2 3 3 2 −
=
a
b
x
y
=
ab
26=
−34
y
x
4
ab
4 3ab
4
ab
a
4
ab
b
4
b
ab
3
log
2
=
x
y
=
3log
2
+
1
⋅
3log
5
=
y
x
10
log
3
5
log
2
5
log
2
22
log
5
2
log
2
5! "
x
2+
px
+
q
=
0
+
4=
2 1 2 4
1
x
x
x
x
)
3
(
q
p
2pq
+
)
3
(
2p
q
pq
−
)
3
(
q
p
2pq
−
)
3
(
q
p
2pq
+
)
2
3
(
q
p
2pq
+
# $ % ! " " & %%! % '
y
=
4
x
−
x
2 " " %%! % & " "! " % % %
(
2
1
) * ! "
x
2−
px
+
p
=
0
,
p
>
0
! &x
12+
x
22=
48
+ # ( ,
( "! " ! ' ! % -!" ! ! ' "' & % ! %
% % . . ! % & % . - ). -! ! % & %
' % )) -!" ! & & ! % & % ' "'
-!" ! +
) )
/ 0! ! ! "! " " & " % ! ! + # !(+ ) ! 1! 1 1! +
#2 / )
) #/ #,
, 0! ! ! "! ' " & " % ! ! + 3 !)+ ! +
#3 /3
/3 )3
,3
2 0' ! "
x
+
x
+
1
<
3
9
7
1
0
≤
x
<
9
7
1
<
x
9
7
1
1
≤
<
−
x
9
7
1
1
≤
≤
−
x
9
7
1
0
≤
x
≤
4 !
z
=
3
x
+
2
y
& % ! & "x
+
y
≥
3
,
3
x
−
y
≤
9
,
,
15
5
3
x
−
y
≥
−
x
≥
0
,
y
≥
0
5 "! % % !" 2( "' % 6 ! ! & 7 " ! % " % !" 8 " % !" " ! - 9 99 999 "! !" "! !" # ( "'
! & 7 # " ! - 9 & " ! -! 99 & % 7
( 2
0' ! "
(
)(
)
1
1
2
2
≤
+
−
−
−
x
x
x
x
1
−
<
x
" !−
1
<
x
≤
9
1
≤
x
" !x
≥
9
9
1
≤
x
≤
9
1
<
≤
−
x
9
≤
x
,
1
+
=
x-y
x
y
x
A
,
3
2
2
1
1
−
=
y
x
B
,
0
0
=
b
a
C
1 +=
a
b
2 /
#
=
b
a
y
x
1
1
2
3
=
8
2
2
4
3
5
b
a
1 & +
# ) (
) ! !"
θ
! " !1
+
cos
2
θ
=
2
sin
22
θ
tan
θ
=
3
3
1
3
3
2
( & & % % " " % % & % ! ! % ( / ,
#
/ *
∆
ABC
% " %% '"' % " "∠
BAC
=
α
,
∠
ABC
=
β
,
5
3
)
sin(
α
+
β
=
+ ) +( , 2 )
, * % ! % '% " " % % ! % '%
-! % ' ! % "! %
8
1
8
2
8
3
8
4
8
6
2
1
2
3
)
(
−
=
x
x
f
1
3
3
)
)(
o
(
−
+
=
x
x
x
g
f
g
(
x
−
1
)
=
x
x
+
1
1
+
x
x
1
+
−
x
x
1
−
x
x
x
x
−
1
$ - " " & 7 ! "! ! -" ! % - " " & 7 )
-!" ! % % - " " & 7 7 " -!" ! % -!
& 7 7 "
)
=
−
−
−
→
2
4
2
2
3
lim
2
x
x
x
8
3
4
3
2
1
1
3 2 2
)
2
(
2
)
(
x
x
x
f
−
=
"! ! ;! % ; # < # +4
1
12
1
24
1
2
1
−
4
1
−
0
7
-2x
5
2
3
x
3
2
det
=
+
+
x
x
=
+
22 2 1
x
x
4
1
10
4
1
14
4
1
18
4
1
24
(
#
=
π
π
π
π
6
5
sin
6
7
cos
6
5
cos
6
1
sin
det
d
+
+
+
+
...
=
625
125
25
5
4 3 2
d
d
d
d
2
1
−
9
1
−
11
1
−
3
1
2
1
) * ) ! " " %%! % % & + 1 ! =
1
,
2
1
2
1
)
(
x
=
x
3+
x
2−
x
+
f
1 +