• Tidak ada hasil yang ditemukan

teori medan ligan.docx

N/A
N/A
Protected

Academic year: 2021

Membagikan "teori medan ligan.docx"

Copied!
11
0
0

Teks penuh

(1)

2.10 Teori Medan Ligan

Teori yang berkaitan dengan senyawa kompleks adalah Teori Medan Ligan. Teori medan kristal ini hampir selama 20 tahun semenjak ditemukan hanya digunakan dalam bidang fisika zat padat. Teori medan kristal digunakan pada pakar fisika zat padat untuk menjelaskan warna dan sifat magnetik garam-garam logam transisi terhidrat,khususnya yang memiliki atom pusat ion logam transisi dengan orbital d yang belum sepenuhnya terisi elektro seperti CuSO4.5H2O. Baru pada tahun 1950an. Pada awal tahun 1950an barulah pakar kimia koordinasi menerapkan teori medan kristal. Teori medan kristal ini digunakan untuk menjelaskan energi kompleks koordinasi. Hal ini didasarkan pada deskripsi ionik pada ikatan logam ligan. Teori medan kristal yang dikemukakan Bethe dilandasi oleh tiga asumsi yaitu :

1. Ligan-ligan diperlakukan sebagai titik-titik bermuatan.

2. Interaksi anatara ion logam dengan ligan-ligan dianggap sepenunya sebagai interaksi elektrostatik(ionik). Apabila ligan yang ada merupakan ligan netral seperti NH3, dan H2O, maka dalam interaksi tersebut ujung negatif dari dipol dalam molekul-molekul netral diarahkan terhadap ion logam.

3. Tidak terjadi interaksi antara orbital-orbital dari ion logam dengan orbital-orbital dari ligan H2O, maka dalam interaksi tersebut ujung negative dari dipol dalam molekul-molekul netral diarahkan terhadap ion logam.

(Effendy,2007)

Menurut teori medan kristal atau crystal field theory (CFT), ikatan antar atom pusat dan ligand dalam kompleks berupa ikatan ion, hingga gaya-gaya yang ada hanya berupa gaya elektrostatik dari percobaan-percobaan yang diperoleh bahwa ada ligan-ligan yang menghasilkan medan listrik yang kuat dan yang disebut strong ligan field, ada ligan yang sebaliknya dan disebut weak ligan field.

Menurut medan kristal atau crystal field theory (CFT), ikatan antara atom pusat dan ligan dalam kompleks berupa ikatan ion, hingga gaya yang ada hanya berupa gaya elektrostatik. Ion kompleks tersusun dari ion pusat yang dikelilingi oleh ion-ion lawan atau molekul-molekul yang mempunyai momen dipol permanen.

(2)

Medan listrik dari ion pusat akan mempengaruhi ligand-ligand sekelilingnya, sedang medan gabungan dari ligand-ligand akan mempengaruhi elektron-elektron dari ion pusat. Pengaruh ligan ini terutama mengenai elektron d dari ion pusat dan ion kompleks dari logam- logam transisi. Pengaruh ligand tergantung dari jenisnya, terutama pada kekuatan medan listrik dan kedudukan geometri ligand-ligand dalam kompleks.

Didalam ion bebas kelima orbitald bersifatdegen erate artinya mempunyai energi yang sama dan elektron dalam orbital ini selalu memenuhi hukum multiplicity yang maksimal. Teori medan kristal terutama membicarakan pengaruh ligand yang tersusun secara berbeda-beda disekitar ion pusat terhadap energi dari orbitald. Pembagian orbital d menjadi dua golongan yaitu orbital eg ataudj dan orbital t2g atau de mempunyai arti penting dalam hal pengaruh ligan terhadap orbital-orbital tersebut.

Dengan adanya ligand disekitar ion pusat orbital d tidak lagi degenerate, orbital d ini terbagi menjadi beberapa orbital dengan energi berbeda. Dikatakan juga orbital d ini mengalami splitting.

Bila kelima orbital d sama dengan dan medan ligand mempengaruhi kelimanya dengan cara yang sama maka kelima orbital d ini akan tetap degenerate pada energy level yang lebih tinggi. Kenyataannya kelima orbital d tidak sama, yaitu ada orbital eg dan t2g. Disamping itu medan ligand tergantung dari letaknya disekitar ion pusat, artinya apakah strukturnya oktahedral, tetrahedral, atau planar segi empat.

Uraian atau splitting dari orbital d oleh ligan, tegantung dari strukturnya dan berbeda untuk struktur oktahedral dan tetrahedral.

(Effendy,2007) 1. Splitting Pada Kompleks Oktahedral

Medan listrik dari ion pusat akan mempengaruhi ligan-ligan sekelilingnya, sedang medan gabungan dari ligan-ligan akan mempengaruhi ion pusat. Pengaruh ligan ini terutama mengenai elektron d dari ion pusat seperti kita ketahui ion kompleks dari logam-logam transisi. Pengaruh ligand tergantung dari jenisnya, trutama pada kekuatan medan listrik dan kedudukan geometri ligand-ligand dalam kompleks.

Di dalam ion bebas kelima orbital d bersifat degenerate artinya mempunyai energi yang sama dan elektron dalam orbital ini selalu memenuhi hukum multiplicity yang maksimal.

(3)

Pembagian orbital d menjadi 2 golongan yaitu orbital eg dan orbital t2g atau de mempunyai arti penting dalam hal pengaruh ligand terhadap orbital-orbital tersebut.

Dengan adanya ligand disekitar ion pusat orbital d tidak lagi degenerate, orbital d ini terbagi menjadi beberapa orbital dengan energi berbeda. Dikatakan juga orbital d ini mengalami spliting.

Pada kompleks oktahedral atom pusat berikatan dengan 6 atom donor. Kompleks oktahedral memiliki tingkat simetri tertinggi apabila ligan-ligan yang terikat pada atom pusat merupakan ligan monodentat monoatom yang sama, seperti: F-, Cl-, Br-, dan I-. Pada pembentukan kompleks octahedral dianggap ada 6 ligan monodentat yang mendekati atom pusat sampai pada jarak tertentu saat ikatan-ikatan antara atom pusat dan ligan-ligan terbentuk.

Pada gambar di atas nampak bahwa orbital dx2-y2 dan dz2 tedapat pada sumbu-sumbu x, y dan z sedangkan orbital dxy, dxz dan dyz terdapat antara sumbu-sumbu. Karena ligan-ligan terdapat pada sumbu x, y dan z maka pengaruh ligan pada orbital eg lebih besar daripada untuk orbital t2g. Setelah terjadi uraian atau spliting orbiltal eg mempunyai energi lebih tinggi daripada orbital t2g. Pada pengisian elektron, orbital t2g akan mengisi lebih dahulu daripada orbital eg. Perbedaan antara orbital eg dan obital t2g biasanya dinyatakan dengan o atau 10 Dq. Karena pada splitting tidak terjadi kehilangan energi, maka energi orbital eg menjadi 0,6 o lebih tinggi sedangkan obital t2g menjadi 0,4 o lebih rendah dari pada enegi kompleks hipotesis. Besarnya

o untuk bermacam-macam kompleks berkisar antara 30-60kcal/mol. Ao artinya  oktahedral, untuk membedakan dengan t (tetrahedral) yang akan dibahas selanjutnya.

Elektron akan mengisi orbital d yang energinya rendah, jadi pada orbital t2g. Teori elektrostatik sederhana tidak mengenal adanya orbital d yang mempunyai energi berbeda di dalam kompleks. Karena itu, teori ini menyatakan bahwa elektron d terhadap orbital d merupakan hipotesis yang degenerate. Kenyataannya elektron d tadi menempati orbital t2g yang

(4)

mempunyai energi 0,4 o lebih rendah dari orbital hipotesis yang degenerate. Jadi, kompleks akan 0,4 o lebih stabil dari pada senyawa elektrostatik yang sederhana. Dengan kata lain elektron d dan juga kompleks sebagai keseluruhan, mempunyai energi lebih rendah sebagai hasil penempatan elektron pada orbital t2g, suatu orbital yang relatif jauh dari ligand. Energi sebesar 0,4o disebut crystal field stabilization energi (CFSE) dari kompleks. Pengisian elekton pada orbital d, dipengaruhi oleh kekuatan medan dari ligand. Untuk ligand yang kekuatan medannya besar atau strong ligand field, splitting yang terjadi menghasilkan perbedaan energi yang besar, akibatnya elektron akan mengisi penuh energi yang rendah sebelum mengisi orbital yang energinya tinggi (Effendy,2004).

2. Splitting Pada Kompleks Tetrahedral

Dari gambar di atas terlihat bahwa obital t2g lebih dekat kepada ligan-ligan daripada orbital eg. Garis yang menghubungkan letak ligan dan titik pusat kubus dengan arah orbital eg membentuk sudut sebesar 54044˚ sedangkan garis tersebut dengan arah orbital t2g membentuk sudut 36016˚. Medan listrik yang terjadi pada pembentukan kompleks tetrahedral menyebabkan pemisahan orbital d pada ion pusat. Karena hal ini maka dalam medan tetrahedral, orbital t2g mendapat pengaruh yang lebih besar dari ligan, akibatnya energy level orbital t2g naik dan orbital eg turun. Perbedaan energi ini biasanya disebut t, artinya  yang harganya lebih kecil dari pada o. Hal ini disebabkan karena, pada medan tetrahedral hanya ada 4 ligan. Sedanbg pada medan oktahedral ada 6 ligan, ditambah lagi tidaka adanya ligan yang langsung searah dengan orbital d pada medan tetrahedral. Bila jarak ligan dai pusat sama dan bila ikatan dianggap elektrostatik murni, maka diperoleh bahwa :  tetrahedral ~ 4/9  octahedral (Efendy,2004).

Harga 10 dq dipengaruhi oleh beberapa faktor, diantaranya : 1. Muatan ion logam

(5)

Makin banyak muatan ion,makin besar pula harga 10 Dq nya,kar ena makinbanyak muatan ion logam maka makin besar pula untuk menarik ligan lebih dekat.Akibatnya pengaruh ligan makin kuat sehingga pembelahan orbital makin besar. 2. Jenis Ion pusat

Logam logam yang terletak pada satu periode, harga 10 dqnya tidak terlalu berbeda. Untuk satu golongan, Semakin kebawah, harganya akan semakin besar.

3. Ligan

Semakin kuat ligannya, maka 10 dq juga akan semakin besar. Jika 10 dq kecil, makaligannya adalah ligan lemah. Ligan yang kuat dapat menggantikan ligan yang lebihlemah.Harga 10 dq dapat memberikan beberapa informasi mengenai warna kompleks, serta sifat kemagnetan kompleks. Untuk mengeksitasi elektron dari tingkat dasar ke tingkat yang lebih atas, diperlukan energi. Energi yang diserap memiliki panjang gelombang tertentu. Sedangkan, warna kompleks yang tampak adalah warnakomplementer yang panjang gelombangnya diserap untuk eksitasi electron.

4. Perhitungan CFSE

Crystal field st Hans Bethe abilizationenergy berubah – ubah sesuai dengan struktur dan jenis ion kompleks. Perbedaan energi orbital t2g dan eg Hans Bethe untuk kompleks tetrahedral -4/9 kali untuk kompleks octahedral orbital t2g mempunyai energi 0,27 ∆ lebih rendah dari pada kompleks hipotesis, bila ∆ adalah ∆ , untuk kompleks tetrahedral : CFSE = (0,27y – 0,18x) ∆. y merupakan jumlah elektron di orbital e dan x merupakan jumlah elektron di orbital t2g.

Pada gambar splitting oktahedral terlihat bahwa orbital t2g mempunyai energi 0,4 Io dan energi pada orbital eg adalah 0,6 Io sehingga untuk menghitung CFSE = (0,4 x – 0,6 y) Io. Dimana x = jumlah elektron di orbital t2g dan y = jumlah elektron di orbital eg. Contoh jumlah elektron d = 7, t2g = 5 dan eg = 2.

CFSE = (0,4 x – 0,6 y) Io = (0,4 . 5 – 0,6 . 2 ) Io = (2 – 1,2 ) Io

= 0,8 Io

Jadi dengan kata lain CFSE dapat dihitung dengan rumus umum, yaitu : CFSE =energi pada t2g.x –(energi dari eg .y)

(6)

Berikut ini dicantumkan tabel nilai umum CFSE pada kompleks oktahedral, tetrahedral dan planar segiempat (Sokardjo,1992).

2.11 APLIKASI SENYAWA KOMPLEKS

Aplikasi senyawa kompleks sangat beragam dan banyak sekali karena penelitian tentang senyawa kompleks terus berkembang dan perkembangannya sangat pesat sekali sejalan dengan perkembangan IPTEK.

Kobalt merupakan salah satu logam unsur transisi dengan konfigurasi elektron 3d7 yang dapat membentuk kompleks. Kobalt yang relatif stabil berada sebagai Co(II) ataupun Co(III). Namun dalam senyawa sederhana Co, Co(II) lebih stabil dari Co(III). Ion – ion Co2+ dan ion terhidrasi [Co(H2O)6]2+ stabil di air. Kompleks kobalt dimungkinkan dapat terbentuk dengan berbagai macam ligan, diantaranya sulfadiazin dan sulfamerazin. Sulfadiazin dan sulfamerazin merupakan ligan yang sering digunakan untuk obat antibakteri. Keduanya merupakan turunan dari sulfonamid yang penggunaannya secara luas untuk pengobatan infeksi yang disebabkan oleh bakteri Gram-positif dan Gram negatif tertentu, beberapa jamur, dan protozoa (Siswandono dan Soekardjo : 1995 ).

Salah satu keistimewaan dari reaksi kompleks adalah reaksi pergantian ligan melalui efek trans. Reaksi pergantian ligan ini terjadi dalam kompleks oktahedral dan segi empat. Ligan –

(7)

ligan yang menyebabkan gugus yang letaknya trans terhadapnya bersifat labil, dikatakan mempunyai efek trans yang kuat.

Untuk mengetahui kemampuan senyawa kompleks dengan ligan- ligan feroin berinteraksi dengan gas NO2, maka perlu dilakukan penelitian meliputi sintesis dan karakterisasi senyawa kompleks Co(II) menggunakan ligan bipiridin dan sianida serta mempelajari interaksinya dengan gas NO2. Hasil penelitian ini diharapkan dapat meningkatkan pemahaman reaksi subtitusi kompleks melalui efek trans dan hasilnya digunakan sebagai acuan dalam pemanfaatan senyawa kompleks sebagai absorben gas NOx, sehingga dapat mengurangi dampak negatif pencemaran lingkungan seperti polusi udara.

Berbagai senyawa kompleks yang mempunyai struktur planar N4, telah terbukti mempunyai kemampuan untuk mereduksi oksigen dengan 4-elektron transfer proses. Proses logam yang berkarat karena oksidasi pada permukaan logam adalah proses yang sangat familier. Proses respirasi biologis pada makhluk hidup dimana terjadi perubahan oksigen menjadi air pada hemoglobin adalah proses yang penting. Proses reduksi oksigen yang langsung menjadi air tanpa hasil samping adalah proses sempurna 4-elektron transfer (O2 + H+ + 4e- → H2O) pada hemoglobin. (Eniya Listiani Dewi)

Proses reduksi oksigen melalui senyawa kompleks Cytochrome-c Oxidase (Cyt-c) merupakan contoh proses seperti pada elektroda positif fuel cell (katoda). Pada proses biologis, transfer 4-elektron berjalan tanpa hasil sampingan peroksida (H2O2). Sedangkan pada katoda fuel cell, dimana saat ini state-of-the-art katalis adalah platina (Pt) yang mereduksi oksigen dengan 2-elektron transfer (O2 + 2H+ + 2e- → H2O2) menghasilkan peroksida dan selanjutnya tereduksi lagi menjadi air (H2O2 + 2H+ + 2e- → 2H2O). Sehingga terdapat 2 tahapan reaksi yang berlangsung pada katoda. Untuk itu dengan senyawa kompleks yang menyerupai struktur Cyt-c, dimana model planar katalis lebih memungkinkan untuk mereduksi oksigen dengan mudah, maka pada makalah akan dikenalkan katalis yang mampu mereduksi oksigen dengan bentuk planar berlogam center Fe, Co, dan Cu dengan ligan yang berbeda. (Eniya Listiani Dewi)

Dengan adanya aplikasi senyawa kompleks ini, diharapkan problem drop potensial yang disebabkan oleh peroksida pada katoda dimana menjadi penyebab utama turunnya potensial fuel

(8)

cell, menjadi berkurang atau tidak ada, karena reaksi yang terjadi adalah 4-elektron transfer proses. (Eniya Listiani Dewi)

Senyawa kompleks renium-186 fosfonat, 186Re-HEDP (HEDP=hydroxyethyli dienediphosphonate) dan 186Re-EDTMP (EDTMP =ethylenediaminetetra methylphosphonate), dewasa ini telah luas digunakan sebagai penghilang rasa nyeri tulang yang disebabkan oleh metastasis kanker prostat, payudara, paru-paru dan ginjal ke tulang.

Penggunaan radiofarmaka tersebut merupakan pengganti penggunaan analgesik, hormon, kemoterapi, dan narkotik yang diketahui memberikanefek samping yang tidak diinginkan. Metode preparasi dan uji kualitas senyawa kompleks 186Re-HEDP dan 186Re-EDTMP telah dikembangkan untuk tujuan produksi komersial.Penentuan kemurnian radiokimia dengan kromatografi kertas dalam berbagai kepolaran pelarut menunjukkan kemurnian radiokimia diatas 90% sampai hari ketiga setelah proses penandaan dilakukan. ( Adang H.G , dkk)

Disamping itu hasil pengujian menunjukkan pula bahwa larutan senyawa kompleks bebas pirogen dan steril. Hasil uji pada binatang percobaan tikus putih menunjukkan kandungan senyawa kompleks di dalam darah mencapai puncaknya pada 5 menit setelah penyuntikan. Sedangkan ekskresi radiofarmaka kedua kompleks di dalam urin menunjukkan adanya keradioaktifan sekitar 41% dan 38,5 % dalam bentuk perenat, 186ReO4 -, setelah 20 jam penyuntikan. Hasil biodistribusi dan pencitraan (imaging) menggunakan kamera gamma terhadap mencit dan tukus putih normal menunjukkan bahwa senyawa kompleks 186Re-HEDP dan 186Re-EDTMP terakumulasi cukup nyata di tulang.( Adang H.G , dkk)

Perkembangan ilmu pengetahuan dan teknologi IPTEK dalam bidang kedokteran nuklir sangat didukung oleh perkembangan iptek di bidang radiofarmaka. Dengan perkembangan iptek radio farmaka telah berhasil dilakukan diagnosa dini dan terapi terhadap penyakit kangker menggunakan radio nuklida yang sesuai. Penyakit kangker telah menghantui masyarakat dunia karena banyak menyebabkan kematian. Kedokteran nukilr telah menerapkan deteksi ini, berbagai macam kanker dan cara terapi yang efektif dengan memanfaatkan radiasi dari radio isotop yang diberikan kadalam tubuh atau sel kanker tang bersangkutan. .(Sulaiman, dkk ; 2007)

(9)

Radio isatop yang dapat digunakan untuk terapi kanker diantaranya adalah Ytrium-90 (90Y) yang merupakan radio isotop pemancar sinar  dengan energi 2,28 Mev dan waktu paro (T1/2) 64,1 jam. Itrium-90 yang digunakan untuk terapi dapat diperoleh dari hasil peluruhan stronsium-90 (90Sr) dapat dipisahkan dari induknya 90Sr (campuran 90Sr - 90Y ) yang merupakan radio nuklir dan hasil belah 235U. Metode pemisahan yang telah dikembangkan saat ini adalah metode ekstraksi pelarut dan kromatografi kolm dengan menggunakan penukar ion.(Sulaiman, dkk ; 2007)

Pemupukan dalam kegiatan budidaya tebu memegang peranan yang teramat penting, selain dapat meningkatkan produksi biomassanya, pupuk juga dapat meningkatkan keragaman dan kualitas hasil yang diperoleh. Masalah utama penggunaan pupuk N pada lahan pertanian adalah efisiensinya yang rendah karena kelarutannya yang tinggi dan kemungkinan kehilangannya melalui penguapan, pelindian dan immobilisasi. Untuk itu telah dilakukan penelitian peningkatan efisiensi pemupukan N dengan rekayasa kelat urea-humat pada jenis tanah yang mempunyai tekstur kasar (Entisol) dengan menggunakan tanaman tebu varietas PS 851 sebagai tanaman indikator. (Sri Nuryani H.U, dkk ; 2007 )

Hasil penelitian menunjukkan bahwa pelapisan urea dengan asam humat yang berasal dari Gambut Kalimantan sebesar 1% menghasilkan pupuk urea yang lebih tidak mudah larut daripada yang dilapisi asam humat dari Rawa Pening. Dengan pelepasan N yang lebih lambat diharapkan keberadaan N di dalam tanah lebih awet dan pemupukan menjadi lebih efisien. Pupuk urea-humat telah diaplikasikan ke tanah Psamment (Entisol) yang kandungan pasirnya tinggi (tekstur kasar) untuk mewakili jenis-jenis tanah yang biasa ditanami tebu dengan tekstur yang paling kasar. Respons tanaman tebu varietas PS 851 menunjukkan kinerja pertumbuhan yang lebih baik di tanah Vertisol. (Sri Nuryani H.U, dkk ; 2007 )

Rekayasa kelat urea-humat secara fisik dan kimia terbukti meningkatkan efisiensi pemupukan N pada tanaman tebu. Penelitian ini memperlihatkan bahwa memang efisiensi pemupukan N pada tanah Entisol dan Vertisol rendah, bahkan di Entisol lebih rendah (hanya sekitar 25 %). Aplikasi pupuk urea-humat pada tanah Vertisol dan Entisol terbukti meningkatkan efisiensi pemupukan N hingga 50 %. Di tanah Entisol bahkan efisiensi pemupukan yang lebih tinggi dicapai pada dosis pupuk yang lebih rendah. (Sri Nuryani H.U, dkk ; 2007 )

(10)

Rhodamin B Nama Kimia : N-[9-(2-Carboxyphenyl)-6-(diethylamino)-3H-xanthen-3-ethyethanaminium chlorida. Sinonim: tetra ethylrhodamine; D & C Red No. 19; Rhodamine B Chloride; C. l. Basic Violet 10; C. l. 45170. dan metanil yellow Nama kimia : 3-[[4-(phenylamino) phenyl] azo]; C.I. Acid yellow 36; merupakan zat warna sintetik yang umum digunakan sebagai pewarna tekstil (Djalil, dkk, 2005).

Walaupun memiliki toksisitas yang rendah, namun pengkonsumsian rhodamin B dalam jumlah yang besar maupun berulang-ulang menyebabkan sifat kumulatif yaitu iritasi saluran pernafasan, iritasi kulit, iritasi pada mata, iritasi pada saluran pencernaan, keracunan, dan gangguan hati/liver (Trestiati, 2003). Rhodamin B memiliki LD50 sebesar 89,5 mg/kg jika diinjeksikan pada tikus secara intravena (Merck Index, 2006). Sedangkan untuk metanil yellow dapat menyebabkan iritasi pada mata jika dikonsumsi dalam jangka panjang (Anonima, 2007). Kuning metanil juga dapat bertindak sebagai tumor promoting agent dan menyebabkan kerusakan hati (Djalil, dkk, 2005). Metanil yellow memiliki acute oral toxicity (LD50) sebesar 5000mg/kg pada tikus percobaan (Anonima, 2007).

Hasil penelitian yang dilakukan oleh Eddy Setyo Mudjajanto dari Institut Pertanian Bogor (IPB), menemukan banyak penggunaan zat pewarna rhodamin B dan metanil yellow pada produk makanan industri rumah tangga. Rhodamin B dan metanil yellow sering dipakai untuk mewarnai kerupuk, makanan ringan, terasi, kembang gula, sirup, biskuit, sosis, makaroni goreng, minuman ringan, cendol,manisan, gipang, dan ikan asap. Makanan yang diberi zat pewarna ini biasanya berwarna lebih terang (Mudjajanto, 2007)

3.1 Kesimpulan

Dari ulasan materi tersebut dapat disimpulkan bahwa :

1. Senyawa kompleks merupakan senyawa yang tersusun dari suatu ion logam pusat dengan satu atau lebih ligan yang menyumbangkan pasangan elektron bebasnya kepada ion logam pusat.

(11)

2. Tatanama senyawa kompleks terbagai menjadi dua jenis yakni tatanama sistematik dan tatanama umum.

3. Tatanama Senyawa Kompleks Netral memiliki aturan tersendiri.

4. Senyawa kompleks ionik kation sebagai ion kompleks memiliki aturan tertentu dalam penamaannya.

5. Logam alkali, alkali tanah dan logam utama lainnya dapat digunakan sebagai atom pusat untuk mensintesis senyawa komplek atau senyawa koordinasi.

6. Ligan adalah suatu ion atau molekul yang memiliki sepasang elektron atau lebih yang dapat disumbangkan.

7. Berdasarkan jumlah atom donor yang dimilikinya, ligan dapat dikelompokkan menjadi ligan monodentat, bidentat dan polidentat.

8. Tatanama ligan ada dua yaitu tatanama ligan netral dan tatanaman ligan bermuatan negatif.

9. Bilangan koordinasi adalah jumlah ligan yang terikat pada kation logam transisi.

10. Aplikasi senyawa kompleks sangat beragam dan banyak sekali karena penelitian tentang senyawa kompleks terus berkembang dan perkembangannya sangat pesat sekali sejalan dengan perkembangan IPTEK.

Referensi

Dokumen terkait

Metode penelitian yang digunakan dalam penelitian ini adalah metode penelitian dan pengembangan (research and development). Desain penelitian ini adalah non equivalent control

[r]

Prosedur Pelaksanaan Penelitian Kelompok kontrol, setelah inokulasi sel darah merah yang mengandung parasit Plasmodium berghei sebesar 1 x 10 5 dalam 0,2 ml pada tiap

 Rencana pengembangan sekolah kami tidak didukung dengan informasi yang didapat dari hasil evaluasi diri sekolah.  Sejumlah staf di sekolah

oleh daerah dan masyarakat setempat; (b) Pengembangan SDM dan faktor pendukung pelaksanaan pengkajian agar diperoleh mutu hasil pengkajian yang lebih tinggi sebagai prasyarat utama

This paper reports a modeling of molecular interaction between chemical composed lemongrass oil with Homo sapiens olfactory receptor (OR1G1) and compared to the various

PrestaShop adalah salah satu CMS e-commerce yang bisa digunakan untuk membuat.. website toko online, PrestaShop memili fitur-fitur yang cukup lengkap, mudah

Variasi diameter kerikil pada reaktor disusun secara bertahap dengan diameter kerikil paling bawah 3 mm, 5mm, dan 9mm yang bertujuan untuk menghasilkan