• Tidak ada hasil yang ditemukan

Implementasi Dan Evaluasi Kinerja Kode Konvolusi Pada Modulasi Quadrature Phase Shift Keying (QPSK) Menggunakan WARP

N/A
N/A
Protected

Academic year: 2021

Membagikan "Implementasi Dan Evaluasi Kinerja Kode Konvolusi Pada Modulasi Quadrature Phase Shift Keying (QPSK) Menggunakan WARP"

Copied!
5
0
0

Teks penuh

(1)

Abstrak-Komunikasi digital membutuhkan suatu sistem komunikasi yang memberikan transfer data handal dan tahan terhadap noise yang terdapat pada kanal transmisi. Untuk memberikan transfer data yang handal dan tahan terhadap

noise maka dibutuhkan suatu system pengkodean kanal yang

mampu mendeteksi kesalahan dan mengoreksi kesalahan. Kode konvolusi merupakan suatu teknik pengkodean kanal yang dapat mendeteksi dan mengoreksi kesalahan. Dengan menggunakan kode konvolusi maka akan mempengaruhi nilai

Bit Error Rate (BER), dan modulasi Quadrature Phase Shift Keying (QPSK) merupakan suatu modulasi yang memiliki

efisiensi bandwidth dua kali lebih besar, karena duat bit dikirimkan pada satu symbol sinyal termodulasi. Dengan implementasi pada Wireless Open-Access Research Platform (WARP) akandi analisis kinerja dari kode konvolusi pada modulasi QPSK. Dari hasil implementasi dan pengukuran menunjukkan bahwa pada saat daya pancar sama, modulasi QPSK dengan kode konvolusi memiliki BER lebih kecil dibandingkan modulasi QPSK tanpa kode konvolusi, yaitu untuk kode konvolusi dengan kode rate 1/2 pada jarak 6 meter nilai BER = 0.00065232 sedangkan untuk nilai BER tanpa kode konvolusi = 0.0048828, dan untuk pengkodean dengan code rate 7/8 memiliki nilai BER lebih baik dibandingkan pengkodean dengan code rate 1/2, 2/3, 3/4 dan 5/6 dengan nilai BER = 0.00037495.

Kata Kunci--- Kode konvolusi, QPSK, WARP I. PENDAHULUAN

ADA masa komunikasi digital saat ini dimana dibutuhkan suatu sistem komunikasi yang dapat memberikan transfer data yang handal dan tahan terhadap gangguan atau noise yang terdapat pada kanal transmisi. Dimana gangguan noise tersebut dapat menyebabkan distorsi sinyal dan mempengaruhi nilai signal to noise ratio

(SNR).Untuk memberikan transfer data yang handal dan tahan terhadap noise maka dibutuhkan suatu sistem pengkodean kanal yang mampu mendeteksi kesalahan dan mengoreksi kesalahan (error).Kode konvolusi merupakan suatu teknik pengkodean kanal yang dapat mendeteksi kesalahan dan mengoreksi kesalahan. Dengan menggunakan teknik kode konvolusi sesuai dengan code rate yang ditentukan maka akan mempengaruhi nilai bit error rate

(BER), BER akan bernilai lebih kecil bila dibandingkan tanpa kode konvolusi.

Modulasi Quadrature Phase Shift Keying (QPSK) merupakan suatu modulasi yang memiliki efisiensi

bandwidthdua kali lebih besar dibandingkan dengan BPSK, karena dua bit dikirimkan pada satu symbol sinyal termodulasi. Untuk mengetahui pengaruh kode konvolusi terhadap efisiensi bandwidthtersebut maka akan digunakan

modulasi QPSK. Denganimplementasi menggunakan modul

Wireless Open-Access Research Platform (WARP).yang merupakan salah satu jenis Software Defined Radio(SDR) untuk system komunikasi nirkabel yang dapat di implementasikan menggunakan perangkat lunak atau

software matlab.Penggunaan SDR dapat mengurangi pergantian hardware secara terus-menerus sehingga lebih menghemat biaya, dapat meminimalisasi kesalahan dan bersifat programmable.WARP digunakan sebagai pemancar dan penerima untuk mengukur kinerja dari kode konvolusi. Dimana akan diamati dan dievaluasi tentang pengaruh kode konvolusi menggunakan WARP.

II. TEORI PENUNJANG A. Kode Konvolusi[1][2][3]

Kode konvolusi adalah salah satu teknik umum dalam pengkodean kanal. Pengkodean kanal disebut juga error correction codeyang memberikan komunikasi yang handal, memperkenalkan kesalahan bit atau juga mendistorsi sinyal yang dikirim. Sebagai kode biner, kode konvolusi melindungi informasi dengan menambahkan bit. Sebuah rate k/n kode konvolusi memproses urutan input dari k-bit informasi symbol melalui satu atau lebih register geser (menggunakan umpan balik). Kode konvolusi menghitung setiap n-bit symbol (n > k) urutan output dari operasi linier pada simbol input [4]. Encoder kode konvolusi dengan code rate 1/2 dapat dilihat pada gambar 1 dibawah ini.

+

+

Input bit m

u1, first code symbol

u2, second code symbol

Gambar 1.EncoderKode Konvolusi dengan Panjang K = 3 dan Rate½ Encoder kode konvolusi dengan K = 3 dan code rate= 2/3 dapat dilihat pada gambar 2.

Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111

E-mail: desrinaelvia13@gmail.com, suwadi110@gmail.com, titiks@ee.its.ac.id

(2)

Gambar 2. Encoderkode konvolusi dengan K = 3 dan rate2/3

Encoder kode konvolusi dengan K = 3 dan code rate= 3/4 dapat dilihat pada gambar 3.

Gambar 3. Encoderkode konvolusi dengan K = 3 dan rate3/4

Encoder kode konvolusi dengan K = 3 dan code rate= 5/6 dapat dilihat pada gambar 4

Gambar 4. Encoderkode konvolusi dengan K = 3 dan rate5/6

Encoder kode konvolusi dengan K = 3 dan code rate= 7/8 dapat dilihat pada gambar 5

Gambar 5. Encoder kode konvolusi dengan K = 3 dan code rate= 7/8 Parameter-parameter utama dalam kode konvolusi: 1. Laju kode konvolusi(R)

Laju kode konvolusi (R) merupakan rasio antara masukan informasi bit dengan keluaran bit terkodekan dan mempunyai persamaan sebagai berikut :

=

Dengan, R = laju kode konvolusi k = jumlah bit input n = jumlah bit output 2. Panjang Memori (K)

Panjang memori K adalah jumlah elemen tundaan dalam kode konvolusi yaitu memori dengan masukan bit sekarang pada kode konvolusi atau dapat disebut juga panjang kode dari kode konvolusi.

Panjang memori dapat didefenisikan sebagai berikut : K=M+1

Dengan, K = panjang memori dan M = memori.

B. Algoritma Viterbi

Algoritma Viterbi adalah metode yang digunakan untuk decoding pada kode konvolusi. Algoritma Viterbi menggunakan diagram trellis dari kode konvolusi, seperti pada gambar 6. Pada penerima, decoder Viterbi dapat (berusaha) mengembalikan sinyal yang salah pada saat transmisi ke sinyal yang benar dengan menyimpan beberapa data sebelumnya, mengkalkulasi ‘jarak konstelasi’ antar data yang berurutan, dan memperkirakan data yang paling mungkin diterima sehingga bit yang salah dapat dideteksi dan diperbaiki. Dengan menggunakan Hamming distance

(3)

Gambar 6 Diagram trellis rate= 1/2 dan K = 3

C. Quadrature Phase Shift Keying(QPSK)[4]

Modulasi Quadrature Phase Shift Keying (QPSK) merupakan M-ary encoding dimana M = 4 (Quartenary). Pada modulasi QPSK terdapat empat level sinyal yang merepresentasikan empat kode biner. Masing-masing level dengan perbedaan fasa 900.

Tabel kemungkinan keadaan pada QPSK dapat dilihat pada tabel 1 berikut :

Tabel 1 Kemungkinan pada QPSK

Fase Data Biner

450 00

1350 01

2250 11

3150 10

Modulasi QPSK memiliki efisiensi bandwidthdua kali lebih besar dibandingkan dengan BPSK, karena dua bit dikirimkan pada satu symbol sinyal termodulasi. Diagram konstelasi dari QPSK dapat dilihat pada gambar 7.

Gambar 7 Diagram konstelasi QPSK D. Coding Gain[1]

Coding gain adalah ukuran perbedaan signal-to-noise ratio ( SNR ) antara sistem uncoded dan sistem kode yang digunakan untuk mencapai tingkat kesalahan bit yang sama ( BER ) bila digunakan dengan mengoreksi kesalahan kode ( ECC ).

Misalnya jika sistem BPSK uncoded di channel AWGN memiliki tingkat kesalahan bit (BER) 10-2 saat SNR 4 dB, dan sesuai kode (misalnya, BCH) sistem memiliki BER yang sama pada SNR dari 2,5 dB, maka coding gain = 4 dB - 2,5 dB = 1,5 dB.

Gambar 8 Radio boardWARP

III. PERANCANGAN DAN IMPLEMENTASI SISTEM

A. Pemodelan Sistem Komunikasi

Secara umum blok diagram systemkomunikasi dengan kode konvolusi pada gambar 9 ini tidak jauh berbeda dengan system komunikasi SISO lainnya. Dimana pada pemancar setelah bit dibangkitkan di encoder terlebih dahulu dengan menggunakan kode konvolusi sesuai code rateyang ditentukan selanjutnya di modulasi menggunakan modulasi QPSK dan kemudian pada penerima setelah demodulasi dilakukan decoder dengan menggunakan

algoritma viterbi sehingga diperoleh bit keluaran. Selanjutnya dilakukan perhitungan BER dengan membandingkan bit masukan sebelum encoder dan bit keluaran setelah decoder.

Gambar 9. Blok diagram sistem komunikasi SISO dan kode konvolusi dengan teknik modulasi QPSK

(4)

B. Implementasi PadaWARP

Untuk mengimplementasikan systemkomunikasi pada WARP terlebih dahulu harus dilakukan integrasi antara PC dengan modul WARP. Antar node WARP di sambungkan dengan Lapotop/PC menggunakan kabel land an switch. Seperti pada gambar 10 dibawah ini.

Gambar 10. Konfigurasi sistem komunikasi siso dengan warp C. Perhitungan BER

Perhitungan BER dilakukan dengan membandingkan bit masukan dan bit keluaran, bit masukan yang berupa data sebelum di encoder menggunakan kode konvolusi dan bit keluaran berupa data setelah di dekoder menggunakan algoritma Viterbi.

IV. HASIL PENGUJIAN DAN ANALISIS

Analisis hasil dilakukan setelah pengukuran di dalam ruangan (indoor) dengan teknik Modulasi QPSK menggunakan Kode Konvolusi dengan mengubah jarak antara node pengirim Tx dan penerima Rx untuk mendapatkan nilai Bit Error Rate (BER). Pengukuran juga dilakukan dengan mengubah nilai daya pancar untuk mendapatkan nilai BER.

A. Kinerja system pada kondisi LOS dan NLOS Tabel 2

Hasil pengukuran BER pada kondisi LOS dan NLOS jarak 6 meter code rate1/2

Tx_Gain_Rf LOS NLOS

0 0.18587 0.4214 4 0.15788 0.3692 8 0.076321 0.2688 12 0.022179 0.1657 16 0.0078278 0.0483 20 0.00065232 0.0202 24 0 0.0065 28 0 0.0033 32 0 6.52E-04 36 0 0

Gambar 11. Kurva BER pada kondisi LOS dan NLOS jarak 6 meter code rate 1/2

Dari tabel 2 diatas dapat diketahui pada saat kondisi LOS nilai BER telah mencapai nol pada saat Tx_Gain_Rf = 24 sedangkan untuk kondisi NLOS nilai BER mencapai nol pada Tx_Gain_Rf = 36. Hal ini menunjukkan kondisi LOS lebih baik daripada kondisi NLOS yang mana kawat penghalang tersebut memberikan pengaruh cukup besar terhadap proses pentransmisian data dan dapat mempengaruhi daya terima pada penerima.

Kurva BER untuk kondisi LOS dan NLOS pada jarak 6 meter dapat dilihat pada gambar 11. Pada gambar tersebut dapat diketahui saat kondisi LOS nilai BER = 0 yaitu pada saat daya pancar sebesar -25.2 dBm dan untuk kondisi NLOS nilai BER = 0 pada saat daya pancar sebesar -19 dBm.Jadi dapat diketahui kondisi NLOS membutuhkan daya pancar yang lebih besar daripada kondisi LOS.

B. Kinerja Sistem dengan Kode Konvolusi dan Tanpa Kode Konvolusi

Tabel 3

Hasil pengukuran BER untuk kode konvolusi dengan code rate 1/2 dan tanpa kode konvolusi pada jarak 6 meter

Tx_Gain_Rf Rate 1/2 Tanpa Code

0 0.18587 0.24984 4 0.15788 0.16112 8 0.076321 0.09375 12 0.022179 0.040039 16 0.0078278 0.029297 20 0.00065232 0.0048828 24 0 0.00032552 28 0 0 32 0 0 36 0 0

Dari hasil pengukuran tabel 3 dan gambar kurva BER gambar 12 untuk kondisi dengan Kode konvolusi dan tanpa kode konvolusi dapat diketahui bahwa dengan menggunakan kode konvolusi dapat memperbaiki BER. Pada jarak 6 meter saat Tx_Gain_Rf = 24, daya pancar = -23.5 dBm, untuk kondisi tanpa menggunakan kode konvolusi BER = 0.00032552 sedangkan dengan menggunakan kode konvolusi dengan code rate 1/2 BER bernilai 0.

Dari Kurva BER pada gambar 12 dapat diketahui gain code untuk code rate 1/2 dengan jarak 6 meter pada saat nilai BER 10-3yaitu:

Gain code = -24.4 dBm – (-25.6) dBm = 1.2 dB -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 10-4 10-3 10-2 10-1 100 Ptx (dBm) B E R LOS NLOS

(5)

Gambar 12. Kurva perbandingan BER untuk kode konvolusi dengan code rate 1/2 dan tanpa kode konvolusipada jarak 6 meter

C. Perbandingan Kinerja Sistem Kode Konvolusi dengan Code Rate 1/2, 2/3, 3/4, 5/6 dan 7/8

Tabel 4

Hasil Pengukuran BER Kode Konvolusi Pada Jarak 6 meter Tx_

Gain

_RF Rate 1/2 Rate 2/3 Rate 3/4 Rate 5/6 Rate 7/8 0 0.18587 0.17189 0.18475 0.14499 0.16085 4 0.15788 0.11998 0.12026 0.11159 0.13011 8 0.076321 0.044074 0.075381 0.058546 0.094863 12 0.022179 0.01714 0.018301 0.021218 0.026622 16 0.0078278 0.0048972 0.0056645 0.005501 0.0052493 20 0.00065232 0.00048972 0.00043573 0.00039293 0.00037495 24 0 0 0 0 0 28 0 0 0 0 0 32 0 0 0 0 0 36 0 0 0 0 0

Gambar 13. Kurva BER kode konvolusi pada jarak 6 meter

Setelah dilakukan implementasi pada WARP dengan kode konvolusi menggunakan rate 1/2, 2/3, 3/4, 5/6 dan 7/8 pada jarak 6 meter dalam ruangan (indoor) seperti data pada tabel 4 diatas dan gambar 13, diketahui bahwa kode konvolusi dengan rate 7/8 memiliki nilai BER yang lebih kecil dibandingkan kode konvolusi dengan code rate yang lainnya. Pada saat Tx_Gain_Rf = 20 dengan daya pancar = -25.2 dBm, untuk rate 7/8 BER = 0.00037495 dengan bit input = 2688 bit, rate 5/6 BER = 0.00039293 bit input 2560 bit, rate 3/4 BER = 0.00043573 bit input = 2304, rate 2/3 BER = 0.00048972 bit input = 2048, rate ½ BER = 0.00065232 bit input = 1536.

lebih kecil dibandingkan Modulasi QPSK tanpa kode konvolusi. Pada kode konvolusi dengan code rate 1/2 jarak 6 meter Tx_gain_RF = 24 nilai BER = 0 sedangkan nilai BER untuk yang tanpa kode konvolusi = 0.00032552.

3. Besar kecilnya BER pada setiap coderate dengan modulasi QPSK dipengaruhi oleh berapa besar inputan bit yang diberikan dan constrain length K yang digunakan. Kode konvolusi dengan code rate 7/8 pada jarak 6 meter memiliki nilai BER lebih baik yaitu 0.00037495 dengan input 2688 bit dibandingkan dengan code rate 1.2, 2/3, 3/4 dan 5/6.

4. Besarnya daya pancar sangat mempengaruhi nilai BER, semakin besar daya pancar maka BER akan semakin kecil.

5. Jarak antar Node juga sangat mempengaruhi BER, semakin jauh jarak antar Node pengirim Tx dan Node penerima Rx maka BER akan semakin besar.

DAFTAR PUSTAKA

[1] Sklar, Bernard. “ Digital Communications Fundamentals and Applications”. Prentice-Hall. 2001

[2] Rhee, Man Young. “Error Correcting Coding Theory”, McGraw-Hill, 1989.

[3] Lin, Shu. Daniel J. Costello, JR., “Error Control Coding Fundamentals and Applications”. Prentice-Hall.1983

[4] Xiong, F. “Digital Modulation Techniques”.Boston.London: Artech House. 2000.

[5] Wesel, Richard D., “Convolutional Codes” University of California. Encyclopedia of Telecommunications. 6WARP Project – Wireless

Open Access Research Platform.

http://warp.rice.edu/trac/wiki/about. -36 -34 -32 -30 -28 -26 -24 -22 10-4 10-3 Ptx (dBm) -36 -34 -32 -30 -28 -26 -24 10-4 10-3 10-2 10-1 100 Ptx (dBm) B E R Rate 1/2 Rate 2/3 Rate 3/4 Rate 5/6 Rate 7/8

Gambar

Gambar 1. Encoder Kode Konvolusi dengan Panjang K = 3 dan Rate ½ Encoder kode konvolusi dengan K = 3 dan code rate = 2/3  dapat dilihat pada gambar 2.
Gambar 5. Encoder kode konvolusi dengan K = 3 dan code rate = 7/8 Parameter-parameter utama dalam kode konvolusi: 1
Tabel kemungkinan keadaan pada QPSK dapat dilihat pada  tabel 1 berikut :
Gambar 10. Konfigurasi sistem komunikasi siso dengan warp
+2

Referensi

Dokumen terkait

Kurangnya penjagaan yang ketat karena luasnya lahan yang berada di lingkungan Waduk Mrica Masyarakat lebih banyak menyumbang dengan uang Blm adanya peningkatan namun

Alasan penulis adalah dikarenakan pada penelitian ini yang ingin dilihat adalah penggunaan teknik one shot pada video musik Save Me BTS, juga dalam video musik

Mengenai hal ini, apa yang telah dilaku- kan oleh pemerintah Iran bisa dijadikan bahan kajian yang tepat, yaitu karena konsekuensi atas pelarangan perkawinan sesama

Penelitian menggunakan 60 ekor ayam pedaging, dua puluh ekor ayam di awal penelitian diambil darahnya untuk pengamatan titer antibodi asal induk terhadap infeksi virus

Dari hasil wawancara dengan peserta WM dan FGD mengenai sikap informan terhadap pencegahan stress dapat disimpulkan bahwa 9 informan mengatakan sangat perlu

Kesimpulan yang didapat dari penelitian ini adalah status pencemaran di Perairan Cilincing tergolong tercemar sedang dengan kadar DO, COD dan BOD telah melampaui

Kadar Antosianin dan Aktivitas Antioksidan Flake Beras Merah dan Beras Ketan Hitam dengan Variasi Suhu Perebusan.. Fakultas Teknologi Pertanian Universitas

Pada uji Dissolved Oxygen (DO) dan uji Biological Oxygen Demand (BOD) perlakuan awal yang dilakukan ialah memasukkan sampel ke dalam botol winkler yang bertutup dengan cara