• Tidak ada hasil yang ditemukan

Sistem Penerangan Rumah Cerdas Menggunakan Solar Cell Berbasis Mikrokontroller Atmega32

N/A
N/A
Protected

Academic year: 2017

Membagikan "Sistem Penerangan Rumah Cerdas Menggunakan Solar Cell Berbasis Mikrokontroller Atmega32"

Copied!
31
0
0

Teks penuh

(1)

LAMPIRAN

(2)
(3)

Lampiran 4. Gambar Alat Keseluruhan dari Solar Cell

(4)

/******************************************************* This program was created by the

CodeWizardAVR V3.12 Standard Automatic Program Generator

© Copyright 1998-2014 Pavel Haiduc, HP InfoTech s.r.l. http://www.hpinfotech.com

Chip type : ATmega32 Program type : Application

AVR Core Clock frequency: 16.000000 MHz Memory model : Small

External RAM size : 0 Data Stack size : 128

*******************************************************/ #include <mega32.h>

#include <stdio.h> #include <delay.h>

#define solar1 PORTC.6 #define solar2 PORTC.5 #define batere1 PORTC.4 #define batere2 PORTC.3 #define lampu PORTC.7

(5)

// Declare your global variables here

// Voltage Reference: AVCC pin

#define ADC_VREF_TYPE ((0<<REFS1) | (1<<REFS0) | (0<<ADLAR))

// Read the AD conversion result

unsigned int read_adc(unsigned char adc_input) {

ADMUX=adc_input | ADC_VREF_TYPE;

// Delay needed for the stabilization of the ADC input voltage delay_us(10);

// Start the AD conversion ADCSRA|=(1<<ADSC);

// Wait for the AD conversion to complete while ((ADCSRA & (1<<ADIF))==0); ADCSRA|=(1<<ADIF);

return ADCW; }

void main(void) {

// Declare your local variables here unsigned char buf[33];

unsigned int vbat1, vbat2, vref, cnt;

// Input/Output Ports initialization // Port A initialization

(6)

(0<<DDA2) | (0<<DDA1) | (0<<DDA0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0);

// Port B initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | (0<<DDB2) | (0<<DDB1) | (0<<DDB0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0);

// Port C initialization

// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=In Bit1=In Bit0=In

DDRC=(1<<DDC7) | (1<<DDC6) | (1<<DDC5) | (1<<DDC4) | (1<<DDC3) | (0<<DDC2) | (0<<DDC1) | (0<<DDC0);

// State: Bit7=0 Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=T Bit1=T Bit0=T

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);

// Port D initialization

// Function: Bit7=Out Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRD=(1<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | (0<<DDD2) | (0<<DDD1) | (0<<DDD0);

(7)

PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);

// ADC initialization

// ADC Clock frequency: 125.000 kHz // ADC Voltage Reference: AVCC pin // ADC High Speed Mode: Off

// ADC Auto Trigger Source: ADC Stopped ADMUX=ADC_VREF_TYPE;

ADCSRA=(1<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

SFIOR=(1<<ADHSM) | (0<<ADTS2) | (0<<ADTS1) | (0<<ADTS0);

// Alphanumeric LCD initialization // Connections are specified in the

(8)

// Place your code here vref = 0;

for (cnt = 0; cnt < 50; cnt++) {

vref = vref + read_adc(2); }

vref = vref / 50;

vbat1 = 0;

for (cnt = 0; cnt < 50; cnt++) {

vbat1 = vbat1 + read_adc(1); }

vbat1 = vbat1 / 50;

vbat2 = 0;

for (cnt = 0; cnt < 50; cnt++) {

vbat2 = vbat2 + read_adc(0); }

vbat2 = vbat2 / 50;

lcd_gotoxy(0,1);

sprintf(buf,"B1:%03u B2:%03u", vbat1, vbat2); lcd_puts(buf);

(9)

Lampiran 7. Konfugurasi Program Pengoperasian Baterai

/******************************************************* This program was created by the

CodeWizardAVR V3.12 Standard Automatic Program Generator

© Copyright 1998-2014 Pavel Haiduc, HP InfoTech s.r.l. http://www.hpinfotech.com

Chip type : ATmega32 Program type : Application

AVR Core Clock frequency: 16.000000 MHz Memory model : Small

External RAM size : 0 Data Stack size : 128

*******************************************************/

#include <mega32.h> #include <stdio.h> #include <delay.h>

#define lampu PORTC.3 #define batere1 PORTC.6 #define batere2 PORTC.7

#define solar1 PORTC.4 #define solar2 PORTC.5

(10)

// I2C Bus functions #include <i2c.h>

// DS1307 Real Time Clock functions #include <ds1307.h>

// Alphanumeric LCD functions #include <alcd.h>

// Declare your global variables here

bit siang;

// Timer1 overflow interrupt service routine interrupt [TIM1_OVF] void timer1_ovf_isr(void) {

// Reinitialize Timer1 value TCNT1H=0xBDC >> 8; TCNT1L=0xBDC & 0xff; // Place your code here

rtc_get_time(&jam, &menit, &detik);

if ((jam > 6) & (menit > 0) & (detik > 0)) siang = 1; if ((jam > 18) & (menit > 0) & (detik > 0)) siang = 0; }

// Voltage Reference: AVCC pin

(11)

// Read the AD conversion result

unsigned int read_adc(unsigned char adc_input) {

ADMUX=adc_input | ADC_VREF_TYPE;

// Delay needed for the stabilization of the ADC input voltage delay_us(10);

// Start the AD conversion ADCSRA|=(1<<ADSC);

// Wait for the AD conversion to complete while ((ADCSRA & (1<<ADIF))==0); ADCSRA|=(1<<ADIF);

return ADCW; }

void main(void) {

// Declare your local variables here unsigned char buf[33];

unsigned int vbat1, vbat2, vref, cnt;

// Input/Output Ports initialization // Port A initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In

DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | (0<<DDA2) | (0<<DDA1) | (0<<DDA0);

(12)

// Port B initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In

DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | (0<<DDB2) | (0<<DDB1) | (0<<DDB0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0);

// Port C initialization

// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=In Bit1=In Bit0=In

DDRC=(1<<DDC7) | (1<<DDC6) | (1<<DDC5) | (1<<DDC4) | (1<<DDC3) | (0<<DDC2) | (0<<DDC1) | (0<<DDC0);

// State: Bit7=0 Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=T Bit1=T Bit0=T PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);

// Port D initialization

// Function: Bit7=Out Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In

DDRD=(1<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | (0<<DDD2) | (0<<DDD1) | (0<<DDD0);

// State: Bit7=0 Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);

(13)

// Clock source: System Clock // Clock value: 250.000 kHz // Mode: Normal top=0xFFFF // OC1A output: Disconnected // OC1B output: Disconnected // Noise Canceler: Off

// Input Capture on Falling Edge // Timer Period: 0.25 s

// Timer1 Overflow Interrupt: On // Input Capture Interrupt: Off // Compare A Match Interrupt: Off // Compare B Match Interrupt: Off

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (0<<WGM10);

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (1<<CS11) | (1<<CS10);

TCNT1H=0x0B;

// Timer(s)/Counter(s) Interrupt(s) initialization

(14)

// ADC Clock frequency: 125.000 kHz // ADC Voltage Reference: AVCC pin // ADC High Speed Mode: Off

// ADC Auto Trigger Source: ADC Stopped ADMUX=ADC_VREF_TYPE;

ADCSRA=(1<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

SFIOR=(1<<ADHSM) | (0<<ADTS2) | (0<<ADTS1) | (0<<ADTS0);

// Bit-Banged I2C Bus initialization // I2C Port: PORTC

// I2C SDA bit: 1 // I2C SCL bit: 0 // Bit Rate: 100 kHz

// Note: I2C settings are specified in the

// Project|Configure|C Compiler|Libraries|I2C menu. i2c_init();

// DS1307 Real Time Clock initialization // Square wave output on pin SQW/OUT: Off // SQW/OUT pin state: 0

rtc_init(0,0,0);

// Alphanumeric LCD initialization // Connections are specified in the

// Project|Configure|C Compiler|Libraries|Alphanumeric LCD menu: // RS - PORTB Bit 0

(15)

// EN - PORTB Bit 2 // D4 - PORTB Bit 4 // D5 - PORTB Bit 5 // D6 - PORTB Bit 6 // D7 - PORTB Bit 7 // Characters/line: 16 lcd_init(16);

// Global enable interrupts #asm("sei")

lcd_gotoxy(0,0);

lcd_putsf("Solar charger"); delay_ms(1500);

//rtc_set_time(10,5,30);

lcd_clear();

while (1) {

// Place your code here

vref = 0;

for (cnt = 0; cnt < 50; cnt++) {

vref = vref + read_adc(2); }

(16)
(17)
(18)

solar1 = 0; solar2 = 0; }

(19)

Lampiran 8. Konfigurasi Program Menghitung Data Komputer (Assembly) /*******************************************************

This program was created by the CodeWizardAVR V2.60 Standard Automatic Program Generator

© Copyright 1998-2012 Pavel Haiduc, HP InfoTech s.r.l. http://www.hpinfotech.com

Chip type : ATmega32 Program type : Application

AVR Core Clock frequency: 16.000000 MHz Memory model : Small

// Declare your global variables here unsigned char fc_l, fc_h;

// Standard Input/Output functions #include <stdio.h>

// Timer1 overflow interrupt service routine interrupt [TIM1_OVF] void timer1_ovf_isr(void) {

(20)

TCNT1L=0x9E58 & 0xff; // Place your code here led = ! led; }

#define ADC_VREF_TYPE ((1<<REFS1) | (1<<REFS0) | (0<<ADLAR))

// Read the AD conversion result

unsigned int read_adc(unsigned char adc_input) {

ADMUX=adc_input | ADC_VREF_TYPE;

// Delay needed for the stabilization of the ADC input voltage delay_us(10);

// Start the AD conversion ADCSRA|=(1<<ADSC);

// Wait for the AD conversion to complete while ((ADCSRA & (1<<ADIF))==0); ADCSRA|=(1<<ADIF);

return ADCW; }

(21)

}

v_ch_0 = v_ch_0/150; return v_ch_0;

}

unsigned int channel_1 (void) {

(22)

unsigned int channel_3 (void) {

float v_ch_3; unsigned char idx; v_ch_3 = 0;

for (idx = 0; idx < 150; idx ++) {

v_ch_3 = v_ch_3 + read_adc(3); }

v_ch_3 = v_ch_3/150; return v_ch_3;

}

void main(void) {

// Declare your local variables here unsigned int v_0, v_1, v_2, v_3; unsigned int addr_0, lo_0, hi_0; unsigned int addr_1, lo_1, hi_1; unsigned int addr_2, lo_2, hi_2; unsigned int addr_3, lo_3, hi_3;

// Input/Output Ports initialization // Port A initialization

(23)

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0);

// Port B initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | (0<<DDB2) | (0<<DDB1) | (0<<DDB0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0);

// Port C initialization

// Function: Bit7=Out Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRC=(1<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | (0<<DDC2) | (0<<DDC1) | (0<<DDC0);

// State: Bit7=0 Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);

// Port D initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | (0<<DDD2) | (0<<DDD1) | (0<<DDD0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);

(24)

// Clock value: Timer 0 Stopped // Mode: Normal top=0xFF // OC0 output: Disconnected

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | (0<<CS02) | (0<<CS01) | (0<<CS00);

TCNT0=0x00; OCR0=0x00;

// Timer/Counter 1 initialization // Clock source: System Clock // Clock value: 250.000 kHz // Mode: Normal top=0xFFFF // OC1A output: Disconnected // OC1B output: Disconnected // Noise Canceler: Off

// Input Capture on Falling Edge // Timer Period: 0.1 s

// Timer1 Overflow Interrupt: On // Input Capture Interrupt: Off // Compare A Match Interrupt: Off // Compare B Match Interrupt: Off

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (0<<WGM10);

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (1<<CS11) | (1<<CS10);

(25)

ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00;

// Timer/Counter 2 initialization // Clock source: System Clock // Clock value: Timer2 Stopped // Mode: Normal top=0xFF // OC2 output: Disconnected ASSR=0<<AS2;

TCCR2=(0<<WGM20) | (0<<COM21) | (0<<COM20) | (0<<WGM21) | (0<<CS22) | (0<<CS21) | (0<<CS20);

TCNT2=0x00; OCR2=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | (0<<OCIE1B) | (1<<TOIE1) | (0<<OCIE0) | (0<<TOIE0);

// External Interrupt(s) initialization // INT0: Off

// INT1: Off // INT2: Off

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00); MCUCSR=(0<<ISC2);

(26)

// USART Receiver: On // USART Transmitter: On // USART Mode: Asynchronous // USART Baud Rate: 9600

UCSRA=(0<<RXC) | (0<<TXC) | (0<<UDRE) | (0<<FE) | (0<<DOR) | (0<<UPE) | (0<<U2X) | (0<<MPCM);

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (1<<RXEN) | (1<<TXEN) | (0<<UCSZ2) | (0<<RXB8) | (0<<TXB8);

UCSRC=(1<<URSEL) | (0<<UMSEL) | (0<<UPM1) | (0<<UPM0) | (0<<USBS) | (1<<UCSZ1) | (1<<UCSZ0) | (0<<UCPOL);

UBRRH=0x00; UBRRL=0x67;

// Analog Comparator initialization // Analog Comparator: Off

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | (0<<ACIC) | (0<<ACIS1) | (0<<ACIS0);

// ADC initialization

// ADC Clock frequency: 125.000 kHz

// ADC Voltage Reference: Int., cap. on AREF // ADC High Speed Mode: Off

// ADC Auto Trigger Source: ADC Stopped ADMUX=ADC_VREF_TYPE;

ADCSRA=(1<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

(27)

// SPI initialization // SPI disabled

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) | (0<<SPR1) | (0<<SPR0);

// TWI initialization // TWI disabled

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);

(28)

putchar(hi_0);

delay_ms(25);

addr_1 = '1'; // v_1

hi_1 = v_1 >> 8; lo_1 = v_1 & 0x00ff; putchar(addr_1); putchar(lo_1); putchar(hi_1); delay_ms(25);

addr_2 = '2'; // v_2

hi_2 = v_2 >> 8; lo_2 = v_2 & 0x00ff; putchar(addr_2); putchar(lo_2); putchar(hi_2);

addr_3 = '3'; // v_3

(29)

delay_ms(25); }

(30)

Private Sub Command1_Click() MSComm1.PortOpen = False Close intHandle

End End Sub

Private Sub Command3_Click()

Print #intHandle, "There will be a new line after this!" Print #intHandle, "Last line in file!"; '<- Notice semicolon. End Sub

Private Sub Form_Load()

If MSComm1.PortOpen = False Then MSComm1.PortOpen = True

MSComm1.RThreshold = 3 MSComm1.NullDiscard = False

MSComm1.InputMode = comInputModeText End If

End Sub

Private Sub MSComm1_OnComm() Dim vkar, cmd As String

Dim arus, tegangan As Byte

If MSComm1.CommEvent = 2 Then vkar = MSComm1.Input

(31)

If cmd = "0" Then

v1 = Asc(Mid$(vkar, 2, 1)) ' v baterai 1 End If

If cmd = "1" Then

v2 = Asc(Mid$(vkar, 2, 1)) ' v baterai 2 End If

If cmd = "2" Then

v3 = Asc(Mid$(vkar, 2, 1)) ' v solar 1 End If

If cmd = "3" Then

v4 = Asc(Mid$(vkar, 2, 1)) ' v solar 2 End If

End If End Sub

Private Sub Timer1_Timer() Dim intHandle As Integer intHandle = FreeFile

Text5.Text = Time$() 'catat waktu

Open "C:\Users\verdiant\solar.txt" For Append As intHandle

Print #intHandle, Text1.Text, Text2.Text, Text3.Text, Text4.Text, Text5.Text, Chr(13), Chr(10)

Referensi

Dokumen terkait

Selain itu, juga terdapat keadaan cuaca yang tidak konstan cerah, maka digunakan solar cell daya 50 Wp dengan spesifikasi yang dapat dilihat pada Tabel

Solar cell ini dapat menghasilkan energi listrik dalam jumlah yang tidak terbatas langsung diambil dari matahari, tanpa ada bagian yang berputar dan tidak memerlukan bahan

Gambar bagian ketika berisi.. Gambar peralatan

Saat tegangan dari solar cell lebih dari setting point maka aki akan dicharger oleh solar cell dan sumber beban berasal dari sumber PLN dan ketika kurang dari set point maka

GAMBAR

Prinsip kerja LCD yaitu dengan memberika tegangan Vdd sebesar 5Vdc untuk mengaktifkan layar LCD, dan mengatur pin R/W dengan memberikan logika 0 agar LCD dapat

Gambar alat secara keseluruhan saat proses pengujian.. Pengujian alat dan

Pada proses ini solar cell,solar charger chontroller,baterai,watt meter dan inverter.Pada hasil percobaaan penjemuran dengan 4 arah bahwa arah solar cell dengan hasil pengukuran scc dan