• Tidak ada hasil yang ditemukan

ny cc hmd aga burger 2012 130215

N/A
N/A
Protected

Academic year: 2017

Membagikan "ny cc hmd aga burger 2012 130215"

Copied!
37
0
0

Teks penuh

(1)

Mathematics: High School

Algebra 1, Geometry,

& Algebra 2

© 2012

(2)

Page 1 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved Number and Quantity Strand

(+ = advanced; * = also a Modeling Standard) Algebra 1 Geometry Algebra 2

N-RN-1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

SE: 392-393, 398-402 SE: 358-360, 395

N-RN-2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.

SE: 400-402 SE: 358 SE: 358-365, 392, 394, 398

N-RN-3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

(3)

Page 2 of 36

Common Core State Standards for Mathematics© Copyright 2010. Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved N-Q-1. Use units as a way to understand problems and to

guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*

SE: 10, 26-30, 43-45, 53, 56-58, 59, 61, 62-68, 70-74, 83, 85-86, 88, 93, 108, 110, 115, 118, 122-124, 144, 159, 176, 184-185, 189-191, 194, 202, 208-209, 212, 213, 223, 265, 271-273, 279-281, 284, 488, 534, 536-537, 539-542, 549-550, 553, 556-558, 564-566, 572, 577-578, 598, 603, 628, 639-641

SE: 105, 108, 140, 186, 193-195, 197, 200, 211, 273, 445, 461, 528, 586, 593, 657, 671, 684-685, 695, 697-698, 703, 708, 713, 715, 727, 750, 753-756, 777, 786, 800, 865

SE: 12, 39, 90, 122, 229, 265, 293-294, 325, 340, 345-348, 363-364, 373, 381, 383, 437, 506, 650, 713, 732

N-Q-2. Define appropriate quantities for the purpose of descriptive modeling.*

SE: 62-68, 75-81, 686-694, 695-701

N-Q-3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*

SE: 75-81 associative, and distributive properties to add, subtract, and multiply complex numbers.

(4)

Page 3 of 36

Common Core State Standards for Mathematics© Copyright 2010. Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved N-CN-3. (+) Find the conjugate of a complex number; use

conjugates to find moduli and quotients of complex numbers.

SE: 96-99, 126-133, 138, 145, 226

N-CN-4. (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.

Opportunities to address this standard can be found on the following pages:

SE: 126-128, 139

N-CN-5. (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation.

Opportunities to address this standard can be found on the following pages:

SE: 126-133

N-CN-6. (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.

This standard is outside the Common Core college and career ready standards.

N-CN-7. Solve quadratic equations with real coefficients that have complex solutions.

SE: 96-99, 101-107, 109, 138, 140, 190-195, 221

N-CN-8. (+) Extend polynomial identities to the complex numbers. For example, rewrite x2 + 4 as (x + 2i)(x – 2i).

SE: 189-195, 221

N-CN-9. (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

(5)

Page 4 of 36

Common Core State Standards for Mathematics© Copyright 2010. Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved N-VM-1. (+) Recognize vector quantities as having both

magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, ||v||, v).

SE: 577-585

N-VM-2. (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.

SE: 577

N-VM-3. (+) Solve problems involving velocity and other quantities that can be represented by vectors.

SE: 577-585, 586, 587, 591, 592, 593, 595

N-VM-4. (+) Add and subtract vectors.

a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.

b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.

c. Understand vector subtraction v w as v + (–w), where –w

is the additive inverse of w, with the same magnitude as w

and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.

(6)

Page 5 of 36

Common Core State Standards for Mathematics© Copyright 2010. Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved N-VM-5. (+) Multiply a vector by a scalar.

a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c(vx, vy) = (cvx, cvy).

b. Compute the magnitude of a scalar multiple cv using ||cv|| = |c|v. Compute the direction of cv knowing that when |c|v

0, the direction of cv is either along v (for c > 0) or against v

(for c < 0).

SE: 577-585

N-VM-6. (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.

This standard is outside the Common Core college and career ready standards.

N-VM-7. (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.

This standard is outside the Common Core college and career ready standards.

N-VM-8. (+) Add, subtract, and multiply matrices of appropriate dimensions.

SE: 144

N-VM-9. (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.

(7)

Page 6 of 36

Common Core State Standards for Mathematics© Copyright 2010. Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved N-VM-10. (+) Understand that the zero and identity matrices

play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.

This standard is outside the Common Core college and career ready standards.

N-VM-11. (+) Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.

This standard is outside the Common Core college and career ready standards.

N-VM-12. (+) Work with 2 2 matrices as a

transformations of the plane, and interpret the absolute value of the determinant in terms of area.

(8)

Page 7 of 36

Common Core State Standards for Mathematics© Copyright 2010. Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved A-SSE-1. Interpret expressions that represent a quantity in

terms of its context.*

a. Interpret parts of an expression, such as terms, factors, and coefficients.

b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

SE: 10-11, 512, 514 SE: 36-41, 312-318, 689,

751, 757, 759

SE: 75, 234-240

A-SSE-2. Use the structure of an expression to identify ways to rewrite it.

SE: 462, 463-469, 470-471, 472-479, 480-486, 487, 488, 489, 490-496, 498-503, 504, 505, 507-509, 510, 511, 514-515, 739

SE: 13-19 SE: 75, 141, 174-179, 219

A-SSE-3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

a. Factor a quadratic expression to reveal the zeros of the function it defines.

b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

c. Use the properties of exponents to transform expressions for exponential functions.

SE:

a. & b.) 470-471, 472-479, 480-486, 487, 488, 489, 490-496, 499-503, 504, 505, 508-509, 510, 511, 514, 739

A-SSE-4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems..

(9)

Page 8 of 36

Common Core State Standards for Mathematics© Copyright 2010. Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved A-APR-1. Understand that polynomials form a system

analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

SE: 414-419, 422-429, 433-439

SE: 150-156, 158-164, 181, 218, 219, 222, 223, 224, 227, 307, 309, 335-338, 399, 403, 751

A-APR-2. Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x a is p(a), so p(a) = 0 if and only if (x a) is a factor of p(x).

SE: 166-172, 174-179, 189-195, 220, 222

A-APR-3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

SE: 562-567, 600-601 SE: 176-179, 181, 182-188,

219, 220, 223, 880

A-APR-4. Prove polynomial identities and use them to describe numerical relationships.

SE: 433-439, 490-496, 497 SE: 158-161, 174-179

A-APR-5. (+) Know and apply the Binomial Theorem for the expansion of (x + y)n in powers of

x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s Triangle. (The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.)

(10)

Page 9 of 36

Common Core State Standards for Mathematics© Copyright 2010. Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved A-APR-6. Rewrite simple rational expressions in different

forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.

SE: 682, 685 SE: 166-172, 219, 222, 224,

537

A-APR-7. (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

SE: 321-326, 327-334, 335-338, 357, 391, 394, 395, 881

A-CED-1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*

SE: 19-22, 26-29, 34-38, 42-46, 54-59, 100-105, 107-111, 114-117, 118, 119, 122-125, 127-132, 144-147, 148, 149, 150-153, 154, 156-157, 158-159, 562-567, 568-573, 575-581, 582-589, 624-630

(11)

Page 10 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved A-CED-2. Create equations in two or more variables to

represent relationships between quantities; graph equations on coordinate axes with labels and scales.*

SE: 179-185, 186-192, 230-236, 237-242, 244-251, 254-259, 260-265, 268-274, 275-282, 293-299, 301-307, 329-334, 336-342, 343-349, 352-357, 538-543, 545-551, 554-559, 582-589, 635-642, 649-655

SE: 182-187, 190-197, 201, 205, 206, 517

SE: 15-21, 24-30, 32-39, 44, 46, 59-66, 67-74, 118-125, 150-156, 197-203, 204-209, 210-215, 226, 234-240, 242-248, 249-255, 275-280, 281-288, 289-295, 313-320, 340-347, 367-375, 422-429, 432-439, 442-448, 450-456, 458-465, 536, 749, 754-761, 767

A-CED-3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context..*

SE: 179-185, 230-236, 237-242, 260-265, 268-274, 275-282, 301-307, 331-334, 339-342, 346-349, 350-351, 354-356, 358, 359, 369-371, 374, 375, 376-378, 380, 381, 384-385, 451, 538-543, 554-559, 562-567, 568-573, 575-581, 582-589, 613, 635-642, 649-655

SE: 15-21, 24-30, 32-39, 59-66, 67-74, 110-117, 118-125, 150-156, 197-203, 204-209, 210-215, 234-240, 242-248, 249-255, 275-280, 281-288, 289-295, 313-320, 340-347, 367-375, 422-429, 432-439, 442-448, 450-456, 458-465, 749, 754-761, 762-767

A-CED-4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations..*

SE: 49-53, 59, 68, 85, 88, 161

(12)

Page 11 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved A-REI-1. Explain each step in solving a simple equation as

following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

SE: 17-22, 24-30, 32-38, 40-46, 54-59, 61, 84-85

SE: 104-109, 127, 132, 134 SE: 77-84, 85-92, 100-107, 182-188, 266-272, 348-355, 376-383

A-REI-2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

SE: 669, 673, 674 SE: 466-471, 482-489, 493,

495-501, 520

SE: 348-355, 357, 376-383, 388, 389, 392, 393, 394, 395, 398, 399, 476, 809

A-REI-3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

SE: 16, 17-22, 24-30, 31, 32-38, 39, 40-46, 53, 59, 60, 61, 68, 84-85, 88, 89, 92-93, 97, 106-111, 112-117, 118, 119, 120-125, 126-132, 140, 147, 148, 149, 151-152, 154, 155, 158-159, 161, 169, 185, 192, 203, 211, 222, 223, 236, 274, 299, 325, 334, 397, 403, 419, 450, 469, 519, 612, 623, 630, 679, 701, 721, 760

(13)

Page 12 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved A-REI-4. Solve quadratic equations in one variable.

a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x p)2 =

q that has the same solutions. Derive the quadratic formula from this form.

b. Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b.

SE: 554-559, 560-561, 562-567, 568-573, 576-581, 582-583, 585-589, 598, 599, 606-607, 608, 609, 613, 655

SE: 27, 45, 47-48, 55, 59, 63, 243, 245, 289, 338, 361-367, 377, 381, 382, 400, 427, 442, 444-446, 508, 798, 842, 844-846

SE: 77-84, 85-92, 96-99, 100-107, 108, 109, 137, 140, 143, 145, 307, 309, 684, 749

A-REI-5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

SE: 343-349

A-REI-6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

SE: 329-334, 336-342, 343-349, 350-351, 352-357, 358, 359, 376-378, 380, 381, 383, 384

SE: 152-153, 158-160, 161, 176, 194, 195, 328, 329-330

SE: 684

A-REI-7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.

SE: 590-597 SE: 853 SE: 809, 862-869, 871, 872,

(14)

Page 13 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved A-REI-8. (+) Represent a system of linear equations as a

single matrix equation in a vector variable. This standard is outside the Common Core college and career ready standards.

A-REI-9. (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3

!

3 or greater).

This standard is outside the Common Core college and career ready standards.

A-REI-10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

SE: 186-192, 193, 216 SE: 43, 46

A-REI-11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*

SE: 47-48, 554-559, 560-561, 628, 629

SE: 79-80, 182-186, 191-192, 268-269, 351-352, 384-387

A-REI-12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

SE: 360-366, 368-372, 373, 374, 375, 379, 380, 381, 486

(15)

Page 14 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved F-IF-1. Understand that a function from one set (called the

domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

SE: 170-176, 177, 179-186, 187-192, 193, 195, 215, 219, 222

F-IF-2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

SE: 180-185, 192, 195, 216, 218, 219, 223, 322, 397, 629

SE: 50

F-IF-3. Recognize that sequences are functions, some-times defined recursively, whose domain is a subset of the integers.

SE: 206-211, 618-623 SE: 626-632

F-IF-4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is

increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*

SE: 165, 167-168, 195, 214, 230, 234-235, 237-238, 240-242, 266, 267, 271-273, 309, 310-313, 315, 318, 531-532, 535-537, 541-543, 545-551, 552, 553, 554-559, 600-601, 603, 604-605, 608, 613, 630, 641, 644-647, 649-655, 565-659

(16)

Page 15 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved F-IF-5. Relate the domain of a function to its graph and,

where applicable, to the quantitative relationship it describes..*

SE: 170-176, 182-184, 186-192, 194, 195, 218, 223, 233-235, 241, 260-265, 310-311, 313, 314, 323, 486, 525-529, 542-543, 545-551, 553, 600-601, 603, 669, 672, 674, 675

SE: 401, 685 SE: 14, 19-21, 65, 70, 72-73,

134, 172, 196, 226, 240, 241, 242, 245, 247, 253, 263, 280, 285-286, 288, 299, 302, 341, 345, 367-368, 371-372, 375, 388, 389, 392-393, 394, 413, 428-429, 439, 441, 453-454, 467, 470, 472, 685, 713, 719, 749, 754-761, 767, 851

F-IF-6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a

specified interval. Estimate the rate of change from a graph.*

SE: 244-245, 248-251, 254-259, 267, 268-274, 308, 315, 318, 323, 469, 656-659, 660-667, 739

(17)

Page 16 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved F-IF-7. Graph functions expressed symbolically and show

key features of the graph, by hand in simple cases and using technology for more complicated cases.*

a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

SE:

a.) 186-192, 193, 195, 216, 218, 219, 220, 230-236, 237-242, 260-265, 266, 267, 268-274, 275-282, 283, 301-307, 309, 314-317, 318, 320, 321, 522-529, 531-537, 538-543, 553, 554-559, 605, 608, 609, 649-655 422-429, 430-431, 441, 469, 685

c.) 153-156, 182-188, 196, 197-203, 204-209, 218, 220, 221

d.) 339, 340-347, 357, 392, 395, 399

(18)

Page 17 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved F-IF-8. Write a function defined by an expression in different

but equivalent forms to reveal and explain different properties of the function.

a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and

symmetry of the graph, and interpret these in terms of a context.

b. Use the properties of exponents to interpret expressions for exponential functions.

SE: 530, 533-534, 536-537,

F-IF-9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

SE: 230-236, 310-313, 531-537, 538-543, 600-601, 624-630, 660-667

SE: 414-421

F-BF-1. Write a function that describes a relationship between two quantities.*

a. Determine an explicit expression, a recursive process, or steps for calculation from a context.

b. Combine standard function types using arithmetic operations.

c. (+) Compose functions.

SE: 179-185, 230-236, 268-274, 275-282, 545-551, 568-573, 635-642, 644-647, 649-655

SE: 32-39, 118-125, 159-163, 169-171, 180, 181, 206-209, 210-215, 219, 221, 222, 278, 289-295, 425-429, 434-438, 442-448, 450-456, 458-465, 470, 472, 475, 476, 881

F-BF-2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*

SE: 206-210, 622-623, 644-647

(19)

Page 18 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved F-BF-3. Identify the effect on the graph of replacing f(x) by

f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

SE: 300, 301-307, 309, 310-313, 317, 318, 544, 545-551, 553, 559, 606, 608, 109, 136, 204-209, 221, 222, 223, 225, 227, 281-288, 301, 302, 306, 368-375, 388, 389, 432-439, 469, 472, 473, 684, 748, 756-761, 762-767

F-BF-4. Find inverse functions.

a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.

b. (+) Verify by composition that one function is the inverse of another.

c. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.

d. (+) Produce an invertible function from a non-invertible function by restricting the domain.

SE: 551, 558 SE:

a-c). 241, 242-248, 251-255, 265, 299, 302, 303, 306, 450-456, 470, 472, 473, 684, 881

c.) 367

F-BF-5. (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

(20)

Page 19 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved F-LE-1. Distinguish between situations that can be modeled

with linear functions and with exponential functions.*

a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

SE: 625-628, 649-655 SE:

a.) 210-215, 406-413, 458-465

b.) 406-413, 441, 458-465, 471, 472

c.) 234-240, 458-465, 471, 472

F-LE-2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a

description of a relationship, or two input-output pairs (include reading these from a table).*

SE: 206-211, 213, 216-217, 218, 219, 220, 230-236, 237-242, 260-265, 268-274, 275-282, 309, 314-317, 318, 320, 321, 618-623, 633, 635-642, 644-647, 649-655

SE: 44, 46, 234-240, 305, 398, 406-413, 441, 458-465, 468, 471, 472, 537, 643-651, 654-753, 880

F-LE-3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.*

SE: 630, 660-667 SE: 234-240, 458-465

F-LE-4. For exponential models, express as a logarithm the solution to abct = d where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using

technology.*

(21)

Page 20 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved F-LE-5. Interpret the parameters in a linear or exponential

function in terms of a context.*

SE: 268-274, 635-642 SE: 234-240, 299

F-TF-1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.

SE: 707-713

F-TF-2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

SE: 700-702, 706-709

F-TF-3. (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle to express the values of sine, cosines, and tangent for x, π + x, and 2πx in terms of their values for x, where x is any real number.

SE: 693-699, 706-713, 721, 741, 744, 745

F-TF-4. (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

Opportunities to address this standard can be found on the following pages:

SE: 707-713, 754-761

F-TF-5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*

(22)

Page 21 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved F-TF-6. (+) Understand that restricting a trigonometric

function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.

SE: 714-719

F-TF-7. (+) Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.*

SE: 551, 552-559 SE: 716-719, 721, 742, 744,

745, 748, 791-797

F-TF-8. Prove the Pythagorean identity sin2(θ) + cos2(θ) = 1 and use it to calculate trigonometric ratios.

SE: 772-777, 801, 804, 807

F-TF-9. (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.

(23)

Page 22 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved G-CO-1. Know precise definitions of angle, circle,

perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

SE: 6-11, 20-27, 35, 64, 68, 69, 146-151, 688-693

SE: 700-705, 707-713

G-CO-2. Represent transformations in the plane using, e.g., transparencies and geometry software; describe

transformations as functions that take points in the plane as inputs and give other points as outputs. Compare

transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

SE: 50-55, 56-57, 509-514, 523, 529, 596, 604-610, 611-617, 619-625, 626-631, 633, 650-657, 660-663, 664, 668, 669, 785

G-CO-3. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

SE: 604-610, 611-617, 619-625, 626-631, 633, 634-640, 660-663, 664, 665

G-CO-4. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

SE: 50-55, 604-610, 611-617, 619-625, 633, 660, 661, 664

G-CO-5. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

(24)

Page 23 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved G-CO-6. Use geometric descriptions of rigid motions to

transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the

definition of congruence in terms of rigid motions to decide if they are congruent.

SE: 220-223, 258-267, 274-277, 293, 298, 300, 604-610, 611-617, 619-625

G-CO-7. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

SE: 69-74 SE: 220-223, 268-273,

274-277, 293, 294-295, 298, 300

G-CO-8. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

SE: 248-249, 250-257, 260-267, 293, 297, 300, 302, 304, 387

G-CO-9. Prove geometric theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

(25)

Page 24 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved G-CO-10. Prove theorems about triangles. Theorems include:

measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

SE: 231-238, 247, 285-291, 293, 296, 299, 300, 326-331, 334-339, 341, 379, 380

G-CO-11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

SE: 294, 297, 299 SE: 403-404, 419, 420-427,

451, 454

G-CO-12. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometry software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing

perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

SE: 14, 16, 17-18, 22-27, 35, 61, 170-171, 172, 177, 179

G-CO-13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

(26)

Page 25 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved G-SRT-1. Verify experimentally the properties of dilations

given by a center and a scale factor:

a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.

b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

SE: 472-479, 509-514, 650-657, 659, 663, 664

G-SRT-2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding angles and the proportionality of all corresponding pairs of sides.

SE: 466-471, 472-479, 480-481, 482-489, 493, 495-501, 519, 521, 524, 525, 526, 527, 531, 597

G-SRT-3. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

SE: 482-489, 521, 524

G-SRT-4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.

SE: 69-70, 72-74, 83, 86, 88, 89, 185, 236, 323

(27)

Page 26 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved G-SRT-5. Use congruence and similarity criteria for triangles

to solve problems and prove relationships in geometric figures.

SE: 250-257, 258-267, 268-273, 293, 297-298, 300, 302, 304, 482-489, 493, 495-501, 519, 521, 524

G-SRT-6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

SE: 534-539, 540, 541-548, 561, 588, 589, 592

SE: 693

G-SRT-7. Explain and use the relationship between the sine and cosine of complementary angles.

SE: 549-550

G-SRT-8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

SE: 360-371, 377, 381, 382, 383, 385, 552-559, 560, 561, 562-567, 568, 587, 589, 590, 592, 594, 596, 865

SE: 689, 693-699, 721, 740, 744, 745, 749, 809

G-SRT-9. (+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.

SE: 701 SE: 722

G-SRT-10. (+) Prove the Laws of Sines and Cosines and use them to solve problems.

SE: 569-576, 587, 590, 592, 593

(28)

Page 27 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved G-SRT-11. (+) Understand and apply the Law of Sines and

the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

SE: 569-576, 587, 590, 592, 593

SE: 725-729, 733-737, 739, 742-743, 744

G-C-1. Prove that all circles are similar. SE: 472-479

G-C-2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

SE: 820-827, 830-837, 840-846, 855, 856, 860, 863, 864

G-C-3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

SE: 319, 325, 823-827, 855, 858, 865

G-C-4. (+) Construct a tangent line from a point outside a given circle to the circle.

SE: 827

G-C-5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.

(29)

Page 28 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved G-GPE-1. Derive the equation of a circle of given center and

radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

SE: 847-853, 859, 860 SE: 823-828, 858-860, 870, 871

G-GPE-2. Derive the equation of a parabola given a focus and directrix.

SE: 845-851, 853, 871, 874, 876, 880

G-GPE-3. (+) Derive the equations of ellipses and hyperbolas given foci and directrices.

SE: 748, 830-836, 837, 838-844, 852, 853, 871, 873-874, 876, 881

G-GPE-4. Use coordinates to prove simple geometric theorems algebraically.

SE: 279-284 SE: 820, 821

G-GPE.5. Prove the slope criteria for parallel and

perpendicular lines and use them to solve geometric problems (e.g., find the equation of line parallel or perpendicular to a given line that passes through a given point).

SE: 293-299, 307, 309, 317, 318, 323, 384, 450, 573, 761

SE: 190-197, 216-219, 412-417, 419, 426-427, 452, 454, 669

G-GPE-6. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

SE: 267, 316 SE: 515-516, 704-709

G-GPE-7. Use coordinates to compute perimeters of

polygons and areas of triangles and rectangles, e.g., using the distance formula.*

(30)

Page 29 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved G-GMD-1. Give an informal argument for the formulas for

the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.

SE: 688-693, 749-751, 757

G-GMD-2. (+) Give an informal argument using Cavalieri’s principle for the formulas for the volume of a sphere and other solid figures.

SE: 749-756, 757-763, 765-772

G-GMD-3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*

SE: 402-403, 429, 430, 503, 573, 631

SE: 668, 749-756, 757-764, 766-773, 777, 779, 781, 784, 785, 864

SE: 172, 191-192, 325, 366, 816, 829

G-GMD-4. Identify the shapes of two-dimensional cross-sections of dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

SE: 742-748, 778

G-MG-1. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*

SE: 365, 410, 417, 428, 441, 477, 479, 485, 495, 577-578, 580

(31)

Page 30 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved G-MG-2. Apply concepts of density based on area and

volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*

SE: 68 SE: 750, 753, 755, 777

G-MG-3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*

(32)

Page 31 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved S-ID-1. Represent data with plots on the real number line

(dot plots, histograms, and box plots).* SE: 686-694, 695-701, 704-709, 710-713, 752, 753,

756

SE: 531, 532, 543-544, 547-548, 749

S-ID-2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*

SE: 702-709 SE: 548, 576

S-ID-3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*

SE: 702-709, 710-713 SE: 527, 543-548

S-ID-4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*

SE: 594-595, 596-603

S-ID-5. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.*

(33)

Page 32 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved S-ID-6. Represent data on two quantitative variables on a

scatter plot, and describe how the variables are related.*

a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.

b. Informally assess the fit of a function by plotting and analyzing residuals.

c. Fit a linear function for a scatter plot that suggests a linear association.

SE: 196-198, 200-203, 204, 205, 211, 212, 213, 217, 218, 284, 285-292, 551, 649-655

SE: 32-39, 45, 46, 120-125, 135, 140, 210-215, 289-295, 296, 297, 301, 307, 458-465

S-ID-7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.*

SE: 284, 285-292 SE: 183, 186, 193, 194, 195 SE: 32-39, 45

S-ID-8. Compute (using technology) and interpret the correlation coefficient of a linear fit.*

SE: 285-292 SE: 32-39, 45, 46, 306

S-ID-9. Distinguish between correlation and causation.* SE: 285-292

S-IC-1. Understand statistics as a process for making inferences about population parameters based on a random sample from that population.*

SE: 716-721 SE: 551-558

S-IC-2. Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.*

(34)

Page 33 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved S-IC-3. Recognize the purposes of and differences among

sample surveys, experiments, and observational studies; explain how randomization relates to each.*

SE: 722-723 SE: 559-566

S-IC-4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.*

SE: 579-586

S-IC-5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.*

SE: 567-574

S-IC-6. Evaluate reports based on data.* SE: 716-721, 725, 754, 756 SE: 579-586

S-CP-1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”).*

SE: 727-732, 734-739, 740-747

SE: 490-497, 509, 519-525, 530, 533, 534

S-CP-2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to

determine if they are independent.*

SE: 741-746, 755, 756 SE: 238 SE: 499-506, 509, 530, 532,

(35)

Page 34 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved S-CP-3. Understand the conditional probability of A given B

as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.*

SE: 740-747 SE: 351, 583 SE: 499-506, 530, 685

S-CP-4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate

conditional probabilities. *

SE: 493-500, 511-518

S-CP-5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.*

SE: 740-741, 744-746 SE: 511-518

S-CP-6. Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model.*

SE: 740-747 SE: 499-506, 530

S-CP-7. Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model.*

SE: 748-749 SE: 509, 519-525, 530, 535

S-CP-8. (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model.*

SE: 740-747 SE: 499-506, 509, 530, 533

S-CP-9. (+) Use permutations and combinations to compute probabilities of compound events and solve problems.*

(36)

Page 35 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved interest by assigning a numerical value to each event in a

sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.*

S-MD-2. (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.*

SE: 527, 531, 532, 533, 545, 547

S-MD-3. (+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value.*

SE: 550

S-MD-4. (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. *

SE: 527, 531, 532, 588-593

S-MD-5. (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.*

a. Find the expected payoff for a game of chance.

b. Evaluate and compare strategies on the basis of expected values.

(37)

Page 36 of 36

Common Core State Standards for Mathematics© Copyright 2010.

National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved S-MD-6. (+) Use probabilities to make fair decisions (e.g.,

drawing by lots, using a random number generator).*

SE: 551-558

S-MD-7. (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).*

SE: 729, 731, 746, 748-749, 750, 754, 756

Referensi

Dokumen terkait

Sifat kopal manila yang diuji dalam penelitian ini meliputi penampakan, warna, kadar kotoran, titik lunak, kadar abu, bilangan asam, bilangan penyabunan, pH dan berat

Tujuan penelitian ini adalah menetapkan lokasi yang potensial untuk pengembangan kantong parkir pada rute Angkutan Umum Trans Sarbagita Koridor I dan Koridor II,

Hasil pemeriksaan fungsi paru diinterpretasikan melalui pembandingan nilai pengukuran yang didapat dengan nilai prediksi pada individu normal.. Prediksi nilai normal

Kebijakan revaluasi aset tetap akan mencerminkan keadaan yang sebenarnya dari aset tetap, karena revaluasi akan mencatat nilai dari aset tetap menggunakan nilai pasar,

Dengan demikian, kajian terhadap naskah-naskah Melayu perlu ditingkatkan, karena melalui kajian tersebut akan memberikan informasi tentang berbagai macam

11 Pembangunan dan Penataan kawasan prioritas RTBL Tahap I Pusat Perdagangan Dan Jasa Perkotaan Kisaran Timur. Blok Pengembangan Tahap I Pusat Perdagangan Dan

Kekuatan (Strengths) Merupakan kondisi kekuatan yang terdapat dalam organisasi, proyek atau konsep bisnis yang ada, kekutan yang di analisis merupakan faktor yang terdapat

Penelitian ini bertujuan untuk mengetahui perbedaan metode guided discovery learning dibandingkan dengan metode ekspositori ditinjau dari prestasi belajar matematika siswa