• Tidak ada hasil yang ditemukan

Paper-18-22-2010. 112KB Jun 04 2011 12:03:11 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-18-22-2010. 112KB Jun 04 2011 12:03:11 AM"

Copied!
7
0
0

Teks penuh

(1)

INTEGRAL OPERATORS ON A CERTAIN CLASS OF UNIVALENT FUNCTIONS

Virgil Pescar

Abstract. In this work is considered the classT2of univalent functions defined by the condition

z2f(z)

f2(z) −1

<1 for|z|<1, wheref(z) =z+a3z

3+...is analytic in the open unit diskU ={z∈C:|z|<1}. The integral operatorsGγ,Jγ,Jγ

1,γ2,...,γn,

Dα,β, Lα,β, Kγ1,γ2,...,γn and Hγ1,γ2,...,γn,β,δ, for the functionsf ∈ T2 are considered.

In the present paper we obtain univalence conditions of these integral operators. 2000Mathematics Subject Classification: 30C45.

Key words and phrases: Integral operator, univalence.

1. Introduction

Let A be the class of the functions f which are analitic in the open unit disk

U ={z∈C:|z|<1}and f(0) =f

(0)−1 = 0.

We denote byS the class of the functions f ∈ Awhich are univalent inU. We consider the integral operators

Gγ(z) = z Z

0

f(u) u

1γ

du, (1.1)

Jγ(z) = 

 1 γ

z Z

0 u−1

(f(u))γ1 du

 γ

, (1.2)

Jγ1,γ2,...,γn(z) =

 n X

j=1 1 γj

z Z

0 u−1

n Y

j=1

(fj(u))

1

γj du

1

n

P

j=1 1

γj

(2)

Dα,β(z) = 

β z Z

0 uβ−1

f(u)

u α1

du 

1

β

, (1.4)

Lα,β(z) = 

β z Z

0 uβ−1

n Y

j=1

fj(u) u

α1 du

1

β

, (1.5)

12,...,γn(z) =

z Z

0 n Y

j=1

fj(u) u

1

γj

du, (1.6)

for f ∈ A, α, β, γ complex numbers, α 6= 0, β = 0,6 γ 6= 0 and fj ∈ A, γj complex numbers, γj 6= 0,j= 1, n.

In [1], [2], [4], [7], [8], [9], [10], [11] we have certain the univalence conditions of these integral operators.

We define a general integral operator

Hγ1,γ2,...,γn,β,δ(z) =

βδ z Z

0

uβδ−1 n Y

j=1

fj(u) u

1

γj

du 

1

βδ

, (1.7)

forfj ∈ A,β, δ, γj complex numbers, βδ 6= 0,γj 6= 0,j= 1, n,n∈N− {0}.

Forβ,δ,γj,n∈N− {0},j= 1, n, in the particular cases, from (1.7) we obtain the integral operators Gγ,Jγ,Jγ1,γ2,...,γn,Dα,β,Lα,β,Kγ1,γ2,...,γn.

2. Preliminary results

We need the following theorems.

Theorem 2.1. [6].Let α be a complex number, Reα >0 and f ∈ A. If

1− |z|2Reα

Reα

zf′′ (z) f′

(z)

≤1, (2.1)

for all z∈ U, then for any complex number β, Reβ≥Reα, the function

Fβ(z) = 

β z Z

0 uβ−1

f′ (u)du

1

β

(3)

is in the class S.

Theorem 2.2. (Schwarz [3]). Let f be the function regular in the disk UR=

{z∈C:|z|< R} with |f(z)| < M, M fixed. If f(z) has in z = 0 one zero with

multiply ≥m, then

|f(z)| ≤ M

Rm|z| m,

(z∈ UR), (2.3)

the equality (in the inequality (2.3) for z6= 0) can hold only if

f(z) =eiθ M Rmz

m,

where θ is constant.

Theorem 2.3. [5]. Assume that the function f ∈ A satisfies the condition

z2f′ (z) f2(z) −1

<1, (z∈ U), (2.4)

then the function f is univalent in U.

3. Main results

Theorem 3.1. Let γj, α complex numbers, γj = 06 , j = 1, n, Reα > 0, Mj

positive real numbers and fj ∈ T2, fj(z) =z+ ∞ P k=3

akjzk, j= 1, n, n∈N− {0}.

If

|fj(z)| ≤Mj, (j= 1, n; z∈ U) (3.1)

and

n X

j=1

2Mj+ 1

|γj|

≤Reα, (3.2)

then for any complex numbers β and δ, Reβδ ≥Reα, the function

Hγ1,γ2,...,γn,β,δ(z) =

 

 βδ

z Z

0

uβδ−1

f1(u) u

γ1

1

...

fn(u) u

1

γn

du  

1

βδ

(4)

is in the class S.

Proof. We consider the function

h(z) = z Z

0

f1(u) u

γ1

1

...

fn(u) u

1

γn

du. (3.4)

The function his regular in U. We have zh′′ (z) h′(z)

= n X j=1 1

|γj| zf′ j(z) fj(z)

−1

, (z∈ U). (3.5)

We obtain zf′ j(z) fj(z)

−1 ≤

z2f′ j(z) fj2(z)

fj(z) z

+ 1≤

z2f′ j(z) f2 j (z) −1

|fj(z)|

|z| +

|fj(z)|

|z| + 1, (j= 1, n; z∈ U). (3.6)

Since fj ∈ T2 and by Theorem 2.2, from (3.6) we get zf′ j(z) fj(z)

−1

≤2Mj + 1 j = 1, n; z∈ U

. (3.7)

From (3.5) and (3.7) we obtain 1− |z|2Reα

Reα zh′′ (z) h′ (z)

≤ 1− |z|

2Reα

Reα n X

j=1

2Mj + 1

|γj|

, (z∈ U) (3.8) and hence, by (3.2) we have

1− |z|Reα

Reα zh′′ (z) h′(z)

≤1, (3.9)

for all z∈ U.

(5)

Corollary 3.2. Let γj, α complex numbers, Reγj 6= 0, j = 1, n, n P j=1

Reγ1

j ≥

Reα > 0, Mj positive real numbers and fj ∈ T2, fj(z) = z+a3jz3+..., j = 1, n, n∈N− {0}.

If

|fj(z)| ≤Mj, (j= 1, n; z∈ U) (3.10)

and

n X

j=1

2Mj+ 1

|γj|

≤Reα, (3.11)

then the integral operator Jγ1,γ2,...,γn given by (1.3) is in the class S.

Proof. For βδ= n P j=1

1

γj from Theorem 3.1 we obtain Corollary 3.2.

Remark 3.3. From Corollary 3.2, for n = 1, γ1 = γ, f1 = f, we obtain the integral operator Jγ defined by (1.2) is in the classS.

Corollary 3.4. Let γj, α complex numbers, γj 6= 0, j= 1, n, 0<Reα ≤1, Mj

positive real numbers and fj ∈ T2, fj(z) =z+a3jz3+..., j = 1, n, n∈N− {0}.

If

|fj(z)| ≤Mj, j= 1, n, (z∈ U) (3.12)

and

n X

j=1

2Mj+ 1

|γj|

≤Reα, (3.13)

then the function

12,...,γn(z) =

z Z

0

f1(u) u

γ1

1

...

fn(u) u

1

γn

du (3.14)

is in the class S.

Proof. Forβδ = 1,from Theorem 3.1, we obtain Corollary 3.4.

(6)

Corollary 3.6. Let α, γ complex numbers, α 6= 0, Reγ > 0, Mj positive real

numbers and fj ∈ T2, fj(z) =z+a3jz3+..., j= 1, n,n∈N− {0}.

If

|fj(z)| ≤Mj, (j= 1, n, z∈ U), (3.15)

and

n X

j=1

2Mj + 1

|α| ≤Reγ, (3.16)

then for any complex number β, Reβ ≥Reγ, the function

Lα,β(z) =  

 β

z Z

0 uβ−1

f1(u)

u α1

...

fn(u) u

α1 du

 

1

β

(3.17)

is in the class S.

Proof. For δ= 1, from Theorem 3.1, we have Corollary 3.6.

Remark 3.7. If taken= 1,f1 =f in Corollary 3.6, we obtain that the integral operatorDα,β defined by (1.4) is in the classS.

References

[1] D. Breaz, N. Breaz, Two integral operators, Studia Universitatis ”Babe¸s-Bolyai”, Mathematica, Cluj-Napoca, No.3, 2002, 13-21.

[2] Y.J. Kim, E.P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math., J., 12 (1972), 2, 249-253.

[3] O. Mayer, The Functions Theory of One Variable Complex, Bucure¸sti, 1981. [4] S.S. Miller, P.T. Mocanu, Differential Subordonations, Theory and Aplica-tions, Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000.

[5] S. Ozaki, M. Nunokawa,The Schwartzian derivative and univalent functions, Proc., Amer. Math. Soc., 33 (2), (1972), 392-394.

[6] N.N. Pascu,An improvement of Becker’s Univalence Criterion, Proceedings of the Commemorative Session Simion Stoilow, University of Bra¸sov, 1987, 43-48.

[7] N.N. Pascu, V.Pescar,On the integral operators of Kim-Mekes and Pfaltzgraff, Mathematica, Univ. ”Babe¸s-Bolyai”, Cluj-Napoca, 32 (55), 2(1990), 185-192.

(7)

[9] V. Pescar,Integral operators on a certain class of analytic functions, Libertas Mathematica, Vol.XXXVII (2007), 95-98.

[10] V. Pescar, On the univalence of some integral operators, Acta Universitatis Apulensis, Mathematics - Informatics, No. 16/2008, 157-164.

[11] V. Pescar, S. Owa,Univalence problems for integral operators by Kim-Merkes and Pfaltzgraff, Journal of Approximation Theory and Applications, Vol.3, No.1-2, 2007, 17-21.

Virgil Pescar

Department of Mathematics ”Transilvania” University of Bra¸sov

Faculty of Mathematics and Computer Science 500091 Bra¸sov, Romania

Referensi

Dokumen terkait

The work of the third author was supported by The Ministry of Education and Science of the Republic of Macedonia (Research Project No.17- 1383/1).. Also, this paper is part of

In particular, we obtain integral means inequalities for various classes of uniformly β − starlike and uniformly β − convex functions in the unit disc.. 2000 Mathematics

It is mentioned in the final part of the paper [4] that many other Tur´ an-type inequalities can be obtained for the functions which admit integral representations of the

Rota, The logic of commuting equivalence relations, In: Logic and Algebra, Lecture Notes in Pure and Applied mathematics, Vol.. Glavosits, Generated preorders and equivalences,

Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type , J.. Turkoglu, Some fixed point

Stivastava, Certain subclasses of analytic functions asso- ciated with the generalized hypergeometric function, Integral Transform.. Owa, On the distortion

Abstract.We define and investigate a new class of harmonic univalent functions defined by an integral operator.. We obtain coefficient inequalities, extreme points and distortion

Keywords : Harmonic Multivalent Functions, Sˇalˇagean Derivative, extreme points, distortion