• Tidak ada hasil yang ditemukan

Stabilitas lereng dengan Program Plaxis

N/A
N/A
Protected

Academic year: 2018

Membagikan "Stabilitas lereng dengan Program Plaxis"

Copied!
15
0
0

Teks penuh

(1)

1 ANALISIS DINDING PENAHAN TANAH DAN

STABILITAS LERENG DENGAN STRUKTUR COUNTER WEIGHT

MENGGUNAKANPROGRAM PLAXIS 8.5

( Studi Kasus Pada Jembatan Lemah Ireng II Paket VI Sta. 22+125, Proyek Jalan Tol Semarang - Solo)

Nama Mahasiswa : Didik Yulianto

Nomor Mahasiswa : 08511001

Jurusan : Teknik Sipil FTSP - UII

Dosen Pembimbing : Dr. Ir. Edy Purwanto, CES., DEA

ABSTRAK

Kegiatan pembangunan jalan tol merupakan bagian usaha pemenuhan peningkatan kebutuhan akan prasarana jalan raya maka diharapkan mampu memecahkan permasalahan yang timbul pada ruas jalan utama. Dengan mempertimbangkan kondisi dan topografis lahan maka pembangunan jalan tol Semarang-Bawen, paket VI lemah ireng – Bawen Sta 22+125 melewati suatu daerah perbukitan sehingga diperlukan suatu jembatan yang cukup besar dan panjang yaitu Jembatan Lemah Ireng II. Kondisi lokasi tanah yang demikian maka bila bangunan Abutment A2 tidak dilakukan perlindungan (protection) maka dalam kurun waktu yang berjalan ke depan akan mengakibatkan instabilitas dari struktur Abutment A2 maka perlu dibangun dinding penahan tanah (DPT) untuk melindunginya. Pada sisi kanan lereng Abutment A2 perlu dilakukan penimbunan tanah, timbunan tanah pada lereng yang cukup curam tersebut dibuat Counter weight dengan kemiringan 1V : 1,5H. Tugas akhir ini bertujuan untuk mengetahui stabilitas struktur DPT dari beton bertulang, mengetahui angka aman kondisi lereng asli, mengetahui angka aman stabilitas struktur Counter Weight dengan dan tanpa beban gempadi sisi kanan Abutment A2.

Analisis stabilitas DPT dihitung secara matematis dan untuk analisis stabilitas lereng dianalisis dengan menggunakan program Plaxis 8.5 sebagai data sekunder yang digunakan dari PT. Global Perfex Synergi.

Dari hasil analisis dinding penahan tanah dengan dimensi lebar 5,50 m dan tinggi 7,00 m berdasarkan pada tinjauan ekternal didapat stabilitas terhadap gaya guling sebesar 4,574, stabilitas terhadap gaya geser 2,288 ≥ dari SF 1,50 maka kondisi dari gaya guling dan geser aman. Untuk stabilitas terhadap kuat dukung tanah maks 172.328 kN/m2 < ijin557,905 kN/m2 (aman). min 66.661 kN/m2 > 0 (aman). Untuk tinjauan stabilitas internal terhadap pada potongan A-A’ didapat tegangan desak desak 427,560 kN/m2 < desak beton 1500 kN/m2 (aman). tegangan geser 35,206 kN/m2 < geser beton 150 kN/m2 (aman). Tinjauan terhadap potongan B-C didapat tegangan desak desak 1474,112 kN/m2 < desak beton 1500 kN/m2 (aman). tegangan tarik tarik -1213,051 kN/m2 < tarik beton 300 kN/m2 (aman). Tegangan geser 78,660 kN/m2 < geser beton 150 kN/m2 (aman). Tinjauan terhadap potongan C-C’ didapat tegangan desak desak 1048,161 kN/m2 < desak beton 1500 kN/m2 (aman). Tegangan geser 69,916 kN/m2 < geser beton 150 kN/m2 (aman). Selanjutnya hasil analisis stabilitas lereng kondisi DPT berdiri di tanah asli dengan menggunakan program Plaxis 8.5, hasil analisis stabilitas lereng tanpa gempa diperoleh angka aman sebesar 1,251 dan dengan gempa sebesar 1,249 nilai ini tidak memenuhi syarat yang disepakati di lokasi proyek sebesar 1,30 maka kondisi lereng ini rawan terjadi bahaya longsor. Pada kondisi DPT berdiri di lereng asli yang diperbaiki dengan dua Counter Weight didapat hasil angka aman tanpa gempa sebesar 1,435 dan dengan gempa sebesar 1,428 kemudian dengan di beri tiga Counter Weight maka didapat angka aman tanpa gempa 1,439 dengan gempa 1,430, nilai ini telah memenuhi syarat yang disepakati di lokasi proyek sebesar 1,30 dengan demikian kondisi lereng diperbaiki akan lebih baik untuk jangka panjang dari bahaya longsor karna dapat melindungi struktur bangunan di atas lereng tersebut.

(2)

2

BAB I PENDAHULUAN

1.1 Latar Belakang Masalah

Kegiatan pembangunan jalan tol merupakan bagian usaha pemenuhan peningkatan kebutuhan akan prasarana jalan raya sehingga diharapkan mampu memecahkan permasalahan yang timbul pada ruas jalan utama. Dengan mempertimbangkan kondisi dan topografis lahan maka pembangunan jalan tol Semarang-Bawen, paket VI lemah ireng (Sta. 21+825 - Sta. 22+840) melewati suatu daerah perbukitan sehingga diperlukan suatu jembatan yang cukup besar dan panjang yaitu Jembatan Lemah Ireng II. Untuk lebih jelasnya dapat dilihat pada Gambar 1.1 sampa dengan Gambar 1.3

Gambar 1.1 Lokasi Timbunan Tanah di

Sebelah Kanan Abutment A2.

(Sumber : PT. Global Perfex Synergi & ASS, 2012)

Gambar 1.2 Lokasi Jembatan Lemah

Ireng II Sta.22+125

(Sumber : Dokumentasi di Proyek, 2013)

Gambar 1.3 Daerah Sisi Kanan Abutment

A2 yang akan Diperbaiki.

(Sumber : Dokumentasi di Proyek, 2013) Dengan kondisi lokasi tanah yang demikian maka bila bangunan abutment

A2 tidak dilakukan perlindungan (protection) maka dalam kurun waktu yang berjalan ke depan akan mengakibatkan instabilitas dari struktur

abutment A2. Dengan demikian perlu dibangun dinding penehan tanah (DPT) untuk melindunginya (PT. Global Perfex Synergi& ASS, 2012).

1.2 Rumusan Masalah

1. Bagaimana stabilitas struktur dinding penahan tanah dari beton bertulang?, 2. Bagaimana angka aman untuk stabilitas

lereng dimana DPT berdiri pada kondisi tanah asli dengan dan tanpa beban gempa di sisi kanan Abutment

A2?,

3. Bagaimana angka aman untuk stabilitas lereng apabila DPT berdiri di atas lereng asli yang diperbaiki dengan dua struktur Counter Weight dan tiga struktur Counter Weight pada lereng yang samadengan dan tanpa beban gempadi sisi kanan Abutment A2?.

1.3 Tujuan

1. Mengetahuistabilitas struktur dinding penahan tanahdari beton bertulang. 2. Mengetahui angka aman untuk

stabilitas lereng dimana DPT berdiri pada kondisi tanah asli dengan dan tanpa beban gempa di sisi kanan

Abutment A2. Lokasi Penelitian

(3)

3 3. Mengetahui angka aman untuk

stabilitas lereng apabila DPT berdiri di atas lereng asli yang diperbaiki denga dua struktur Counter Weightdan tiga struktur Counter Weightpada lereng yang samadengan dan tanpa beban gempadi sisi kananAbutmentA2.

1.4 Manfaat Tugas Akhir

1. Memberikan bahan pertimbangan bahan pertimbangan atas hasil analisis stabilitas struktur dinding penahan tanah dari beton bertulang.

2. Menambah pengetahuan bagi penulis dan pembaca mengenai stabilitas lereng dengan program Plaxis 8.5. 3. Memberikan Mengetahui manfaat dari

memperbaiki lereng dengan dua struktur Counter Weight dengan tiga struktur Counter Weight pada lereng yang sama dengan program Plaxis 8.5.

1.5 Batasan Masalah

1. Lokasi penelitian adalah Jembatan Lemah Ireng II Paket VI Sta.22+125, Proyek Jalan Tol Semarang-Solo, 2. Data geoteknik yang digunakan adalah

hasil penyelidikan tanah di lokasi proyek Jembatan Lemah Ireng II Paket VI Sta.22+125, Proyek Jalan Tol Semarang-Solo,

3. Dinding penahan tanah yang direncanakan mempunyai dimensi dan bentuk sesuai dengan desain aslinya, 4. Mutu beton dinding penahan tanah fc’

30 Mpa,

5. Analisis terhadap stabilitas lereng pada strukturCounter Weight di sisi kananabutment A2 menggunakan program Plaxis 8.5,

6. Kemiringan lereng pada struktur

Counter Weightdibuat1V:1,5H,

7. Elevasi muka air tanah di dalam program Plaxis dianggap berada di dasar lereng (di dasar geometri), 8. Waktu interval gempa untuk wilayah

Semarang diambil dari referensi tesis Ismanti, 2012,

9. Beban gempa tidak diperhitungkan dalam menganalisis DPT hanya diperhitungkandalam menganalisis stabilitas lerengnya,

10. Untuk pekerjaan drainase tidak dianalisis.

BAB II LANDASAN TEORI

2.1Dasar-Dasar Perkuatan Tanah a. Konsep Tegangan - Regangan

Salah satu fungsi yang terpenting dalam studi Mekanika Tanah adalah perkiraan mengenai besarnya ‘tegangan’ akibat suatu beban atau pembebanan yang akan menghasilkan deformasi yang berlebihan disebut ‘Tegangan Runtuh’,dapat dilihat pada Gambar 2.1 (Purwanto, 2012).

Gambar 2.1 Tegangan dan Regangan

(Sumber : Purwanto, 2012)

b. Masa Tanah

Tanah merupakan material berbutir halus, keruntuhan yang terjadi terutama disebabkan oleh terguling dan tergelincirnya butiran-butiran dan bukan karena oleh tarikan atau tekanan antar butir-butir tanah. Oleh karena itu sifat keruntuhan:Kuat Geser Tanah

Kekuatan geser tanah terdiri dari dua parameter yaitu:

1. bagian yang bersifat kohesi C yang tergantung dari jenisnya, dan

2. bagian yang mempunyai sifat gesekan/frictional (σ) yang bekerja pada bidang geser.

Parameter kuat geser tanah yaitu sudut gesek dalam (∅) dan kohesi tanah ( ) dapat diperoleh dengan uji geser langsung. Menurut Coulomb (1776) dalam Hardiyatmo (1992), kuat geser tanah didefinisikan

= + ∅

Beban Tegangan ( )

(4)

4 Keterangan:

= kuat geser tanah(kN/m2),

σ = Tegangan total pada bidang geser(kN/m2),

c = Kohesi tanah (kN/m2), dan ∅ = Sudut geser dalam tanah (derajat) 1. Stabilitas Terhadap Geser

Gaya yang menggeser dinding penahan tanah akan ditahan oleh:

a. Gesekan antara tanah dengan dasar pondasi dinding penahan tanah.

b. Tekanan tanah pasif bila didepan dinding penahan tersebut terdapat timbunan.

Faktor aman (SFgeser) didefinisikan sebagai berikut :

SFgeser =∑ Keterangan:

∑Rh = Jumlah dari gaya-gaya horizontal yang mencegah strukturbergeser. ∑ph = Jumlah dari gaya-gaya horizontal

yang menyebabkan struktur bergeser.

Faktor aman terhadap geser dasar fondasi

SFgeser≥ 1.5 untuk tanah dasar granuler

SFgeser2 untuk tanah dasar kohesif

2. Stabilitas Terhadap Guling

Faktor aman akibat terhadap guling (SFguling), didefinisikan sebagai berikut:

SFguling = Keterangan:

∑ = momen yang menyebabkan struktur terguling dengan

∑ = momen yang mencegah struktur terguling

Faktor aman terhadap penggulingan (Fguling) begantung pada jenis tanah, yaitu:

SFguling ≥ 1.5 untuk tanah dasar granuler

SFguling ≥ 2 untuk tanah dasar kohesif

3. Daya Dukung Tanah a. Persamaan Terzaghi

qu = cNc +Df Nq + 0,5 B N

Keterangan:

c = kohesi tanah (kN/m2) Df = kedalaman fondasi (m) = berat volume tanah (kN/m3)

B= lebar fondasi DPT (m)

Nc,Nq, danN = faktor –faktor kapasitas dukung Terzaqhi

Untuk qall qall = qu/SF

SF = faktor aman terhadap keruntuhan tanah dasar minimum dipakai SF= 3.

4. Stabilitas Internal

1. Tinjauan Terhadap Tampak Badan Dinding Penahan Tanah

a. Tegangan Desak,

b. = ∑

.. +

desak

c. Tegangan Tarik, seperti

= ∑

.. −

desak

d. Tegangan Geser,

= .

.. ≤ geser

Keterangan:

∑ = berat total struktur pada penampang potongan I-I (kN.m)

∑ = momen total struktur pada penampang potongan I-I (kN.m)

b . = lebar struktur yang

ditinjau pada potongan I-I (kN.m) L = panjang struktur yang ditinjau selebar I m (m)

W = berat tanah pada struktur yang ditinjau (kN)

2. Tinjauan Terhadap Tampang Pada Kaki Depan dan Belakang

a. Tegangan Ekstrim (tarik/tekan),

ekstrim = ± ∑ ≤ tarik/tekan bahan

b. Tegangan geser yang terjadi,

=32 . b

.. L ≤ geser

Keterangan:

∑ =momen total struktur pada penampang potongan II-II (kN.m)

b .= lebar struktur yang ditinjau pada

(5)

5 L = panjang struktur yang ditinjau

selebar I m (m)

W= berat tanah pada struktur yang ditinjau (kN)

5. Teori Analisis Stabilitas Lereng Faktor aman didefiniskan sebagai nilai banding antara gaya yang menahan dan gaya yang mengerakkan,

=

Keterangan:

= tahanan geser maksimum yang dapat dikerahkan oleh tanah (kN/m2)

= tegengan geser yang terjadi akibat gaya berat tanah yang akan longsor (kN/m2)

SF = faktor aman.

Menurut teori Mohr-Coulumb, tahanan geser maksimum kuat geser tanah

( ) yang dapat dimobilisasi oleh tanah, di sepanjang bidang longsornya,

= + g

Keterangan:

= tahanan geser (kN/m2)

c = kohesi (kN/m2)

= tegangan normal pada bidang runtuh (kN/m2)

= sudut gesek dalam tanah (derajat) Nilai- nilai c dan adalah paremater kuat geser tanah sepanjang bidang lonsor.

BAB III

METODE PENELITIAN

BAB IV

STUDI KASUS DAN PEMBAHASAN

4.1 Anaslisis Struktur Dinding Penahan Tanah pada Abutment A2

A. Tanah Timbunan/Tanah Urug 1. Berat volume tanah urugan (γb)

= 18 kN/m3

2. Kohesi tanah urugan (c) = 0 (Tanah Granuler) 3. Sudut geser tanah Φ = 300 B. Tanah asli

1. Berat volume tanah asli (γb) = 18 kN/m3

2. Kohesi tanah asli (c) = 2 3. Sudut geser tanah asli Φ = 250 4.2 Data Teknis Dinding Penahan Tanah

Gambar stuktur potongan melintang seperti pada Gambar 4.1

Gambar 4.1 Potongan Melintang

Dinding Penahan Tanah

Data perencanaan dinding penahan tanah sebagai berikut :

a. DPT terbuat dari Beton bertulang b. DPT adalah jenis tipe Gravitasi dan

Cantilever Wall

c. Tinggi = 7,00 m, Lebar = 5,50 m d. Beban lalu lintas dan pekerasan

diasumsikan diganti oleh tinggi ekivalen ws= 0,6 m

e. Berat volume beton γc = 25 kN/m3 f. PPI 1983 :

1. desak pasangan = 1500 kN/m2 2. tarik pasangan = 300 kN/m2 3. geser pasangan = 150 kN/m2

5 .7 0

1 .3 0 1 .0 0

5 .2 0

7 .0 0

1 .8 0

A

q= 0 ,6 .b

m m

m

m m

m m

1 .0 0 m 5 .5 0 m 0 .9 0 m

0 .1 0 0 .2 0 L C = m P a s .B t K o so n g = m

3 . 6 0 m

b = 1 8 k N /m³

C = 0

= 3 0

T im b u n a n T a n a h u r u g

(6)

6 Potongan Melintang bidang gambar

seperti pada Gambar 4.2

Gambar 4.2Diagram Tekanan Tanah Aktif

dan Pasif

Koefisien tekanan tanah aktif dan pasif: 1. Untuk tanah asli

Ka = tg2(450 – φ/2)

= tg2(450 – 25/2) = 0,4059 Kp = tg2(450 +φ/2) =tg2(450 + 25/2) = 2,4639

2. Untuk tanah Timbunan Ka= tg2(450 – φ/2)

= tg2(450 – 30/2) = 0,333 Kp = tg2(450 +φ/2) =tg2(450+30/2) = 3,0

Tabel 4.1 Tekanan Tanah Aktif

No

a. Tekanan tanah pasif akibat berat tanah (bagian di sebelah kiri dinding yang ditunjukan pada Gambar 5.6)

Pp = ½ .(h2)2. γ. Kp + 2. c.√Kp.h2 = 87,48 kN

b. Gaya vertikal dan momen terhadap kaki depan titik – A

Tabel 4.2 Gaya Vertikal dan Gaya Momen

terhadap Kaki Depan (titik A)

No Berat Wi (KN)

Jarak dari A

4.3Analisis Stabilitas Struktur

1) Stabilitas Terhadapa Gaya Ekternal a. Stabilitas terhadap Gaya Guling.

5

Keterangan :

∑Mw =Momen yang melawan guling ∑Mgl =Momen mengakibatkan guling ∑Mp = 1972,186 kNm.

b. Stabilitas terhadap Gaya Geser Tekanan tanah aktif = Pa1+Pa2

Keterangan :

∑Rh = F = Tahanan dinding penahan ∑Ph = ∑Pa = Jumlah gaya horizontal 5

c. Stabilitas terhadap Daya Dukung Tanah (DDT) Pas.Bt Kosong= m

b4= 3.60 m

q.Ka h..Ka

Timbunan tanah urug

(7)

7

kapasitas dukung tanah ijin Terzaghi, dan persamaan tabel Vesic :

σ ult = c. Nc + H.γ. Nq + 0,50. B. γ. Nγ.

1673,716 kn m

SFult

ijin  

Tegangan yang terjadi di dasar pondasi: 1. Teganganvertikal maks didasar pondasi

= . 1=657,225,50.1 16.0,2585,50 = 172,328 < =557,905 kN/m2

2. Tegangan vertikal min didasar pondasi 2 minbV.1(1b.6e)657,550,22.1(1 .6,5,050258)66,661kN/m

= > 0 Aman 2) Stabilitas Terhadap Gaya Internal A. Tinjauanterhadap potongan A-A’

Potongan A-A’ beserta diagram tekanan tanah lateral pada Gambar 4.4

Gambar 4.4 Potongan A-A’ Beserta

Diagram Tekanan Tanah Lateral

1. Momen Aktif terhadap titik A pada potongan A-A’.

Tabel 4.3 Momen Aktif terhadap Titik A

N0 Tekanan Tanah Aktif (kN) Jarak ke A (m) Momen ke A (kN.m)

Tabel 4.4MomenPasif terhadap Titik A

No Berat (kN) Jarak ke A (m) Momen ke A (KNm)

1 30 0,20 6,0

2 11,842 0,505 5,983

3 8,526 0,084 0,718

ΣV=50,368 ΣMp=12,701 Eksentrisitas pada titik A

3. Tinjauan stabilitas terhadap tegangan

Desak :

4. Tinjauan stabilitas terhadap tegangan Geser :

B.Tinjauan terhadap potongan B-C Potongan B-C beserta diagram tekanan tanah lateral pada Gambar 4.5

(8)

8

Gambar 4.5 Potongan B-C Beserta

Diagram Tekanan Tanah Lateral

1. Momen Aktif terhadap titik B pada potongan B-C

Tabel 4.5 MomenAktif terhadap TitikB

No

Tabel 4.6 MomenPasif terhadap TitikB

No Berat (kN)

Eksentrisitas pada titik B

 3. Tinjauan stabilitas terhadap tegangan

Desak :

4. Tinjauan stabilitas terhadap tegangan Tarik :

5. Tinjauan stabilitas terhadap tegangan Geser :

C. Tinjauan Terhadap Potongan C-C’ Potongan C-C’ beserta diagram tegangan dan superposisi tegangan pada Gambar 4.6.

Gambar 4.6 Potongan Terhadap C-C’

Beserta Diagram Tegangan dan Superposisi Tegangan.

5.70

Pas.Bt Kosong= m

C' Pas.Bt Kosong= m

b4= 3.6 m

LC= m

Pas.Bt Kosong= m

q.Ka h..Ka

q= 0,6.b

Timbunan ta nah urug

b=18 kN/m3

C = 0

(9)

9 Hasil dari perhitungan diatas bahwa

tegangan yang terjadi di dasar fondasi didapat nilai sebagai berikut : maks = 172,328 kN/m2 dan

min = 66,661 kN/m2.Berikut perhitungan dari superposisi tegangan pada potongan C-C’: H1 = σ maks – Hc.γc

1. Tinjauan Terhadap Potongan C- C’ Momen yang terjadi pada tampang C- C’ tampak pada Gambar 4.7. 3,60= 295,232 kNm.

2. Tegangan Desak yang terjadi :

2

3. Tegangan Geser yang terjadi : DC-C’= H3. 3,60 + ½. (H4-H3). 3,60

4.4 Anaslisis Stabilitas Lereng dengan Struktur Counter Weight di Sisi Kanan

Abutment A2

A. DPT Berdiri di Lereng Tanah Asli di Sisi kanan Abutment A2

pemodelan stabilitas lereng dengankemiringan lereng asli 1V:0.25H, dapat dilihat seperti pada Gambar 4.8

Gambar 4.8 Permodelan Topografi Lereng

Asli di Sta 22+125

Besarnya nilai maximum total displacements tanpa beban gempa 372,54×10-3m sedangkan dengan beban gempa 515,48×10-3m seperti tampak pada Gambar 4.9a dan Gambar 4.9b.

Gambar 4.9a Total Displacement tanpa

Beban Gempa

12.50 m Abu- abu kehitaman

Batuan Lempung

Nilai-nilai displacement

(10)

10

Gambar 4.9b Total Displacement dengan

Beban Gempa

Gambar 4.10a Arah Pergerakan Tanah

tanpaBeban Gempa

Gambar 4.10b Arah Pergerakan Tanah

dengan Beban Gempa

Besarnya nilaieffective stresses

tanpa beban gempa -870,65 kN/m2 dan dengan beban gempa -875,93 kN/m2 seperti tampak pada Gambar 4.11a dan Gambar 4.11b.

Gambar 4.11a Effective Stresses pada

Lereng tanpaBeban Gempa

Gambar 4.11b Effective Stresses pada

Lereng dengan Beban Gempa

Gambar 4.12 menunjukkan nilai angka aman (SF) pada lereng Sta. 22+125 tanpa beban gempa 1,251, dengan beban gempa 1,249

Gambar 4.12 Kurva SF Lereng tanpa dan

dengan Beban Gempa arah pergerakan tanah

Nilai-nilai displacement

yang terjadi pada lereng

arah pergerakan tanah

(11)

11 B. DPT Berdiri di Lereng Tanah Asli di

Sisi Kanan Abutment A2 yang Diperbaiki dengan Dua Struktur

Counter Weight

Permodelan lereng diperbaiki dengan dua struktur Counter Weightdengan kemiringan lereng 1V:1,5H, seperti pada Gambar 4.13

Gambar 4.13 Permodelan Topografi

Lereng Diperbaiki di Sta 22+125

Besarnya nilai maximum total displacements tanpa beban gempa 358,81× 10-3 m dengan beban gempa 811,12× 10-3m seperti tampak pada Gambar 4.14a dan Gambar 4.14b.

Gambar 4.14a Total Displacement tanpa

Beban Gempa

Gambar 4.14b Total Displacement dengan

BebanGempa

Gambar 4.15a Arah Pergerakan Tanah

tanpaBeban Gempa

Gambar 4.15b Arah Pergerakan Tanah

denganBeban Gempa

Besarnya nilai effective stresses

tanpa beban gempa -921,02 kN/m2 dan dengan beban gempa -999,32 kN/m2 seperti tampak pada Gambar 4.16a dan Gambar 4.16b.

12 .50 m

7.00 m

8.00 m

10 .00 m

3 5.0 0 m

9.80 m 5.00 m 7 .40 m 9.5 0 m 24.0 0 m

22.00 m 14.00 m

17.00 m

Berm Counter Wei ght

5.50 m 4.20 m4.00 m

5 3.0 0 m

69.30 m 1.5H

1V

C ounter Weight

1 .5H 1V 10 0 kN/m²

Lanau Sedikit Lempung

Batuan Pasir, Abu-abu kehitaman

Batuan Lempung Tanah Timbunan

Tanah Timbunan

Nilai-nilai displacement

yang terjadi pada lereng

arah pergerakan tanah Nilai-nilai displacement

yang terjadi pada lereng

arah pergerakan tanah

(12)

12

Gambar 4.16a Efektif Stress pada Lereng

tanpaBeban Gempa

Gambar 4.16b Efektif Stress pada Lereng

denganBeban Gempa

Gambar 4.17 menunjukkan kurva angka aman (SF) tanpa beban gempa 1,435, dengan beban gempa sebesar 1,428

Gambar 4.23Kurva SF Lereng tanpa dan

denganBeban Gempa

C. DPT Berdiri di Lereng Tanah Asli di Sisi Kanan Abutment A2 yang Diperbaiki dengan Tiga Struktur

Counter Weight

Permodelan stabilitas lereng dengan tiga Counter Weight dengan kemiringan lereng 1V:1,5H, dapat dilihat seperti pada Gambar 4.18

Gambar 4.18 Permodelan Topografi

Lereng di Sta 22+125

Besarnya nilai maximum total displacements pada lereng tanpa beban gempa 361,24×10-3m sedangkan dengan beban gempa 837,70× 10-3m seperti tampak pada Gambar 4.19a dan Gambar 4.19b.

Gambar 4.19a Total Displacement tanpa

BebanGempa

12.50 m

22.0 0 m 9.00 m

9.00 m

13.00 m 7.00 m

8.00 m

10.00 m

35.00 m 5 3.00 m

9.80 m 5.50 m5.00 m 7.40 m 9.50 m 11.94 m 4.00 m

4.00 m 16 .22 m

69.30 m

Berm Counter We ight

1.5H 1 V

Berm Cou nter Weight

Counter Weight

1.5H 1V

1.5H 1 V 1 00 kN/m²

Lanau Sedikit Lempung

Batuan Pasir, Abu-abu kehitaman

Batuan Lempung Tanah Timbunan

Tanah Timbunan

Nilai-nilai displacement

(13)

13

Gambar 4.19b Total Displacement

denganBeban Gempa

Gambar 4.20a Arah Pergerakan Tanah

tanpaBeban Gempa

Gambar 4.20b Arah Pergerakan Tanah

dengan Beban Gempa

Besarnya nilai effective stresses

tanpa beban gempa -916,55kN/m2 dan dengan beban gempa -993,20kN/m2 seperti tampak pada Gambar 4.21a dan Gambar 4.21b.

Gambar 4.22a Efektif Stress pada Lereng

tanpa Beban Gempa

Gambar 4.22b Efektif Stress pada Lereng

dengan Beban Gempa

Gambar 4.23 menunjukkan nilai angka aman (SF) tanpa beban gempa 1,439 dan dengan beban gempa 1,430

Gambar 4.23 Kurva Sf padaLereng tanpa

dan dengan Beban Gempa Nilai-nilai displacement

yang terjadi pada lereng

arah pergerakan tanah

(14)

14

BAB V

SIMPULAN DAN SARAN

5.1 Simpulan

1. Stabilitas struktur dinding penahan tanah berdasarkan pada tinjauan ekternal didapat stabilitas terhadap gaya guling sebesar = 4,574, stabilitas terhadap gaya geser sebesar = 2,288

≥ dari SF = 1,50 maka kondisi gaya guling dan geser aman karna lebih besar dari safety factor yang diisyaratkan. Untuk stabilitas terhadap daya dukung tanah maks = 172.328 kN/m2 < ijin = 557,905 kN/m2 (aman). min = 66.661 kN/m2 > 0 (aman). Untuk tinjauan stabilitas internal terhadap pada potongan A-A’ didapat tegangan desak, desak = 427,560 kN/m2 < desak beton 1500 kN/m2 (aman). Tegangan geser = 35,206 kN/m2 < geser beton 150 kN/m2 (aman). Tinjauan terhadap potongan B-C didapat tegangan desak, desak = 1474,112 kN/m2 < desak beton 1500 kN/m2 (aman). Tegangan tarik, tarik = -1213,051 kN/m2 < tarik beton 300 kN/m2 (aman). Tegangan geser = 78,660 kN/m2 < geser beton 150 kN/m2 (aman). Tinjauan terhadap potongan C-C’ didapat tegangan desak, desak = 1048,161 kN/m2 < desak beton 1500 kN/m2 (aman). Tegangan geser = 69,916 kN/m2 < geser beton 150 kN/m2 (aman).

2. Stabilitas lereng dimana DPT berdiri pada kondisi tanah asli tanpa beban gempa diperoleh angka aman sebesar 1,251 dan dengan beban gempa sebesar 1,249, nilai ini tidak memenuhi syarat yang disepakati di proyek sebesar 1,30

3. Stabilitas Lereng dimana DPT berdiri di atas lereng asli yang diperbaiki dengan dua struktur Counter Weight

didapat hasil angka aman tanpa beban gempa sebesar 1,435 dan dengan

beban gempa sebesar 1,428, sedangkan diperbaiki dengan tiga struktur Counter Weightdidapat hasil angka aman tanpa beban gempa 1,439 dan dengan beban gempa 1,430, nilai ini telah memenuhi syarat yang disepakati di proyek sebesar 1,30.

5.2 Saran

1. Penelitian selanjutnya perlu dilakukan perbandingkan kemiringan lereng pada Counter Weight agar didapat nilai angka aman yang bervariasi. 2. Dalam analisis stabilitas lereng

dengan program Plaxis ini diperlukan

trial and eror yang banyak

3. Perlu diberi bangunan drainase di sekitar dinding penahan tanah dan lereng untuk mengalirkan air hujan.

DAFTAR PUSTAKA

Arum, S.P. (2010). Redasain Dinding Penahan Tanah Tipe Pasangan Batu Kali dengan Geotekstil Teranyam (Woven Geotextile), Studi Kasus Lereng Sungai Pada Gedung D3 Ekonomi UII. Tugas Akhir. (Tidak Diterbitkan). Universitas Islam Indonesia. Yogyakarta.

Brinkgreve, R.B.J et al. (2007). PLAXIS 2D – Versi 8. Delft University of Technology and PLAXIS. Belanda

Heryono, I.T. (2010). Kajian Stabilitas Lereng Abutment Jembatan Susukan Jalan Tol Semarang- solo, Ruas Semarang-Bawen, Seksi II Gedawang-Penggarong Menggunakan program Plaxis 8.2.

(15)

15 Hardiyatmo, H.C. (2011). Analisis dan

Perancangan Fondasi 1. Gajah Mada University Press. Yogyakarta.

Hardiyatmo, H.C. (2010). Mekanika Tanah 2. Gajah Mada University Press. Yogyakarta.

Hardiyatmo, H.C. (2010). Stabilitas Tanah untuk Perkerasan Jalan. Gajah Mada University Press. Yogyakarta.

Hardiyatmo, H.C. (2006). Penanganan Tanah Longsor dan Erosi. Gajah Mada University Press. Yogyakarta.

Ismanti, Sito. (2012). Analisis Perilaku Timbunan dengan Perkuatan Geosintetik Menggunakan Software Plaxis. Thesis. (Tidak Diterbitkan). Universitas Gadjah Mada. Yogyakarta.

Purwanto Edy. (2009). Desain Pondasi Dangkal (Bahan Kuliah Desain Pondasi Dangkal), Jurusan Teknik Sipil Universitas Islam Indonesia. Yogyakarta.

PT. Global Perfex Synergi & ASS. (2012).

Justifikasi Teknik Pekerjaan Timbunan Abutment dan Badan Jalan Lokal serta Fondasi Tiang Bor pada Overpass Sta.21+850, Bawen. Semarang.

PT. Waskita Karya Tbk. (2011). Laporan

Gambar

Gambar 1.1 Lokasi Timbunan Tanah di
Tabel 4.2kaki depan  titik – A  Gaya Vertikal dan Gaya Momen
Tabel 4.4potongan A – A’ MomenPasif terhadap Titik A
Gambar 4.6.
+6

Referensi

Dokumen terkait

Zat pengawet yang sering ditambahkan dalam proses penggolahan makanan yang dibuat industri adalah ... sorbitol

Dengan mempertimbangkan perubahan profil se- pertiga wajah bawah yang dapat berubah dengan perawatan ortodonsia, tujuan dari penelitian ini adalah untuk mengevaluasi

Apresiasi, pada dasarnya berarti suatu pertimbangan (judgment) mengenai arti penting atau nilai sesuatu. Tingkah laku afektif, adalah tingkah laku yang menyangkut

Hasil penelusuran kemampuan komunikasi matematik siswa menunjukkan bahwa kemampuan komunikasi matematik peserta didik yang menggunakan pembelajaran model AIR dengan

[r]

Tes ini bertujuan untuk mengukur kekuatan dan ketahanan otot lengan dan otot bahu.1). Alat dan fasilitas : Lantai yang rata dan bersih, Stop watch, Serbuk kapur