• Tidak ada hasil yang ditemukan

vol13_pp162-174. 208KB Jun 04 2011 12:05:53 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "vol13_pp162-174. 208KB Jun 04 2011 12:05:53 AM"

Copied!
13
0
0

Teks penuh

(1)

SUBDIRECT SUMSOFNONSINGULAR

M

-MATRICESAND OF THEIR INVERSES

RAFAEL BRU

, FRANCISCO PEDROCHE

, AND DANIEL B.SZYLD

Abstrat. Thequestionofwhenthe subdiretsumoftwo nonsingular

M

-matriesisa non-singular

M

-matrixisstudied. Suientonditionsaregiven. Theaseofinversesof

M

-matriesis alsostudied. Inpartiular,itisshownthatthesubdiretsumofoverlappingprinipalsubmatries ofa nonsingular

M

-matrixisanonsingular

M

-matrix. Someexamplesillustratingthe onditions presentedarealsogiven.

AMSsubjet lassiations.15A48.

Keywords.Subdiretsum,

M

-matries,Inverseof

M

-matrix,Overlappingbloks.

1. Introdution. Subdiretsumofmatriesaregeneralizationsoftheusualsum of matries (a

k

-subdiret sum is formally dened below in Setion 2). Theywere introduedbyFallatandJohnsonin[3℄,wheremanyoftheirpropertieswereanalyzed. Forexample,theyshowedthatthesubdiret sumofpositivedenitematries,orof symmetri

M

-matries, arepositivedenite orsymmetri

M

-matries,respetively. Theyalsoshowedthatthisisnottheasefor

M

-matries: thesumoftwo

M

-matries maynotbean

M

-matrix. Onegoalofthepresentpaperistogivesuientonditions sothatthesubdiretsumofnonsingular

M

-matriesisanonsingular

M

-matrix.We alsotreattheaseofthesubdiretsumofinversesof

M

-matries.

Subdiret sums of two overlapping prinipal submatries of a nonsingular

M

-matrixappearnaturallywhenanalyzingadditiveShwarzmethodsforMarkovhains or other matries [2℄, [4℄. In this paper we show that the subdiret sum of two overlapping prinipal submatries of a nonsingular

M

-matrix is a nonsingular

M

-matrix.

Thepaperisstruturedasfollows. InSetion2wefousonthenonsingularityof thesubdiret sum ofanypairof nonsingularmatries, givinganexpliit expression for the inverse. In Setion 2.1 we study the

k

-subdiret sum of two nonsingular

M

-matries and in partiular, the ase of subdiret sums of overlapping bloks of

nonsingular

M

-matries. InSetion2.3weextendsomeresultstothesubdiretsum ofmorethantwononsingular

M

-matries. InSetion3weanalyzethesubdiretsum of twoinverses. Finally, in Setion 4we mentionsomeopen questions on subdiret sums of

P

-matries. Throughout the paper we give exampleswhih help illustrate thetheoretialresults.

Reeivedbytheeditors 16February 2005. Aepted forpubliation22June 2005. Handling Editor: MihaelNeumann.

InstitutdeMatemàtiaMultidisiplinar,UniversitatPolitèniadeValènia.CamídeVeras/n. 46022Valènia. Spain(rbrumat.upv.es, pedrohemat.upv.es). SupportedbySpanishDGIand FEDERgrantMTM2004-02998 andbythe Oina deCiéiaiTenologiadelaPresidéia deLa GeneralitatValenianaunderprojetGRUPOS03/062.

(2)

2. Subdiret sums of nonsingular matries. Let

A

and

B

be two square matriesoforder

n

1

and

n

2

,respetively,andlet

k

beanintegersuhthat

1

k

min(

n

1

, n

2)

. Let

A

and

B

bepartitionedinto

2

×

2

bloksasfollows:

A

=

A

11

A

12

A

21

A

22

,

B

=

B

11

B

12

B

21

B

22

,

(2.1)

where

A

22

and

B

11

aresquarematriesoforder

k

. Following[3℄,weallthefollowing squarematrixof order

n

=

n

1

+

n

2

k

,

C

=

A

11

A

12

0

A

21

A

22

+

B

11

B

12

0

B

21

B

22

(2.2)

the

k

-subdiretsumof

A

and

B

anddenoteitby

C

=

A

k

B

.

Weareinterestedin theasewhen

A

and

B

arenonsingularmatries. We parti-tiontheinversesof

A

and

B

onformablyto(2.1)anddenoteitsbloksasfollows:

A

1

=

ˆ

A

11

A

ˆ

12

ˆ

A

21

A

ˆ

22

,

B

1

=

ˆ

B

11

B

ˆ

12

ˆ

B

21

B

ˆ

22

,

(2.3)

where,asbefore,

A

ˆ

22

and

B

ˆ

11

aresquareoforder

k

.

In the following result we show that nonsingularity of matrix

A

ˆ

22

+ ˆ

B

11

is a neessaryandsuientonditionforthe

k

-subdiret sum

C

tobenonsingular. The proof is basedon theuse of therelation

n

=

n

1

+

n

2

k

to properly partition the indiatedmatries.

Theorem 2.1. Let

A

and

B

be nonsingular matries of order

n

1

and

n

2

, re-spetively, and let

k

be an integer suhthat

1

k

min(

n

1

, n

2)

. Let

A

and

B

be partitionedasin(2.1)andtheirinverses bepartitionedasin(2.3). Let

C

=

A

k

B

. Then

C

isnonsingularif andonlyif

H

ˆ

= ˆ

A

22

+ ˆ

B

11

isnonsingular.

Proof. Let

I

m

betheidentitymatrixof order

m

. Thetheorem followsfrom the followingrelation:

A

1

O

O

I

n

n

1

C

I

n

n

2

O

O

B

1

=

I

n

n

2

A

ˆ

12

O

O

H

ˆ

B

ˆ

12

O

O

I

n

n

1

.

(2.4)

2.1. Nonsingular

M

-matries. Given

A

=

{

a

ij

} ∈

R

m

×

n

, wewrite

A > O

(

A

O

), to indiate

a

ij

>

0

(

a

ij

0

), for

i

= 1

, . . . , m

,

j

= 1

, . . . , n

, and suh matriesarealledpositive(nonnegative). Similarly,

A

B

when

A

B

O

. Square matrieswhihhavenonpositiveo-diagonalentriesarealled

Z

-matries. Wealla

Z

-matrix

M

anonsingular

M

-matrixif

M

1

O

. Wereallsomepropertiesofthese matries;see[1℄,[8℄:

(i)Thediagonalofanonsingular

M

-matrixispositive.
(3)

(iii) Amatrix

M

is anonsingular

M

-matrixifand onlyif eah prinipal submatrix of

M

isanonsingular

M

-matrix.

(iv) A

Z

-matrix

M

is anonsingular

M

-matrixif and only ifthere exists apositive vetor

x >

0

suh that

M x >

0

.

Werstonsiderthe

k

-subdiretsumofnonsingular

Z

-matries. >From(2.4)we anexpliitlywrite

C

1

=

I

n

n

2

O

O

B

1

I

n

n

2

A

ˆ

12

H

ˆ

1

A

ˆ

12

H

ˆ

1

B

ˆ

12

O

H

ˆ

1

H

ˆ

1

B

ˆ

12

O

O

I

n

n

1

A

1

O

O

I

n

n

1

fromwhihweobtain

C

1

=

ˆ

A

11

A

ˆ

12

H

ˆ

1

A

ˆ

21

A

ˆ

12

A

ˆ

12

H

ˆ

1

A

ˆ

22

A

ˆ

12

H

ˆ

1

B

ˆ

12

ˆ

B

11

H

ˆ

1

A

ˆ

21

B

ˆ

11

H

ˆ

1

A

ˆ

22

B

ˆ

11

H

ˆ

1

B

ˆ

12

+ ˆ

B

12

ˆ

B

21

H

ˆ

1

A

ˆ

21

B

ˆ

21

H

ˆ

1

A

ˆ

22

B

ˆ

21

H

ˆ

1

B

ˆ

12

+ ˆ

B

22

(2.5)

andthereforeweanstatethefollowingimmediateresult.

Theorem 2.2. Let

A

and

B

be nonsingular

Z

-matries of order

n

1

and

n

2

, respetively,and let

k

be an integersuh that

1

k

min(

n

1

, n

2)

. Let

A

and

B

be partitionedasin(2.1)andtheir inversesbepartitionedasin(2.3). Let

C

=

A

k

B

. Let

H

ˆ

= ˆ

A

22

+ ˆ

B

11

benonsingular. Then

C

isanonsingular

M

-matrixifandonly if eah ofthe nine bloksof

C

1

in(2.5)isnonnegative.

We onsider nowthe ase where

A

and

B

are nonsingular

M

-matries. It was shown in [3℄ that even if

H

=

A

22

+

B

11

is a nonsingular

M

-matrix, this doesnot guaranteethat

C

=

A

k

B

isanonsingular

M

-matrix. Wepointoutthatthismatrix

H

is notthematrix

H

ˆ

obtainedfrom

A

1

and

B

1

andused in Theorem 2.1. The fatthat

H

isanonsingular

M

-matrixisaneessarybutnotasuientonditionfor

C

tobeanonsingular

M

-matrix. Suientonditionsarepresentedinthefollowing

result.

Theorem 2.3. Let

A

and

B

benonsingular

M

-matriespartitionedasin (2.1). Let

x

1

>

0

R

(

n

1

k

)

×

1

,

y

1

>

0

R

k

×

1

,

x

2

>

0

R

k

×

1

and

y

2

>

0

R

(

n

2

k

)

×

1

be suhthat

A

x

1

y

1

>

0

,

B

x

2

y

2

>

0

.

(2.6)

Let

H

=

A

22

+

B

11

beanonsingular

M

-matrixandlet

y

=

H

1

(

A

22

y

1

+

B

11

x

2)

.

(2.7)

Then if

y

y

1

and

y

x

2

the

k

-subdiret sum

C

=

A

k

B

is a nonsingular

M

-matrix.

Proof. Wewillshowthatthereexists

u >

0

suhthat

Cu >

0

. Werstnotethat from(2.6)weget

A

11

x

1

+

A

12

y

1

>

0

A

21

x

1

+

A

22

y

1

>

0

,

B

11

x

2

+

B

12

y

2

>

0

B

21

x

2

+

B

22

y

2

>

0

(4)

Taking

u

=

x

1

y

y

2

andpartitioning

C

asin(2.2)weobtain

Cu

=

A

11

x

1

+

A

12

y

A

21

x

1

+ (

A

22

+

B

11)

y

+

B

12

y

2

B

21

y

+

B

22

y

2

.

(2.9)

Sine

A

21

O

and

B

12

O

, from (2.8) it followsthat

A

22

y

1

>

0

and

B

11

x

2

>

0

. Sine

H

1

O

, from(2.7)wehavethat

y

ispositive,and onsequently,sois

u

,i.e.,

u >

0

. We will show that

Cu >

0

oneblokof rowsin (2.9) at atime. If

y

y

1

,

as

A

12

0

, we have that

A

12

y

A

12

y

1

and again using (2.8) weobtain that the rstblokofrowsof

Cu

ispositive. Inasimilarway, theondition

y

x

2

together with the last equation of (2.8) allows to onlude that the third blok of rows of

Cu

is positive. Finally, substituting

y

given by(2.7) in the seond row of

Cu

and

onsidering(2.8)weonludethat theseondblokofrowsof

Cu

isalsopositive. Note that

A

and

B

arenonsingular

M

-matries and thereforethe positive ve-tors

(

x

1

, y

1)

and

(

x

2

, y

2)

of(2.6)alwaysexist. Thistheorem givessuientbut not neessaryonditionsfor

C

=

A

k

B

to beanonsingular

M

-matrix,asillustratedin Example2.5furtherbelow.

Example2.4. Thematries

A

=

3

2

1

1

/

2

2

3

1

1

4

and

B

=

1

2

1

/

3

3

9

0

2

1

/

2

6

,

andthevetors

x

1

y

1

=

1

.

8

2

1

and

x

2

y

2

=

2

.

5

1

1

satisfy the inequalities (2.6), and omputing the vetor

y

from (2.7) we get

y

(1

.

95

,

0

.

87)

T

,whih satisfy

y

y

1

and

y

x

2

. Thereforethe

2

-subdiretsum

C

=

3

2

1

0

1

/

2

3

5

1

/

3

1

4

13

0

0

2

1

/

2

6

isanonsingular

M

-matrixinaordanewith Theorem2.3. Example2.5. Thematries

A

=

5

1

/

2

1

/

3

1

4

2

1

6

10

and

B

=

1

2

1

/

3

3

9

0

2

1

/

2

6

andthevetors

x

1

y

1

=

1

1

1

and

x

2

y

2

=

2

.

5

1

1

(5)

satisfytheinequalities(2.6),butomputingvetor

y

from(2.7)weobtain

y

(1

.

18

,

0

.

85)

T

, whihdoesnotsatisfytheonditionsof Theorem2.3. Never-thelessthe

2

-subdiret sum

C

=

A

2

B

=

5

1

/

2

1

/

3

0

1

5

4

1

/

3

1

9

19

0

0

2

1

/

2

6

isanonsingular

M

-matrix.

In the speial ase of

A

and

B

blok lower and upper triangular nonsingular

M

-matries, respetively, theresultsof Theorems 2.2 and 2.3 areeasy to establish.

Let

A

=

A

11

0

A

21

A

22

,

B

=

B

11

B

12

0

B

22

,

(2.10)

with

A

22

and

B

11

squarematriesoforder

k

.

Theorem 2.6. Let

A

and

B

be nonsingular lower and upper blok triangular nonsingular

M

-matries, respetively,partitioned asin (2.10). Then

C

=

A

k

B

is anonsingular

M

-matrix.

Proof. We anrepeat the same argumentas in the proof of Theorem 2.3 with the advantage of having

A

12

=

O

and

B

21

=

O

. Note that onditions

y

y

1

and

y

x

2

arenotneessaryherebeausetherstand lastblokofrowsof

Cu

in (2.9) areautomatiallypositivein thisase.

Remark 2.7. Theexpressionof

C

1

isgivenby(2.5). Inthis partiularaseof bloktriangularmatrieswehave

A

ˆ

12

=

O

,

B

ˆ

21

=

O

,

A

ˆ

22

=

A

1

22

,

B

ˆ

11

=

B

1

11

,from

whih

H

ˆ

=

A

1

22

+

B

1

11

. If,inaddition,

A

22

=

B

11

,thenweobtain

C

1

=

A

1

11

O

O

1

2

A

1

22

A

21

A

11

1

1

2

A

1

22

1

2

A

1

22

B

12

B

22

1

O

O

B

1

22

O.

Example 2.8. Thematries

A

=

3

0

0

1

5

1

1

9

5

and

B

=

6

2

1

4

3

3

0

0

2

satisfythehypothesesofTheorem 2.6. Thematries

C

=

A

2

B

and

C

1

are

C

=

3

0

0

0

1

11

3

1

1

13

8

3

0

0

0

2

,

C

1

=

1

/

3

0

0

0

11

/

147

8

/

49

3

/

49

17

/

98

8

/

49

13

/

49 11

/

49 23

/

49

0

0

0

1

/

2

(6)

Insome appliations, suh asin domain deomposition [6℄, [7℄, matries

A

and

B

partitioned as in (2.1)arise with aommon blok, i.e.,

A

22

=

B

11

. In the next

example we show that even if

A

and

B

are nonsingular

M

-matries, and so is the ommonblok,weannotensurethat

C

=

A

k

B

isanonsingular

M

-matrix.

Example2.9. Thematries

A

=

370

342

318

448

737

107

46

190

444

,

B

=

737

107

134

190

444

440

885

182

603

arenonsingular

M

-matrieswith

A

22

=

B

11

an

M

-matrix,but

C

=

A

2

B

isnotan

M

-matrix,sinewehave

C

=

370

342

318

0

448

1474

214

134

46

380

888

440

0

885

182

603

and

C

1

0

.

0291

0

.

0242

0

.

0204

0

.

0203

0

.

0145

0

.

0109

0

.

0098

0

.

0096

0

.

0214

0

.

0163

0

.

0132

0

.

0133

0

.

0277

0

.

0210

0

.

0183

0

.

0164

.

Inthenext setionwe shallsee that when

A

and

B

share ablok andthey are submatriesofagivennonsingular

M

-matrix,theresulting

k

-subdiretsumisinfat anonsingular

M

-matrix.

2.2. Overlapping

M

-matries. Inthissetionwerestrit

A

and

B

tobe prin-ipalsubmatriesofagivennonsingular

M

-matrixandsuhthattheyhaveaommon blok. Let

M

=

M

11

M

12

M

13

M

21

M

22

M

23

M

31

M

32

M

33

(2.11)

beanonsingular

M

-matrixwith

M

22

squarematrixoforder

k

1

andlet

A

=

M

11

M

12

M

21

M

22

and

B

=

M

22

M

23

M

32

M

33

(2.12)

beoforder

n

1

and

n

2

,respetively. The

k

-subdiretsumof

A

and

B

isthusgivenby

C

=

A

k

B

=

M

11

M

12

O

M

21

2

M

22

M

23

O

M

32

M

33

.

(2.13)
(7)

Theorem 2.10. Let

M

be a nonsingular

M

-matrix partitioned as in (2.11), andlet

A

and

B

be twooverlapping prinipal submatries given by (2.12). Then the

k

-subdiretsum

C

=

A

k

B

is anonsingular

M

-matrix. Proof. Letusonstrutan

n

×

n Z

-matrix

T

asfollows:

T

=

M

11

2

M

12

M

13

M

21

2

M

22

M

23

M

31

2

M

32

M

33

.

(2.14)

Then

T

=

M

diag(

I,

2

I, I

)

andweget

T

1

= diag(

I,

(1

/

2)

I, I

)

M

1

O

. Then

T

is anonsingular

M

-matrix. Finallysine

C

isa

Z

-matrixand

C

T

weonludethat

C

isanonsingular

M

-matrix.

Example2.11. Thefollowingnonsingular

M

-matrixispartitionedasin (2.11):

M

=

13

/

14

4

/

23

3

/

20

1

/

42

19

/

186

3

/

46

3

/

7

21

/

23

1

/

5

1

/

21

1

/

93

6

/

23

1

/

7

7

/

46

17

/

20

1

/

14

1

/

186

2

/

23

4

/

21

27

/

92

1

/

15

4

/

7

58

/

93

27

/

92

1

/

14

9

/

46

3

/

10

1

/

7

53

/

62

9

/

46

2

/

21

9

/

92

2

/

15

2

/

7

7

/

62

83

/

92

.

(2.15)

Takingoverlappingsubmatries

A

and

B

asin(2.12)the

3

-subdiretsum

C

=

A

3

B

isgivenby

C

=

13

/

14

4

/

23

3

/

20

1

/

42

19

/

186

0

3

/

7

21

/

23

1

/

5

1

/

21

1

/

93

0

1

/

7

7

/

46

17

/

10

1

/

7

1

/

93

2

/

23

4

/

21

27

/

92

2

/

15

8

/

7

116

/

93

27

/

92

1

/

14

9

/

46

3

/

5

2

/

7

53

/

31

9

/

46

0

0

2

/

15

2

/

7

7

/

62

83

/

92

anditisanonsingular

M

-matrixaordingtoTheorem2.10. Infat,wehavethat

C

1

1

.

3500 0

.

3977 0

.

2624 0

.

1609 0

.

2103 0

.

1232

0

.

7628 1

.

4108 0

.

3383 0

.

2085 0

.

2185 0

.

1478

0

.

3007 0

.

2845 0

.

7422 0

.

2006 0

.

1824 0

.

1763

1

.

1024 1

.

1571 0

.

8927 1

.

6092 1

.

3118 0

.

8940

0

.

4854 0

.

5256 0

.

5116 0

.

4379 0

.

9664 0

.

4013

0

.

4543 0

.

4743 0

.

4564 0

.

5941 0

.

5634 1

.

4679

.

2.3.

k

-subdiret sum of

p M

-matries. In this setion we extend Theo-rems 2.3 and 2.10 to the subdiret sum of several nonsingular

M

-matries. Exam-ple2.14laterinthesetionillustratesthenotationusedin theproofs.

Theorem 2.12. Let

A

i

R

n

i

×

n

i

,

i

= 1

, . . . p

,be nonsingular

M

-matries parti-tionedas

A

i

=

A

i,

11

A

i,

12

A

i,

21

A

i,

22

(8)

with

A

i,

11

asquarematrixoforder

k

i

1

1

and

A

i,

22

asquarematrixoforder

k

i

1

, i.e.,

n

i

=

k

i

1

+

k

i

. Sine

A

i

are nonsingular

M

-matries we have that there exist

x

i

>

0

R

(

n

i

k

i

)

×

1

and

y

i

>

0

R

k

i

×

1

suhthat

A

i

x

i

y

i

>

0

,

i

= 1

, . . . , p.

(2.17)

Let

C

0

=

A

1

anddene the following

p

1

k

i

-subdiretsums:

C

i

=

C

i

1

k

i

A

i

+1

,

i

= 1

, . . . , p

1

,

(2.18)

i.e.,

C

1

=

A

1

k

1

A

2

,

C

2

=

(

A

1

k

1

A

2)

k

2

A

3

=

C

1

k

2

A

3

,

. . .

C

p

1

=

A

1

k

1

A

2

k

2

· · · ⊕

k

p

−2

A

p

1

k

p

−1

A

p

=

C

p

2

k

p

1

A

p

.

Eahsubdiretsum

C

i

isof order

m

i

,suhthat

m

0

=

n

1

and

m

i

=

m

i

1

+

n

i

+1

k

i

=

m

i

1

+

k

i

+1

,

i

= 1

, . . . , p

1

.

Letuspartition

C

i

in the form

C

i

=

C

i,

11

C

i,

12

C

i,

21

C

i,

22

,

i

= 1

, . . . , p

1

,

(2.19)

with

C

i,

22

asquarematrixof order

k

i

+1

. Let

H

i

=

C

i

1

,

22

+

A

i

+1

,

11

,

i

= 1

, . . . p

1

,

benonsingular

M

-matriesandlet

z

i

=

H

i

1

(

C

i

1

,

22

y

i

+

A

i

+1

,

11

x

i

+1)

,

i

= 1

, . . . p

1

.

Then,if

z

i

y

i

and

z

i

x

i

+1

,thesubdiretsums

C

i

given by(2.18)are nonsingular

M

-matriesfor

i

= 1

, . . . , p

1

.

Proof. It is easy to see that applying Theorem 2.3 to eah onseutive pair of matries

C

i

wehavethat

C

1

,

C

2

,...,

C

p

1

arenonsingular

M

-matries. Thisanbe shownbyindution.

WenowextendTheorem 2.10tothesub-diretsum of

p

submatriesof agiven nonsingular

M

-matrix

M

. Tothatend,werstdene

M

(

S

)

aprinipalsubmatrixof

M

withrowsandolumnswithindiesinthesetofindies

S

=

{

i, i

+ 1

, i

+ 2

, . . . , j

}

. In[2℄wealltheseonseutiveprinipalsubmatries. Forexample,matries

A

and

B

givenby(2.12)anbeexpressedasasubmatriesof

M

givenby(2.11)as

A

=

M

(

S

1)

,
(9)

Theorem 2.13. Let

M

be a nonsingular

M

-matrix. Let

A

i

=

M

(

S

i

)

,

i

=

1

, . . . , p

,beprinipal onseutivesubmatriesof

M

andonsiderthe

p

1

k

i

-subdiret

sumsgiven by

C

i

=

C

i

1

k

i

A

i

+1

,

i

= 1

, . . . , p

1

,

(2.20)

inwhih

C

0

=

A

1

. Theneahofthe

k

i

-subdiretsums

C

i

isanonsingular

M

-matrix. Proof. It is easy to relate the struture of eah

C

i

to that of the submatries

A

i

involved. Weonsiderthat

A

i

areoverlappingprinipal submatriesoftheform

(2.12)butallowingthateah

A

i

hasdierentnumberofbloks. Let

M

bepartitioned as

M

=

M

11

M

12

M

13

· · ·

M

1

n

M

21

M

22

M

23

· · ·

M

2

n

M

31

M

32

M

33

· · ·

M

3

n

. . .

. . .

. . .

. .

. . . .

M

n

1

M

n

2

M

n

3

· · ·

M

nn

(2.21)

aordingwith the size of theprinipal submatries

A

i

. Eah blok

M

ij

may bea

submatrixofmorethanone

A

m

,

m

= 1

, . . . , p

. Let

b

(

l

)

ij

0

bethenumberofmatries

A

m

suhthat

M

ij

isasubmatrixof

A

m

,for

m

= 1

, . . . , l

+ 1

. Ofourseweanhave

b

(

ij

l

)

= 0

. Letusonsiderthe

l

thsubdiretsum

C

l

,

1

l

p

1

,whihisoftheform

C

l

=

b

11

(

l

)

M

11

b

(

12

l

)

M

12

b

13

(

l

)

M

13

· · ·

b

(

1

l

l

)

M

1

l

b

(

21

l

)

M

21

b

(

l

)

22

M

22

b

(

l

)

23

M

23

· · ·

b

(

l

)

2

l

M

2

l

b

(

31

l

)

M

31

b

(

l

)

32

M

32

b

(

l

)

33

M

33

· · ·

b

(

l

)

3

l

M

3

l

. . .

. . .

. . .

. .

. . . .

b

(

l

1

l

)

M

l

1

b

(

l

2

l

)

M

l

2

b

(

l

3

l

)

M

l

3

· · ·

b

(

ll

l

)

M

ll

.

(2.22)

Observe that

C

l

is a

Z

-matrix and that

b

(

l

)

ii

>

0

. Furthermore, for eah olumn it

holdsthat

b

(

l

)

ii

b

(

l

)

ji

, j

= 1

, . . . , l

.

The proofproeeds in amanner similar to that of Theorem 2.10. Considerthe

Z

-matrix(partitionedinthesamemanneras

M

)

T

l

=

M

l

diag(

b

(

l

)

11

I, b

(

l

)

22

I, b

(

l

)

33

I, . . . , b

(

l

)

ll

I

)

,

where

M

l

istheprinipalsubmatrixof(2.21)withrowandolumnbloksfrom

1

to

l

. It followsthat

T

1

l

O

and therefore

T

l

isanonsingular

M

-matrix. Finally, sine

C

l

T

l

,weonludethat

C

l

isanonsingular

M

-matrix,

l

= 1

, . . . , p

.

Example 2.14. Given the nonsingular

M

-matrix

M

of Example 2.11, let us onsiderthefollowingoverlappingbloks

A

1

=

M

(

{

1

,

2

,

3

}

) =

13

/

14

4

/

23

3

/

20

3

/

7

21

/

23

1

/

5

1

/

7

7

/

46

17

/

20

(10)

A

2

=

M

(

{

2

,

3

,

4

,

5

}

) =

21

/

23

1

/

5

1

/

21

1

/

93

7

/

46

17

/

20

1

/

14

1

/

186

27

/

92

1

/

15

4

/

7

58

/

93

9

/

46

3

/

10

1

/

7

53

/

62

,

A

3

=

M

(

{

3

,

4

,

5

,

6

}

) =

17

/

20

1

/

14

1

/

186

2

/

23

1

/

15

4

/

7

58

/

93

27

/

92

3

/

10

1

/

7

53

/

62

9

/

46

2

/

15

2

/

7

7

/

62

83

/

92

.

Thenwehavethe

2

-subdiret sum

C

1

=

A

1

2

A

2

=

13

/

14

4

/

23

3

/

20

0

0

3

/

7

42

/

23

2

/

5

1

/

21

1

/

93

1

/

7

7

/

23

17

/

10

1

/

14

1

/

186

0

27

/

92

1

/

15

4

/

7

58

/

93

0

9

/

46

3

/

10

1

/

7

53

/

62

,

whih isanonsingular

M

-matrix,andthe

3

-subdiretsum

C

2

=

C

1

3

A

3

=

13

/

14

4

/

23

3

/

20

0

0

0

3

/

7

42

/

23

2

/

5

1

/

21

1

/

93

0

1

/

7

7

/

23

51

/

20

1

/

7

1

/

93

2

/

23

0

27

/

92

2

/

15

8

/

7

116

/

93

27

/

92

0

9

/

46

3

/

5

2

/

7

53

/

31

9

/

46

0

0

2

/

15

2

/

7

7

/

62

83

/

92

,

whihisalsoanonsingular

M

-matrixinaordanewithTheorem2.13. Observethat in this example we have

k

1

= 2

and

k

2

= 3

. Note also that, for example, wehave

b

(1)

22

= 2

,

b

(1)

33

= 2

,

b

(1)

14

= 0

,

b

(2)

22

= 2

,

b

(3)

22

= 2

,

b

(2)

33

= 3

,

b

(2)

14

= 0

.

3. Subdiret sumsof inverses. Let

A

and

B

be nonsingularmatries parti-tionedasin (2.1). Inthis setionweonsider the

k

-subdiret sumof theirinverses. We will establish ounterparts to some of results in the previous setions. Let us denoteby

G

=

A

1

k

B

1

,with

A

1

and

B

1

partitionedasin(2.3),i.e.,

G

=

ˆ

A

11

A

ˆ

12

0

ˆ

A

21

A

ˆ

22

+ ˆ

B

11

B

ˆ

12

0

B

ˆ

21

B

ˆ

22

.

(3.1)

As aorollaryto, andin analogyto Theorem 2.1, the nextstatementindiates thatthenonsingularityof

A

22

+

B

11

isaneessaryonditiontoobtain

G

nonsingular. Theorem 3.1. Let

A

and

B

benonsingular matriespartitionedasin(2.1)and let their inverses be partitioned as in (2.3). Let

G

=

A

1

(11)

We remark that in analogyto the expression (2.5) of

C

1

, the expliit form of

G

1

is

G

1

=

A

11

A

12

H

1

A

21

A

12

A

12

H

1

A

22

A

12

H

1

B

12

B

11

H

1

A

21

B

11

H

1

A

22

B

11

H

1

B

12

+

B

12

B

21

H

1

A

21

B

21

H

1

A

22

B

21

H

1

B

12

+

B

22

.

(3.2)

Corollary3.2. When

A

and

B

arenonsingular

M

-matrieswith the ommon blok

A

22

=

B

11

asquarematrixof order

k

,i.e., ofthe form

A

=

A

11

A

12

A

21

A

22

,

B

=

A

22

B

12

B

21

B

22

,

(3.3)

then

H

= 2

A

22

isnonsingularandtherefore

G

=

A

1

k

B

1

isnonsingular.

We note that this isthe asewhen

A

and

B

are overlappingsubmatriesof an

M

-matrix,i.e.,oftheform(2.12)and(2.11)onsideredinSetion2.2,wherewewere

interestedinthesubdiretsumof

A

and

B

. Hereweonludethatthesubdiretsum oftheirinversesisalwaysnonsingular.

Example3.3. Let

A

and

B

bethematriesofExample2.11,thenaordingto Corollary3.2,the

3

-subdiretsumoftheinverses

G

=

A

1

3

B

1

1

.

5033 0

.

5513 0

.

5547 0

.

2757 0

.

3912

0

0

.

9540 1

.

5996 0

.

7158 0

.

3635 0

.

4038

0

0

.

6004 0

.

5636 2

.

9750 0

.

8144 0

.

7407 0

.

3708

2

.

0383 2

.

1242 3

.

5729 6

.

5498 5

.

3372 2

.

0139

0

.

8953 0

.

9650 2

.

0470 1

.

8025 3

.

9062 0

.

9048

0

0

0

.

8551 1

.

3803 1

.

2652 1

.

9143

isanonsingularmatrix.

Intheaboveexampleadiretomputationshowsthat

G

1

isnotan

M

-matrix:

G

1

0

.

8900

0

.

2337

0

.

0750

0

.

0119

0

.

0511

0

.

0512

0

.

4682

0

.

8566

0

.

1000

0

.

0238

0

.

0054

0

.

0470

0

.

0714

0

.

0761

0

.

4250

0

.

0357

0

.

0027

0

.

0435

0

.

0952

0

.

1467

0

.

0333

0

.

2857

0

.

3118

0

.

1467

0

.

0357

0

.

0978

0

.

1500

0

.

0714

0

.

4274

0

.

0978

0

.

1242

0

.

2045

0

.

0667

0

.

1429

0

.

0565

0

.

7123

whih is nota

Z

-matrix. Note that when

A

and

B

are

M

-matries we havefrom (3.1) that

G

=

A

1

B

1

is nonnegative. Therefore assuming that

G

1

exists we have

(

G

1

)

1

O

. Thenitisanaturalquestiontoseekonditionssothat

G

1

isa nonsingular

M

-matrix. Westudythisquestionnext.

Theexpressions (3.1)of

G

and (3.2)of

G

1

, Theorem3.1, and theobservation thatfornonsingular

M

-matrieswehave

(

G

1

)

1

O

, implythefollowingresult. Theorem 3.4. Let

A

and

B

benonsingular

M

-matriespartitioned asin (2.1) andtheir inverses partitioned asin (2.3). Let

G

=

A

1

k

B

1

with

k

1

, andlet

H

=

A

22

+

B

11

benonsingular. Then

G

1

isa nonsingular

M

-matrixif andonly if

G

1

(12)

Corollary 3.5. Let

A

and

B

be lower and upper bloktriangular nonsingular

M

-matries, respetively, partitioned asin (2.10) with

A

22

and

B

11

square matries

of order

k

and

H

=

A

22

+

B

11

nonsingular. Then

G

1

= (

A

1

k

B

1

)

1

is a

nonsingular

M

-matrixifandonly ifthe followingonditionshold: i)

B

11

H

1

A

21

O

. ii)

B

11

H

1

A

22

isa

Z

-matrix.

iii)

B

11

H

1

B

12

+

B

12

O

.

Proof. >From(3.2)and(2.10)wehavethat

G

1

=

A

11

0

0

B

11

H

1

A

21

B

11

H

1

A

22

B

11

H

1

B

12

+

B

12

0

0

B

22

(3.4)

andtherefore

G

1

isa

Z

-matrixifandonlyiftheonditionsi),ii)andiii) hold. Conditionsi),ii)andiii)intheorollaryarenotasstringentastheymayappear. Forexample,let

A

and

B

bebloktriangularnonsingular

M

-matriespartitionedas in(2.10)with aommonblok

A

22

=

B

11

,asquarematrixoforder

k

, i.e.,

A

=

A

11

0

A

21

A

22

and

B

=

A

22

B

12

0

B

22

.

(3.5)

Then

G

1

= (

A

1

k

B

1

)

1

is anonsingular

M

-matrix,sine we havefrom (3.4)

that

G

1

=

A

11

O

O

1

2

A

21

1

2

A

22

1

2

B

12

O

O

B

22

,

andtherefore

G

1

isa

Z

-matrix. Infat,inthisase,wehave

G

=

A

1

11

O

O

A

1

22

A

21

A

1

11

2

A

1

22

A

1

22

B

12

B

1

22

O

O

B

1

22

O.

Thenextexampleillustratesthissituation.

Example3.6. Let

A

and

B

bethematriesofExample2.8,then

G

=

A

1

2

B

1

=

1

/

3

0

0

0

1

/

8

49

/

80 21

/

80

9

/

20

7

/

24 77

/

80 73

/

80 11

/

10

0

0

0

1

/

2

,

and

G

1

=

3

0

0

0

18

/

49 146

/

49

6

/

7

39

/

49

4

/

7

22

/

7

2

11

/

7

0

0

0

2

(13)

isanonsingular

M

-matrixinaordanewithCorollary3.5.

Note that if the hypotheses of Corollary 3.5 are satised, and realling Theo-rem2.6,wehavethat eahofthematries

C

=

A

k

B

and

G

1

= (

A

1

k

B

1

)

1

arebothnonsingular

M

-matries.

4.

P

-matries. A square matrix is a

P

-matrix if all its prinipal minors are positive. As aonsequene we havethat all the diagonal entries of a

P

-matrix are positive. Itisalsofollowsthatanonsingular

M

-matrixisa

P

-matrix. Itanalsobe shownthat if

A

isanonsingular

M

-matrix,then

A

1

isa

P

-matrix;see,e.g.,[5℄. In [3℄ it is shown that the

k

-subdiret sum (with

k >

1

) of two

P

-matries is not neessarilya

P

-matrix. Our results in Setions 2.1 and 3 hold for nonsingular

M

-matriesandinversesof

M

-matries,respetively. Asthesetwolassesofmatries

are subsetsof

P

-matries, it is naturalto ask ifsimilar suient onditionsan be foundsothatthe

k

-subdiretsumof

P

-matriesisa

P

-matrix. Thefollowingexample indiates thattheanswermaynotbeeasytoobtain,sineevenin thesimplestase ofdiagonalsubmatriesthe

k

-subdiretsummaynotbea

P

-matrix.

Example 4.1. Giventhe

P

-matries

A

=

543 388 322

69

160

0

368

0

375

,

B

=

136

0

219

0

225 159

61

177 230

wehavethatthe

2

-subdiretsum

C

=

A

2

B

=

543 388 322

0

69

296

0

219

368

0

600 159

0

61

177 230

isnota

P

-matrix,sine

det(

C

)

<

0

.

Aknowledgment. Wethanktherefereeforaveryarefulreadingofthemanusript andforhisomments.

REFERENCES

[1℄ A.BermanandR.J.Plemmons.NonnegativeMatriesintheMathematialSienes,Aademi Press,NewYork,1979.Reprintedandupdated,SIAM,Philadelphia,1994.

[2℄ R.Bru, F.Pedrohe,andD.B.Szyld.AdditiveShwarzIterationsforMarkovChains,SIAM J.MatrixAnal.Appl.,toappear.

[3℄ S.M.FallatandC.R.Johnson.Sub-diretsumsandpositivitylassesofmatries.LinearAlgebra Appl.,288:149173,1999.

[4℄ A. Frommer and D.B. Szyld. Weighted Max Norms, Splittings,and Overlapping Additive ShwarzIterations,NumerisheMathematik,83:259278,1999.

[5℄ R.A.HornandC.R.Johnson.MatrixAnalysis.CambridgeUniversityPress,NewYork,1985. [6℄ B.F.Smith,P.E.Bjørstad,andW.D.Gropp.Domaindeomposition: Parallelmultilevel meth-odsforelliptipartialdierentialequations.CambridgeUniversityPress,Cambridge,1996. [7℄ A.ToselliandO.B.Widlund.DomainDeomposition:AlgorithmsandTheory.SpringerSeries

inComputationalMathematis,vol.34. Springer,NewYork,2005.

Referensi

Dokumen terkait

Democratization and decentralization process indeed provide more opportunities for local economic brokers and local strongmen to fill important political and bureaucratic posts

Berdasarkan hasil penelitian dan setelah dilakukannya pengujian alpha dan betha terhadap sistem informasi pengendalian dan perencanaan persediaan bahan baku di Maika-Etnik,

[r]

Berkenaan dengan adanya proses updating dan migrasi data Sistem Pengadaan Secara Elektronik (SPSE) dari versi 3.0 ke versi 4.0 pada Layanan Pengadaan Secara

The research aim to answer how overall and individual four source models (source credibility model, source attractiveness model, product match-up model, and meaning

Tujuan perancangan media informasi ini untuk memberitahu unsur – unsur penting dalam kegiatan Roda de Capoeira yang belum banyak diketahui anggota baru yaitu musik,

Terkait hasil pengumuman pemenang tersebut di atas, kepada seluruh peserta lelang yang telah memasukkan penawaran kepada Pokja Paket Pekerjaan Supervisi Pengerukan Alur Pelayaran

Sementara diplomasi bencana alam Indonesia dalam bentuk inter-state atau antar negara dalam isu bencana alam yang telah berhasil dilaksanakan adalah berbagai kerjasama yang