Format File Bitmap
Dosen Pembina : Sriyani Violina, M.T. Danang Junaedi 1RASTER GRAPHICS
2 alfeacamia.cmswiki.wikispaces.net/file/view/2.01+Raster+Graphics.pptRaster Graphics
• Also called bitmap
graphics
• Consist of grids of tiny
dots called pixels
• Have a fixed
resolution and cannot
be resized without
altering image quality
• Edited in paint
programs
Bitmap enlargement Notice the pixels
Image source: http://graphicssoft.about.com/od/aboutgraphics/a/bitmapvector.htm
Common Raster Formats
• GIF
• JPEG
• BMP
• PNG
• TIFF
GIF – Graphics Interchange Format
Animation – Standard format for animation on the Internet.
Transparency – yes • Lossless compression • Colors = 256 (8-bit)
• Most common format for:
– Text
– Clip art, animations, icons, logos
– Simple diagrams, line drawings
– Graphics with large blocks of a single color
– Graphics with transparent areas
– Images displayed on computer screens and on websites.
Animated Gif
5
JPEG – Joint Photographic Experts Group
X Animation – No X Transparency – No • Lossy compression • Colors – 16.7 M (24-bit) • High quality but larger file
size than a GIF
• Commonly Used For:
– Desktop publishing photographs
– Photographs and natural artwork
– Scanned photographs – Emailing photographs – Digital camera photographs
6
BMP - Bitmap
X Animation – No
X Transparency – No
• Uncompressed
• 256 colors
• Large file size - not
well suited for transfer
across the Internet or
for print publications
• Commonly Used For:
– Editing raster graphics – Creating icons and
wallpaper
– On-screen display
Icons 7
PNG – Portable Network Graphics
X Animation – no
Transparency – yes
• Lossless
compression
• 256 colors
– Not suited for photographs
• Commonly Used For:
– Replacing GIF and TIFF images – Online viewing of images
• See examples at
http://graphicssoft.abo
ut.com/od/freedownlo
ads/l/blfreepng07.htm
8TIFF – Tagged Image File Format
X Animation – No X Transparency – No • Available in compressed and un-compressed formats • Compressed is advised • Colors – 16 M (24-bit)• Commonly Used For:
– Storage container for faxes and other digital images – To store raw bitmap data
by some programs and devices such as scanners – High resolution printing – Desktop Publishing images
9
Demonstration of File Sizes
10
samsclass.info/131/pptF05/ch09.ppt
BITMAP
11
1. pages.towson.edu/hilberg/COSC109/Ch06.ppt
2. Referensi lain yang terkait
BMP File Bitmap
• The BMP file format, sometimes called bitmap or DIB file format (for
device-independent bitmap), is an image file format used to store bitmap
digital images, especially on Microsoft Windows and OS/2 operating systems.
• Bitmap is derived from the words ‘bit’, which means the simplest element in
which only two digits are used, and ‘map’, which is a two-dimensional matrix of these bits. A bitmap is a data matrix describing the individual dots or pixels (picture elements) of an image.
• Bitmapped images are known as paint graphics.
• Bitmapped images can have varying bit and color depths.
• Bitmaps are an image format suited for creation of:
– Photo-realistic images. – Complex drawings.
– Images that require fine detail.
• Many graphical user interfaces use bitmaps in their built-in graphics
subsystems;[1] for example, the Microsoft Windows and OS/2 platforms' GDI subsystem, where the specific format used is the Windows and OS/2
Bitmaps
13
Available binary Combinations for Describing a Color
Bitmaps
1. 24 bit color (millions of colors)
2. 8 bit color (256 colors)
3. 8 bit color (Mac optimized palette)
4. 4 bits color (16 colors)
5. 8 bit gray scale (256 shades)
6. 4 bit gray scale (16 shades)
7. 1 bit gray scale (2 shades)
14
Bitmaps
Bitmaps can be inserted by:
– Using clip art galleries - an assortment of graphics, photographs, sound, and video. A popular alternative for users who do not want to create their own images.
– Using bitmap software such as Adobe's Photoshop and Illustrator, Macromedia's Fireworks, Corel's Painter, CorelDraw, Quark Express.
– Capturing and editing images.
• Capturing and storing images directly from the screen is another way to assemble images for multimedia.
• Image editing enables one to enhance and make composite images, alter and distort images and add and delete elements.
– Scanning images from conventional sources and make necessary alterations and manipulations.
15
Device-independent bitmaps and BMP file
format
BMP File Header Stores general information about the BMP file.
Bitmap Information
(DIB header)
Stores detailed information about the bitmap image.
Color Palette Stores the definition of the colors being used
for indexed color bitmaps.
Bitmap Data Stores the actual image, pixel by pixel.
16
• Microsoft has defined a particular representation of color bitmaps of different color depths, as an aid to exchanging bitmaps between devices and applications with a variety of internal representations. They called these device-independent bitmaps or DIBs, and the file format for them is called DIB file format or BMP file format. • A typical BMP file usually contains the following blocks of data:
BMP file header
• This block of bytes is at the start of the file and is used to identify the file.
• A typical application reads this block first to ensure that the file is actually a
BMP file and that it is not damaged.
• Note that the first two bytes of the BMP file format (thus the BMP header) are
stored in big-endian order.
• This is the magic number 'BM'. All of the other integer values are stored in
little-endian format (i.e. least-significant byte first)
Offset# Size Purpose
0000h 2 bytes
the magic number used to identify the BMP file: 0x42 0x4D (Hex code points for B and M).
The following entries are possible: •BM - Windows 3.1x, 95, NT, ... etc •BA - OS/2 Bitmap Array •CI - OS/2 Color Icon •CP - OS/2 Color Pointer •IC - OS/2 Icon •PT - OS/2 Pointer 0002h 4 bytes the size of the BMP file in bytes
0006h 2 bytes reserved; actual value depends on the application that creates the image 0008h 2 bytes reserved; actual value depends on the application that creates the image 000Ah 4 bytes the offset, i.e. starting address, of the byte where the bitmap data can be
found.
17
Bitmap information (DIB header)
This block of bytes tells the application detailed information about the image, which will be used to display the image on the screen. The block also matches the header used internally by Windows and OS/2 and has several different variants.
Size Header Identified by Supported by the GDI of
12 OS/2 V1 BITMAPCOREH
EADER
OS/2 and also all Windows versions since Windows 3.0
64 OS/2 V2 BITMAPCOREH
EADER2
40 Windows V3 BITMAPINFOHE
ADER
all Windows versions since Windows 3.0
108 Windows V4 BITMAPV4HEAD
ER
all Windows versions since Windows 95/NT4
124 Windows V5 BITMAPV5HEAD
ER Windows 98/2000 and newer
18
BITMAPFILEHEADER
Offset Size Name Description 0 2 bfType ASCII “BM” 2 4 bfSize Size of file (in bytes) 6 2 bfReserved1 Zero
8 2 bfReserved2 Zero
10 4 bfOffBits Byte offset in files where image begins
14 4 biSize Size of this header (40 bytes)
18 4 biWidth Image width in pixels
22 4 biHeight Image height in pixels
26 2 biPlanes Number of image planes, must
be 1
28 2 biBitCount Bits per pixel: 1,4,8, or 24
30 4 biCompression Compression type
19
BITMAPINFOHEADER (Windows 3) (cont’d)
Offset Size Name Description
34 4 biSizeImage Size of compressed image (in bytes),
zero if uncompressed
38 4 biXPelsPerMeter Horizontal resolution (pixels/meter)
42 4 biYPelsPerMeter Vertical resolution (pixels/meter)
46 4 biClrUsed Number of colors used
50 4 biClrImportant Number of ‘important’ color
54 4*N bmiColors Color map
Proses Pembacaan Citra 24 bit
21
Windows RGBQUAD
Offset Name Description
0 rgbBlue Blue value for color map entry
1 rgbGreen Green value
2 rgbRed Red value
3 rgbReserved Zero
22
Proses Penentuan Warna Ke Layar
• Untuk file 24 bit Informasi intensitas RGB sudah dapat langsungdiketahui dari bitmap data, sedangkan untuk file 1,4,8 bit informasi RGB diperoleh dari Color Map
23
Proses Penentuan Warna Ke Layar
• Pada umumnya setiap bahasa pemrograman telahmenyediakan fungsi untuk menghasilkan warna apabila kita telah mengetahui intensitas RGB:
– Contoh dalam delphi:
• Image1.canvas.pixel(1,1)=RGB(10,8,2);
– Contoh dalam Visual Basic:
• PicBaru.PSet (SbX, SbY), RGB(10, 8, 2)
A
B
• Perlu diperhatikan bahwa dalam file data disimpan dari belakang ke depan secara sequential. Berarti bitmap data pertama adalah pixel pada posisi A dan bitmap data terakhir adalah pixel pada posisi B
Penentuan Posisi Pixel
25
Color map
• Citra 1, 4, dan 8 bit per pixel butuh color map
• Entri dalam color map (palette) biasanya 2, 16, atau 256 – Bisa lebih sedikit jika citra tidak membutuhkan semua
warna yang tersedia
– Jumlah warna yang digunakan = biClrUsed
– biClrUsed = 0 color map memuat semua warna
– 4 byte per entri
• Entri awal color map = warna penting
– Jumlah warna penting = biClrImportant jumlah
warna yang diperlukan untuk mendapat tampilan citra yang cukup bagus
26
Proses Pembacaan Citra 8 bit
• Citra dengan kedalaman 8 bit berarti 1 pixel diwakili oleh 1 byte dan memiliki kemungkinan warna sebanyak 8 bit • Prosesnya sama dengan pembacaan citra 24 bit dimana
kita membaca :
• FileHeader sebesar 14 byte • InfoHeader 40 byte • ColorMap
• Bitmap Data
Proses Pembacaan Citra 8 bit
Dengan mengetahui informasi mengenai OffBits maka kita bisa menghitung posisi offset dari ColorMap yaitu dimulai dari offset 54 sampai dengan nilai yang tersimpan didalam offbits(X)
Proses Pembacaan Citra 8 bit
• Analogi Color Map adalah mengindex warna yang ada ke dalam tabel sehingga bitmap data tidak lagi berisi data intensitas RGB namun mengandung index warna • Untuk mengetahui warna pixel(x) maka kita mengakses
color map dengan index sesuai dengan nilai yang tersimpan pada bitmap data
29
Proses Pengambilan Warna dari Color Map
Berarti untuk pixel 1 intensitas RGB : 56 5 9
Berarti untuk pixel 2 intensitas RGB : 5 34 67
Berarti untuk pixel 3 intensitas RGB : 5 34 67 COLORMAP B G R 0 B G R 0 B G R 0 56 5 9 1 5 34 67 15 5 34 67 30
Menentukan Ukuran File dari Bitmap
• Yang membedakan antara citra 1,4,8,24 bit adalah
ukuran storage yang digunakan untuk menyimpan warna dari 1 buah pixel
• Misalkan: citra A :200 x 200 pixel
– Hitung berapa minimum byte dari file bitmap yang dihasilkan bila:
a. citra A disimpan dalam 8 bit b. citra A disimpan dalam 24 bit
– Solusi a. 200 x 200 x 1 + 54 + 256 * 3 = 40822 byte b. 200 x 200 x 3 + 54 = 120054 byte 31
EQUALISASI HISTOGRAM
SPESIFIKASI HISTOGRAM
32Dua Pendekatan Image Enhancement
• Metode-metode berbasis domain frekwensi– Manipulasi terhadap representasi frekwensi dari citra – Contoh: operasi berbasis transformasi Fourier terhadap
citra
• Metode-metode berbasis domain spasial
– Manipulasi langsung terhadap pixel-pixel pada citra – Contoh: operasi histogram
33
Histogram citra
• Berlaku untuk nilai gray level; RGB per plane warna • Plotting dari persamaan:
– L: jumlah level
– pr(rk): probabilitas kemunculan level ke-k
– nk: jumlah kemunculan level k pada citra
– n: total jumlah pixel dalam citra
1
,...,
1
,
0
;
1
0
;
)
(
=
≤
r
≤
k
=
L
−
n
n
r
p
k k k r 34Contoh histogram
35Equalisasi histogram
• Tujuan: melakukan transformasi terhadap histogram citra asli sedemikian sehingga didapat histogram citra hasil dengan distribusi lebih seragam (uniform) ≈ linearisasi • Dasar konsep: transformasi probability density function
menjadi uniform density bentuk kontinyu
• Agar dapat dimanfaatkan dalam pengolahan citra digital, diubah ke bentuk diskrit
Equalisasi pada domain kontinyu
[ ]
1
1
0
1
)
(
1
)
(
)
(
:
1
0
;
)
(
)
(
:
)
(
)
(
:
) ( ) ( 0 ) ( 1 1 1≤
≤
=
=
=
≤
≤
=
=
=
− − − = = =∫
s
r
p
r
p
s
p
Uniform
r
dw
w
p
s
T
s
si
Transforma
ds
dr
r
p
s
p
Histogram
s T r s T r r r s r r s T r r s 37Ilustrasi equalisasi pada domain kontinyu
38
Bentuk diskrit fungsi transformasi
1
0
)
(
1
,...,
1
,
0
1
0
)
(
)
(
1 0 0≤
≤
=
−
=
≤
≤
=
=
=
− = =∑
∑
k k k k k j k j j r j k ks
s
T
r
L
k
r
r
p
n
n
r
T
s
39Operasi equalisasi histogram
1. Buat histogram dari citra asli
2. Transformasikan histogram citra asli menjadi
histogram dengan distribusi seragam
3. Ubah nilai tiap pixel sesuai dengan nilai hasil
pemetaan (histogram asli
uniform
histogram)
Pseudo Code : citra 512 x 512 pixel 256 graylevel
Var x,y,i,j : integer;
HistEq : array[0..255] of integer; Hist : array[0..255] of real; Sum : real;
Begin
Histogram(image,Hist) {bentuk histogram dari citra asli} for i:= ∅∅∅∅to 255 do {transformasi ke uniform histogram}
sum := 0.0 for j:= ∅∅∅∅to i do
sum:= sum + hist[j] endfor
histEq[i]:=round(255 * sum); end;
for y:=0 to 511 do {ubah nilai tiap pixel pada citra} for x:=0 to 511 do image[x,y]:= HistEq[Image[x,y]]; end; end; end; 41
Contoh
Citra 64x64 pixel, 8 tingkat keabuan dgn distribusi: rk nk pr(rk)=nk/n r0=0 790 0,19 r1=1/7 1023 0,25 r2=2/7 850 0,21 r3=3/7 656 0,16 r4=4/7 329 0,08 r5=5/7 245 0,06 r6=6/7 122 0,03 r7=1 81 0,02 Histogram citra: 0 0,05 0,1 0,15 0,2 0,25 0,3 0 1/7 2/7 3/7 4/7 5/7 6/7 1 gray level (rk) p ro b a b il it y ( p r (r k )) 42Fungsi transformasi
00 . 1 ) ( ) ( 98 . 0 ) ( ) ( ; 95 . 0 ) ( ) ( 89 . 0 ) ( ) ( ; 81 . 0 ) ( ) ( 65 . 0 ) ( ) ( ) ( ) ( ) ( 44 . 0 ) ( ) ( ) ( ) ( 19 . 0 ) ( ) ( ) ( 7 0 7 7 6 0 6 6 5 0 5 5 4 0 4 4 3 0 3 3 2 1 0 2 0 2 2 1 0 1 0 1 1 0 0 0 0 0 = = = = = = = = = = = = = = = = + + = = = = + = = = = = = =∑
∑
∑
∑
∑
∑
∑
∑
= = = = = = = = j j r j j r j j r j j r j j r r r r j j r r r j j r r j j r r p r T s r p r T s r p r T s r p r T s r p r T s r p r p r p r p r T s r p r p r p r T s r p r p r T s 43Fungsi transformasi: grafik
0 0,2 0,4 0,6 0,8 1 1,2 0 1/7 2/7 3/7 4/7 5/7 6/7 1 gra y le ve l (rk) tr a n s fo rm e d v a lu e ( sk ) 44
Pembulatan
• 8 tingkat keabuan valid nilai Skdibulatkan ke nilai
valid terdekat [Normal (Skx (tingkat kedalaman-1))]
s0 = 0.19 ≅ 1/7 s1 = 0.44 ≅ 3/7 s2 = 0.65 ≅ 5/7 s3 = 0.81 ≅ 6/7 s4 = 0.89 ≅ 6/7 s5 = 0.95 ≅ 1 s6 = 0.98 ≅ 1 s7 = 1.00 ≅ 1 45
Pemetaan
• Hanya ada 5 level keabuan pada uniform histogram
– r0(790 pixel) s0= 1/7
– r1(1023 pixel) s1= 3/7
– r2(850 pixel) s2= 5/7
– r3(656 pixel), r4(329 pixel) s3= 6/7
– r5(245 pixel),r6(122 pixel),r7(81 pixel) s4= 7/7
46
Histogram dengan distribusi seragam
0 0,05 0,1 0,15 0,2 0,25 0,3 0 1/7 2/7 3/7 4/7 5/7 6/7 1 gra y le ve l (sk) p ro b a b il it y ( ps (sk ))
Karena histogram merupakan aproksimasi terhadap probability density function, sangat jarang didapat histogram hasil yang betul-betul rata
47
Tabel Histogram secara Lengkap
rk nk pr(rk)=nk/n Sk Sk x 7 Normal(Sk) r0=0 790 0,19 0,19 1,33 ≅≅≅≅1 s0=1/7 r1=1/7 1023 0,25 0,44 3,08 ≅≅≅≅3 s1=3/7 r2=2/7 850 0,21 0,65 4,55 ≅≅≅≅5 s2=5/7 r3=3/7 656 0,16 0,81 5,67 ≅≅≅≅6 s3=6/7 r4=4/7 329 0,08 0,89 6,23 ≅≅≅≅6 s4=6/7 r5=5/7 245 0,06 0,95 6,65 ≅≅≅≅7 s5=7/7 r6=6/7 122 0,03 0,98 6,86 ≅≅≅≅7 s6=7/7 r7=1 81 0,02 1,00 7 s7=1 48Hasil Equalisasi
rjsk nk ps(sk) r0s0=1/7 790 0,19 r1s1=3/7 1023 0,25 r2s2=5/7 850 0,21 r3,r4 s3=6/7 985 0,24 r5,r6,r7 s4=7/7 448 0,11 0 0 , 0 5 0 , 1 0 , 1 5 0 , 2 0 , 2 5 0 , 3 0 1 / 7 2 / 7 3 / 7 4 / 7 5 / 7 6 / 7 1 g r a y l e v e l (sk) p ro b a b il it y ( ps (sk )) 49Contoh1 equalisasi histogram
50
Contoh 2 equalisasi histogram
51
Spesifikasi histogram
• Kelemahan equalisasi histogram:
histogram hasil tidak bisa dibentuk sesuai
kebutuhan
• Kadangkala dibutuhkan untuk lebih
menonjolkan rentang gray level tertentu
pada citra
spesifikasi histogram
Operasi spesifikasi histogram
1. Buat histogram dari citra asli
2. Transformasikan histogram citra asli
menjadi histogram dengan distribusi
seragam
3. Tentukan fungsi trasformasi sesuai
spesifikasi histogram yang diinginkan
4. Ubah nilai tiap pixel sesuai dengan nilai
hasil pemetaan (histogram asli
histogram
equalisasi
histogram hasil)
53
Algoritma:
citra 512 x 512 pixel 256 graylevelVar x,y,i,minval,minj,j : integer; Histspec : array[0..255] of integer; Invhist : array[0..255] of integer; Sum : real;
Begin
Hist_Equalization(Image) {equalisasi histogram}
For i:= 0 to 255 do {histogram yang dispesifikasikan telah disimpan di
spec}
Sum:= 0.0;
For j:= 0 to i do Sum := sum + spec[j] Histspec[i] = round(255 * sum) Endfor {didapat fungsi transformasi} for i:= 0 to 255 do {pemetaan histogram}
minval := abs(i – histspec[0]; minj := 0; for j:= 0 to 255 do
if abs(i – histspec[j]) < minval then minval := abs(i – histspec[j]) minj := j
endif invhist[i]:= minj endfor
endfor
for y:= 0 to 511 do {ubah nilai tiap pixel pada citra} for x:= 0 to 511 do image[x,y] = invhist[image(x,y)]
54
Bentuk diskrit spesifikasi histogram: by
example
Citra 64x64 pixel, 8 tingkat keabuan dgn distribusi: rk nk pr(rk)=nk/n r0=0 790 0,19 r1=1/7 1023 0,25 r2=2/7 850 0,21 r3=3/7 656 0,16 r4=4/7 329 0,08 r5=5/7 245 0,06 r6=6/7 122 0,03 r7=1 81 0,02 Histogram citra: 0 0,05 0,1 0,15 0,2 0,25 0,3 0 1/7 2/7 3/7 4/7 5/7 6/7 1 gray level (rk) p ro b a b il it y ( pr (rk )) 55
Bentuk histogram yang diinginkan
zk pz(zk) z0=0 0,00 z1=1/7 0,00 z2=2/7 0,00 z3=3/7 0,15 z4=4/7 0,20 z5=5/7 0,30 z6=6/7 0,20 z7=1 0,15 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0 1/7 2/7 3/7 4/7 5/7 6/7 1 gray level (zk) p ro b a b il it y ( pz (zk )) 56Langkah 1: equalisasi histogram
Didapat hasil: rjsk nk ps(sk) r0s0=1/7 790 0,19 r1s1=3/7 1023 0,25 r2s2=5/7 850 0,21 r3,r4 s3=6/7 985 0,24 r5,r6,r7 s4=7/7 448 0,11 0 0 , 0 5 0 , 1 0 , 1 5 0 , 2 0 , 2 5 0 , 3 0 1 / 7 2 / 7 3 / 7 4 / 7 5 / 7 6 / 7 1 g r a y l e v e l (sk) p ro b a b il it y ( ps (sk )) 57Langkah 2: cari fungsi transformasi
∑
==
=
k j j z k kG
z
p
z
v
0)
(
)
(
v
0= G(z
0) = 0,00
v
1= G(z
1) = 0,00
v
2= G(z
2) = 0,00
v
3= G(z
3) = 0,15
v
4= G(z
4) = 0,35
v
5= G(z
5) = 0,65
v
6= G(z
6) = 0,85
v
7= G(z
7) = 1,00
58Langkah 1 : Equalisasi
rk nk pr(rk)=nk/n Sk Sk x 7 Normal(Sk) r0=0 790 0,19 0,19 1,33 ≅ 1 s0=1/7 r1=1/7 1023 0,25 0,44 3,08 ≅ 3 s1=3/7 r2=2/7 850 0,21 0,65 4,55 ≅ 5 s2=5/7 r3=3/7 656 0,16 0,81 5,67 ≅ 6 s3=6/7 r4=4/7 329 0,08 0,89 6,23 ≅ 6 s4=6/7 r5=5/7 245 0,06 0,95 6,65 ≅ 7 s5=7/7 r6=6/7 122 0,03 0,98 6,86 ≅ 7 s6=7/7 r7=1 81 0,02 1,00 7 s7=1 59Langkah 2: cari fungsi transformasi
zk pz(zk) Vk Vk x 7 Normal(Vk) z0=0 0,00 0,00 0,00 v0=0 z1=1/7 0,00 0,00 0,00 v1=0 z2=2/7 0,00 0,00 0,00 v2=0 z3=3/7 0,15 0,15 1,05 ≅ 1 v3=1/7 z4=4/7 0,20 0,35 2,45 ≅ 2 v4=2/7 z5=5/7 0,30 0,65 4,45 ≅ 4 v5=4/7 z6=6/7 0,20 0,85 5.95 ≅ 6 v6=6/7 z7=1 0,15 1,00 7 v7=1
Dengan kata lain, lakukan langkah-langkah equalisasi thd histogram yang diinginkan :
Grafik fungsi transformasi
0 0,2 0,4 0,6 0,8 1 1,2 0 1/7 2/7 3/7 4/7 5/7 6/7 1 gra y le ve l (zk) tr a n s fo rm a ti o n ( vk ) 61Langkah 3: terapkan inverse G pada
level histogram equalisasi
Pemetaan nilai skke G(zk) terdekat
s0= 1/7 ≈ 0.14 G(z3) = 0.15; z3= 3/7 s1= 3/7 ≈ 0.43 G(z4) = 0.35; z4= 4/7 s2= 5/7 ≈ 0.71 G(z5) = 0.65; z5= 5/7 s3= 6/7 ≈ 0.86 G(z6) = 0.85; z6= 6/7 s4= 1 G(z7) = 1.00; z7= 1 62
Langkah 4: pemetaan dari r
kke z
k• Dengan memperhatikan pemetaan histogram asli ke histogram equalisasi r0= 0 z3= 3/7 r1= 1/7 z4= 4/7 r2= 2/7 z5= 5/7 r3= 3/7 z6= 6/7 r4 = 4/7 z6 = 6/7 r5 = 5/7 z7 = 1 r6 = 6/7 z7 = 1 r7 = 1 z7 = 1 63
Histogram hasil
zk nk pz(zk)=nk/n r0=0 0 0 r1=1/7 0 0 r2=2/7 0 0 r3=3/7 790 0,19 r4=4/7 1023 0,25 r5=5/7 850 0,21 r6=6/7 985 0,24 r7=1 448 0,11 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0 1/7 2/7 3/7 4/7 5/7 6/7 1 gray level (zk) p ro b a b il it y ( p z (z k ))Histogram hasil mungkin tidak sama persis dengan spesifikasinya transformasi hanya akan memberikan hasil yang persis pada kasus kontinyu
Contoh 1 spesifikasi histogram
65
Contoh 2 spesifikasi histogram
66
Contoh 3 spesifikasi histogram
67