❲✐ ❳◆❙ ❬❲❝❞❩❙❩❞❙PP ❲✐

(

p

k

)

❧ ❳◆❙ ❚❖❡◆❳

◆❘❞❩ P❖❩❙ ❲✐ ❥ ❴❴❧ ❳❙❞❩P ❳❲ Û❜ ❶❙❞♠❙ ❘❤❤ ❳❙❚❱P ❲❞ ❳◆❙ ❚❖❡◆❳ ◆❘❞❩ P❖❩❙ ❲✐ ❙✈❝❘❳❖❲❞ ❥❴❵❧ ♠❲❞❨❙❚❡❙P ❳❲ Û ❳◆❝P ❥❴Û❧

❖❱◗❤❖❙P

p

k+1

p

❖❞

X2

⑤❲❯ ❬❭ ❝P❖❞❡ ❳◆❙ P❘❱❙ ❘❚❡❝❱❙❞❳P ❘P ❖❞ ❫r❛ ❲❞❙ ❲❬❳❘❖❞P❳◆❘❳

˜

B

(

ωk, uk

,

p

k+1

;

ω, u,

p

)

B

˜

(

ω, u,

p

;

ω, u,

p

) =

B

(

ω, u,

p

)

❯❙❘❪❤❭ ❖❞

X

2

❜ ♦ ❝❚❳◆❙❚❦ ❬❭ ♠❲❞❩❖❳❖❲❞ ❥ ✁⑩❧ ❖❳ ❖P ❞❲❳ ❩❖⑥♠❝❤❳ ❳❲ P❙❙ ❳◆❘❳

˜

B

(

ωk, uk,

p

k+1

;

ω, u,

p

)

˜

B

(

ωk

, uk,

p

k+1

;

ωk, uk

,

p

k+1

)

0

P❳❚❲❞❡❤❭ ❖❞

X

2

❳◆❝P

˜

B

(

ωk, uk

,

p

k+1

;

ωk, uk,

p

k+1

)

B

(

ω, u,

p

)

❜ ▼◆❙❞ ✐❚❲❱

❚❙♠❝❚❚❙❞♠❙ ❥❵⑧❧❯❙♠❲❞♠❤❝❩❙

B

(

ω, u,

p

) =

H

❦❖❜❙❜❦

ω, u,

p

❘❚❙ P❲❤❝❳❖❲❞P ❲✐ ◗❚❲❬❤❙❱ ❥❵⑩❧❜

♦❖❞❘❤❤❭❦

A

(

ω, u,

p

) =

G

♠❘❞ ❬❙P◆❲❯❞ ❬❭ P❖❱❖❤❘❚ ❘❚❡❝❱❙❞❳P ❘P ❘❬❲❨❙❜▼◆❙ ◗❚❲❲✐ ❲✐❳◆❙❳◆❙❲❚❙❱ ❖P ♠❲❱◗❤❙❳❙❜

✝✞✁✂✄☛✠✟

✂❙ P◆❲❯ P❲❱❙❙♥❘❱◗❤❙P ✐❲❚✐❝❞♠❳❖❲❞P P❘❳❖P✐❭❖❞❡ ♠❲❞❩❖❳❖❲❞P ❥ ❣❵❧✍❥ ❣⑩❧❦ ❥✁❵❧✍❥ ✁⑩❧❜❿❙❳ ✐❝❞♠❳❖❲❞P

ai, bi

◆❘❨❙ ❳◆❙ ✐❲❚❱

ai

(

t, x, ξ, ζ0, ζ, η0, η

;

w, v1, v2

) = [

π

(

w

)](

t, x

)[

ϕ

(

v1

)](

t, x

)[

ψ

(

v2

)](

t, x

)

P

(

ξ

)

Q

(

η0, η

)

ζi

|

ζ

|

p

1

2

+

+ [˜

π

(

w

)](

t, x

)[ ˜

ϕ

(

v1

)](

t, x

) ˜

P

(

ξ

)

ζi

|

ζ

|

r

1

1

,

❖✐

i

6= 0

,

❥❴♣❧

a0

(

t, x, ξ, ζ0, ζ, η0, η

;

w, v1, v2

) = [

π

(

w

)](

t, x

)[

ϕ

(

v1

)](

t, x

)[

ψ

(

v2

)](

t, x

)

P

(

ξ

)

Q

(

η0, η

)

ζ0

|

ζ0

|

p

1

2

+

+ [˜

π0

(

w

)](

t, x

)[ ˜

ϕ0

(

v1

)](

t, x

) ˜

P0

(

ξ

)

ζ0

|

ζ0

|

r

1

1

,

❥❴t❧

bi

(

t, x, ξ, ζ0, η0, η

;

w, v1, v2

) = [

κ

(

w

)](

t, x

)[

λ

(

v1

)](

t, x

)[

ϑ

(

v2

)](

t, x

)

R

(

ξ

)

S

(

ζ0

)

ηi

|(

η0, η

)|

p

2

2

+

+ [˜

κ

(

w

)](

t, x

)[ ˜

ϑ

(

v2

)](

t, x

) ˜

R

(

ξ

)

ηi

|(

η0, η

)|

r

2

1

, i

= 0

, . . . , n,

❥❴⑩❧

❯◆❙❚❙

1

ri

< pi

1

i

= 1

,

2)

❘❞❩ ❳◆❙ ✐❲❤❤❲❯❖❞❡ ◆❲❤❩❜

Ö❵❜ ❘❧ ✉◗❙❚❘❳❲❚P

π

:

L

(

QT

)

L

(

QT

)

ϕ

:

L

p

1

(

QT

)

L

(

QT

)

ψ

:

X2

L

(

QT

)

❘❚❙❬❲❝❞❩❙❩❦

ϕ

❘❞❩

ψ

❘❚❙ ♠❲❞❳❖❞❝❲❝P❦✐❝❚❳◆❙❚❦❖✐

(

ωk

)

❖P❬❲❝❞❩❙❩ ❖❞

L

(

QT

)

❘❞❩

ωk

ω

❘❜❙❜❖❞

QT

❳◆❙❞

π

(

ωk

)

π

(

ω

)

❖❞

L

(

QT

)

❜ q❞ ❘❩❩❖❳❖❲❞❦

P

C

(

R

)

Q

C

(

R

n+1

)

L

(

R

n+1

)

❦ ❘❞❩ ❳◆❙❚❙ ❙♥❖P❳P ❘ ◗❲P❖❳❖❨❙ ❤❲❯❙❚ ❬❲❝❞❩ ✐❲❚❳◆❙❨❘❤❝❙P ❲✐

π, ϕ, ψ, P, Q

❬❧ ✉◗❙❚❘❳❲❚P

˜

π,

˜

π0

:

L

(

QT

)

L

(

QT

)

˜

ϕ,

ϕ0

˜

:

L

p

1

(

QT

)

L

p

1

1

p

1

r

1

1

(

QT

)

❘❚❙ ❬❲❝❞❩❙❩❦

˜

ϕ

❘❞❩

˜

ϕ0

❘❚❙ ♠❲❞❳❖❞❝❲❝P❦ ✐❝❚❳◆❙❚❦ ❖✐

(

ωk

)

❖P ❬❲❝❞❩❙❩ ❖❞

L

(

QT

)

❘❞❩

ωk

ω

❘❜❙❜ ❖❞

QT

❳◆❙❞

˜

π

(

ωk

)

π

˜

(

ω

)

❘❞❩

˜

π0

(

ωk

)

π0

˜

(

ω

)

❖❞

L

(

QT

)

❜ q❞ ❘❩❩❖❳❖❲❞❦

˜

P ,

P0

˜

C

(

R

)

❦ ❲◗❙❚❘❳❲❚P

˜

π,

ϕ

˜

❘❞❩ ✐❝❞♠❳❖❲❞

˜

P

❘❚❙ ❞❲❞❞❙❡❘❳❖❨❙ ❘❞❩

lim

k

v

1

k

X

1

+

R

Q

T

|

ϕ0

˜

(

v1

)|

p

1

1

p

1

r

1

1

k

v1

k

p

1

X

1

= 0

.

Ö❴❜ ❘❧ ✉◗❙❚❘❳❲❚P

κ

:

L

(

QT

)

L

(

QT

)

λ

:

L

p

1

(

QT

)

L

(

QT

)

ϑ

:

L

p

2

(

QT

)

L

(

QT

)

❘❚❙❬❲❝❞❩❙❩❦

λ

❘❞❩

ϑ

❘❚❙♠❲❞❳❖❞❝❲❝P❦✐❝❚❳◆❙❚❦❖✐

(

ωk

)

❖P ❬❲❝❞❩❙❩ ❖❞

L

(

QT

)

❘❞❩

ωk

ω

❘❜❙❜❖❞

QT

❳◆❙❞

κ

(

ωk

)

κ

(

ω

)

❖❞

L

(

QT

)

❜q❞ ❘❩❩❖❳❖❲❞❦

R

C

(

R

)

S

C

(

R

)

L

(

R

)

❦❘❞❩❳◆❙❚❙❙♥❖P❳P❘ ◗❲P❖❳❖❨❙❤❲❯❙❚❬❲❝❞❩ ✐❲❚❳◆❙❨❘❤❝❙P ❲✐

κ, λ, ϑ, R, S

❬❧ ✉◗❙❚❘❳❲❚P

˜

κ

:

L

(

QT

)

L

(

QT

)

˜

ϑ

:

L

p

2

(

QT

)

L

p

2

1

p

2

r

2

1

(

QT

)

❘❚❙ ❬❲❝❞❩❙❩❦

˜

ϑ

❖P ♠❲❞❳❖❞❝❲❝P❦ ✐❝❞♠❳❖❲❞

˜

R

C

(

R

)

❦✐❝❚❳◆❙❚❦❖✐

(

ωk

)

❖P❬❲❝❞❩❙❩❖❞

L

(

QT

)

❘❞❩

ωk

ω

❘❜❙❜❖❞

QT

❳◆❙❞

˜

κ

(

ωk

)

˜

κ

(

ω

)

❖❞

L

(

QT

)

❜q❞ ❘❩❩❖❳❖❲❞❦ ❲◗❙❚❘❳❲❚P

˜

κ,

ϑ

˜

❘❞❩ ✐❝❞♠❳❖❲❞

˜

R

C

(

R

)

❘❚❙❞❲❞❞❙❡❘❳❖❨❙❘❞❩

lim

k

v

2

k

X

2

+

R

Q

T

|

˜

ϑ

(

v

2

)|

p

2

1

p

2

r

2

1

k

v2

k

p

2

X

2

= 0

.

✻✏✎✼✎✽✾✿✾✎❀ ☎✓ ✧

✘✘✕✺✙ ✚✛✜✚ ✆ ★✝✆

☎ ✛ ✗✲✤✬

✚✛✙✣✱✕✣✢✚✥✗✣✘ ❥❴♣ ❧✪

❥❴⑩❧✱ ✕✲✳

✲ ✢✗✣✤✥✚✥✗✣✘

✦✧★✩✪✦✧✫✩✬ ✦✭

★✩✪ ✦✭

✫✩ ✴

✁❭ ❝P❖❞❡ ✞❲❝❞❡☎P ❘❞❩ ❶ ❤❩❙❚☎P ❖❞❙✈❝❘❤❖❳❖❙P❖❳ ❖P❞❲❳ ❩❖⑥♠❝❤❳ ❳❲ ◗❚❲❨❙❳◆❙ ❘❬❲❨❙ P❳❘❳❙❱❙❞❳❦❘ ❩❙❳❘❖❤❙❩ ◗❚❲❲✐

♠❘❞ ❬❙✐❲❝❞❩ ❖❞ ❫ ⑩❛

Referensi

Dokumen terkait

[r]

Nine men’s morris merupakan salah permainan papan dengan 2 pemain, untuk lebih jelasnya dapat dilihat pada pengenalan nine men’s morris, peraturan nine men’s morris

Compared with the two previous perspectives, which made the link of kiai and structure as an determinant actor that cause political agency crisis of kiai or shift political role of

Hotel Karang Setra Spa &amp; Cottages ini mempunyai kelebihan dan kekuatan yang cukup berbanding dengan hotel-hotel yang lain, seperti halnya fasilitas, fasilitas

7.974.839.000,- (Tujuh Milyar Sembilan Ratus Tujuh Puluh Empat Juta Delapan Ratus Tiga Puluh Sembilan Ribu Rupiah), Kelompok Kerja Jasa Konstruksi Penataan

Wisatawan Mancanegara ialah seseorang atau sekelompok orang yang melakukan perjalanan di luar negara asalnya, selama kurang dari 12 bulan pada

Pengumuman Pelelangan Umum Pekerjaan Lanjut an Pembangunan Fasilit as Pelabuhan Laut Linau Bint uhan 08 Maret 2017 19:04. Pengumuman Hasil Prakualifikasi Pekerjaan Penyusunan

The factors influencing the long-term rice supply in the Indonesian rice pro- ducing regions included the rice retail price, the price of cassava, the price of soybean, the