BISEL07-SITH/ITB-MIT/IR 1
BIOLOGI SEL:
PENDAHULUAN
BISEL07-SITH/ITB-MIT/IR 2
Sejarah perkembangan
• Robert Hooke : sel mati : sel dari gabus
• Anton van Leeuwenhoek : sel hidup
• Matthias Schleiden : sel pada tumbuhan
• Theodor Schwann (1839): Teori sel
– Semua organisma terdiri dari satu atau lebih sel
– Sel : unit struktural hidup
• Schleiden & Schwann : sel dapat berasal dari materi-materi
nonselular
• Rudolf Virchow (1855) : sel
berasal dari pembelahan sel yang sudah ada sebelumnya
• Penggunaan sel dalam penelitian in vitro : HeLa (sel kanker
manusia) – George Gey (1951)
BISEL07-SITH/ITB-MIT/IR 3
BISEL07-SITH/ITB-MIT/IR 4
Karakteristik sel
• Sel sangat kompleks
– Molekul-molekul sederhana –
kompleks Æ organel Æ sel
misalnya
C, H, O, N, S, P Æ asam amino Æ
protein Æ misalnya salah satu komponen dalam mitokondria yang merupakan organel dari sel
BISEL07-SITH/ITB-MIT/IR 5
Karakteristik sel
• Sel memiliki informasi genetik
– Gen : blueprint untuk struktur sel, seluruh aktivitas dan fungsi sel
• Sel dapat ber-reproduksi
BISEL07-SITH/ITB-MIT/IR 6
Karakteristik sel
• Sel memperoleh dan menggunakan energi
• Sel melakukan
metabolisme sel
BISEL07-SITH/ITB-MIT/IR 7
Karakteristik sel
• Terdapat suatu aktivitas mekanis dalam sel yang dinamis
– Misalnya perubahan bentuk sel akibat aksi dari protein-protein dalam sitoplasma
• Sel dapat memberi respons terhadap suatu stimulus – Reseptor hormon, reseptor faktor tumbuh, reseptor
matriks ekstraselular, atau reseptor lainnya (G)
– Respons : misalnya metabolisme sel, proliferasi sel atau gerakan sel
Istirahat teraktivasi retraksi
BISEL07-SITH/ITB-MIT/IR 8
Karakteristik sel
• Sel mampu mengatur diri sendiri (self regulation)
– Misalnya pengaturan siklus sel
BISEL07-SITH/ITB-MIT/IR 9
Prokaryot -Eukaryot
BISEL07-SITH/ITB-MIT/IR 10
Persamaan
antara eukaryot dengan prokaryot:
• konstruksi membran plasma sama
BISEL07-SITH/ITB-MIT/IR 11
Persamaan
antara eukaryot dengan prokaryot
• informasi genetik dikode oleh DNA, dengan kode genetic yang identik
• mekanisme transkripsi dan translasi
Eukaryotes Prokaryotes
BISEL07-SITH/ITB-MIT/IR 12
• reaksi metabolisme
• apparatus yang sama untuk konversi energi kimiawi
– prokaryot Æmembran plasma – eukaryot Æ membran mitokondria
Persamaan antara eukaryot
dengan prokaryot:
BISEL07-SITH/ITB-MIT/IR 13
• mekanisme fotosintesis yang sama (tumbuhan – sianobakteri)
• mekanisme sintesa dan penyisipan protein membran
• konstruksi proteosom yang sama (archaebacteria dengan eukaryot)
Persamaan antara eukaryot
dengan prokaryot:
BISEL07-SITH/ITB-MIT/IR 14
Perbedaan antara organisme prokaryot dengan eukaryot
Prokaryot Eukaryot
Organisme Bakteri, cyanobakteri
Protista, jamur,
tumbuhan dan hewan Ukuran sel Umumnya 1-10
μm Umumnya 5-100 μm
Metabolisme Anaerobic atau aerobik
Aerobik
Organel Sedikit Mitokondria, kloroplas, retikulum endoplasma, dll
Inti Tidak ada Ada
DNA DNA sirkular
dalam sitoplasma
DNA linier dan sangat panjang, memiliki daerah yang dikode (ekson) dan tidak dikode /intron (sangat banyak); berada dalam inti
BISEL07-SITH/ITB-MIT/IR 15
BISEL07-SITH/ITB-MIT/IR 16
Perbedaan antara organisme prokaryot dengan eukaryot
Prokaryot Eukaryot
RNA dan protein RNA dan protein disintesis pada ruang yang sama
RNA disintesis dan diproses di inti Protein disintesis di sitoplasma Sitoplasma Tidak mengandung sitoskeleton,
tidak ada aliran sitoplasma dalam sel, tidak ada endositosis dan eksositosis
Dalam sitoplasma terdapat sitoskeleton : filamen-filamen protein, ada aliran sitoplasma dalam sel, ada endositosis dan eksositosis
BISEL07-SITH/ITB-MIT/IR 17
Perbedaan antara organisme prokaryot dengan eukaryot
Prokaryot Eukaryot
Pembelahan sel Kromosom ditarik dengan cara pelekatan pada membran plasma
Kromosom ditarik apparatus mitosis (komponen sitoskeleton)
Organisasi sel Umumnya uniselular Umumnya multiselular, dan terjadi proses diferensiasi / spesialisasi sel
BISEL07-SITH/ITB-MIT/IR 18
Virus
– membawa
informasi genetic berupa rantai
tunggal atau ganda RNA atau DNA
– Materi genetiknya mengkode :
• Protein kapsul / kapsid
– aktif jika berada
pada sel hidup
BISEL07-SITH/ITB-MIT/IR 19
BISEL07-SITH/ITB-MIT/IR
20
Bioenergetika
BISEL07-SITH/ITB-MIT/IR 21
• Cell metabolism can be compared to an elaborate road map of the thousands of chemical reactions that occur in the cell
It is an intricate
network of metabolic pathways
The Chemistry of Life: A network
of metabolic pathways
BISEL07-SITH/ITB-MIT/IR 22
• Catabolic pathways: They
release energy by breaking down complex molecules to simpler
compounds
– A major catabolic pathway found in a cell is respiration which breaks down sugar glucose and other
fuels into carbon dioxide and water with release of energy
C6H12O6 + 6O2 Æ 6CO2 + 6H2O + Energy
• Anabolic pathways: Build
complex molecules from simpler ones by consuming energy
e.g. Photosynthesis in plants 6CO2 + 6H2O + Light energy Æ C6H12O6 + 6O2 + 6H2O
BISEL07-SITH/ITB-MIT/IR 23
• Organisms Transform Energy:
– Energy: The capacity to do work
• Kinetic energy: The energy of motion possessed by all moving objects e.g. water gushing through a dam turns turbines
• Potential energy: Energy that matter possesses because of its location or structure
• Bioenergetics – The study of how organisms manage their energy resources
– to maintain its high level of activity, a cell must acquire & expend energy
Water behind dams has potential energy because of altitude
Chemical energy stored in molecules as a result of the arrangement of the atoms in these molecules
BISEL07-SITH/ITB-MIT/IR 24
Conversion of Energy from one form to the other:
• Thermodynamics - study of the changes in energy that
accompany events in the Universe
• Two laws of
Thermodynamics
BISEL07-SITH/ITB-MIT/IR 25
The First Law of Thermodynamics
• energy can be neither created nor destroyed (Law of Conservation of Energy); total energy in Universe remains constant (regardless of transduction process)
– Energy can, however, be transduced - burning fuel, polysaccharide breakdown, photosynthesis
• Several organism communities are independent of photosynthesis – communities residing in hydrothermal vents on ocean floor; depends on energy obtained by bacterial chemosynthesis
• Some animals (fireflies, luminous fish) convert chemical energy back into light
• ΔE = Q – W, where Q = heat energy & W = work energy
Reactions that result in heat lost to the environment are called exothermic;
those that result in heat gained from the environment are called endothermic
BISEL07-SITH/ITB-MIT/IR 26
Couple of terms
• System: Is used to denote the matter under study and refer to the rest of the universe- everything outside the systems the
surroundings
1. Closed system: e.g. a liquid in a thermos bottle is isolated from its surroundings
2. Open system: Energy (&often matter) can be transferred between the system and its
surroundings e.g. organisms
• Entropy: A measure of disorder or randomness
• Free energy: Is the portion of a system’s energy that can perform work when
temperature is uniform through out the system
BISEL07-SITH/ITB-MIT/IR 27
The Second Law of Thermodynamics
• Every energy transfer or transformation increases the entropy of the universe (no machine is 100% efficient which would be necessary)
• Some energy is inevitably lost as machine works (same is true of living organism)
• car
chemical energy (gasoline) Æ converted to kinetic energy + the disorder of its
surroundings will increase in the form of heat and small molecules that are the breakdown products of gasoline
BISEL07-SITH/ITB-MIT/IR 28
• Together the 1st & 2nd laws of thermodynamics show that the energy of the universe is constant, but that entropy continues to increase toward a maximum
• Gibbs combined concepts inherent in 1st & 2nd Laws to get equation: ΔH = ΔG + TΔS
where:
1. ΔG is the change in free energy (the change during a process in energy available to do work)
2. ΔH - change in enthalpy (total energy content of system; equivalent to ΔE for our purposes)
3. T - absolute temperature (°K; °K = °C + 273) 4. ΔS - change in entropy of system
BISEL07-SITH/ITB-MIT/IR 29
• Rearrange to ΔG = ΔH - TΔS - can predict direction in which process will proceed & the extent to which the process will occur
1. ΔG size shows the maximum amount of energy that can be passed on for use in another process
2. Spontaneous process has -ΔG (exergonic) & proceeds toward state of lower free energy; such a process is
thermodynamically favored
3. Non-spontaneous process, +ΔG (endergonic); cannot
occur spontaneously; it is thermodynamically unfavorable;
make it go by coupling to high -ΔG (energy-releasing)
reaction
BISEL07-SITH/ITB-MIT/IR 30
• An important renewable high energy compound that powers cellular work
• ATP hydrolysis is used to drive most cellular endergonic processes A. ATP is used for diverse processes because its terminal phosphate
group can be transferred to a variety of different types of molecules (amino acids, lipids, sugars, & proteins)
B. In most coupled reactions, phosphate group is transferred in initial step from ATP to one of above acceptors & is subsequently removed in
second step
ATP:
Adenosine Triphosphate
BISEL07-SITH/ITB-MIT/IR 31
Enzymes: Biocatalysts
• A catalyst is a chemical agent that changes the rate of reaction without being consumed by the reaction
• An enzyme is a catalytic protein
– Enzymes are substrate-specific (key-lock relationship) – Enzymes are sensitive to temperature, pH and to some
chemicals
• Some Enzymes need co-factors/coenzymes to function
BISEL07-SITH/ITB-MIT/IR 32
BISEL07-SITH/ITB-MIT/IR 33
Enzymes:
Biocatalysts
• Substrates can
compete with other substrates to bind on the same
position of the same enzyme Î interrupt the
reaction
• Enzymes can be inhibited by the addition of
inhibitors
BISEL07-SITH/ITB-MIT/IR 34
Enzymes: Biocatalysts
• Feed back inhibition of
enzymes: Feed inhibition is the switching off of a metabolic
pathway by its end product
which acts as an inhibitor of an enzyme within the pathway
BISEL07-SITH/ITB-MIT/IR 35
• ATP formed 2 ways in cell:
– oxidative phosphorylation Æ inner membrane of mitochondria
– substrate-level phosphorylation
• Oxidative phosphorylation -
dehydrogenases move 2 electrons &
proton to NAD+ to make NADH
1. High energy NADH donates electrons to other molecules at electron transport (ET) chain
2. Because NADH transfers electrons so readily, it is said to have high electron transfer potential
3. As electron travels down ET system, it loses energy used to make ATP & is added to O2 to make H2O
• Substrate-level phosphorylation - phosphate group moved from a
substrate to ADP Æ ATP
1. ATP formation is not that endergonic, formation of other molecules is more endergonic
2. Such molecules can donate their phosphates to ADP to make ATP