• Tidak ada hasil yang ditemukan

BAB IV HASIL ANALISA

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB IV HASIL ANALISA"

Copied!
18
0
0

Teks penuh

(1)

BAB IV

HASIL ANALISA

Pada pembahasan tugas akhir ini yang menjadi topik utama pembahasan adalah mengenai penyebab sebenarnya dari trip unit karena over eksitasi, apakah sistem proteksi telah bekerja dengan benar berdasarkan nilai setting, apakah sistem proteksi telah bekerja dengan nilai setting yang benar, Root Cause Failure Analysis(RCFA) dan upaya pengembangan untuk meminimalisir unit trip karena Over Excitation dimana salah satunya adalah penambahan perhitungan dan monitoring parameter V/Hz Generator pada DCS serta manfaat yang didapat setelah dilaksanakannya pengembangan.

4.1 Identifikasi Masalah

Sejak pertama kali sinkron dengan sistem jaringan 150 KV sampai Januari 2015, PLTU Banten 3 Lontar Unit 1 telah mengalami trip karena Over Excitation sebanyak tiga kali. Detail kondisi unit pada saat trip ditunjukkan pada tabel 1

(2)

Tabel 4.1. Kondisi Detail pada Saat Unit Trip

Berdasarkan tabel diatas dapat diperoleh kesimpulan Nilai Parameter tegangan dibanding frekuensi Generator pada Ketiga Kejadian Trip karena Over Eksitasi.

(3)

Untuk menentukan besarnya nilai tegangan generator dapat dicari dengan menggunakan rumus sebagai berikut :

Tp = Ts x rasio PT x

...(4.1)

Keterangan :

Tp : Tegangan Primer Generator

Ts : Tegangan Sekunder Generator

Rasio PT : Perbandingan jumlah belitan pada Potensial Transformator (PT)

Selanjutnya untuk menentukan berapa nilai perbandingan tegangan generator dengan frekuensi generator memakai rumus sebagai berikut :

...(4.2)

Keterangan :

V/Hz : nilai perbandingan antara tegangan dan frekuensi

V : tegangan primer generator (aktual)

Vn : tegangan nominal generator

F : frekuensi primer generator (aktual)

(4)

Berikut ini adalah perhitungan analisa trip unit yang terjadi sebanyak tiga kali sampai 1 januari 2015 a. 12 September 2011

Tp = Ts x rasio PT x

= 61,76 x 200 x 1,732 = 21393 V = 21,393 KV

Sehingga didapatkan nilai

= = 1,074 b. 7 November 2011

Tp = Ts x rasio PT x

= 61,3 x 200 x 1,732 = 21234 V = 21,234 KV

(5)

Sehingga didapatkan nilai

= = 1,063 c. 2 Februari 2012

Tp

= Ts x rasio PT x

= 62,21 x 200 x 1,732 = 21549 V = 21,549 KV

Sehingga didapatkan nilai

=

= 1,076

Dari hasil perhitungan diatas apabila dilihat pada tabel nilai setting proteksi Inverse Time Over Excitation maka ketiga perhitungan diatas telah melewati batas nilai yang telah ditentukan. dapat dilihat bahwa nilai tegangan dibandingkan dengan frekuensi generator telah melampaui nilai setting proteksi generator terendah yaitu Over Excitation (1,05 selama 23 detik).

(6)

Hal ini berarti apabila nilai perbandingan antara tegangan dengan frekuensi generator lebih dari 1,05 dan nilai tersebut bertahan sampai 23 detik maka proteksi generator akan bekerja yaitu proteksi generator Inverse Time Over Excitation maka proteksi generator akan memerintahkan generator untuk trip sehingga memicu pembangkit listrik untuk trip guna mengamankan unit.

4.2 Analisa

4.2.1 Analisa Penyebab Trip

Kejadian trip unit pada 12-9-2011, 7-11-2011 dan 2-2-2012 disebabkan oleh bekerjanya proteksi inverse time over eksitasi. Berdasarkan penjelasan prinsip kerja dari proteksi over eksitasi pada technical instruction G-T protection device RCS-958, dijelaskan bahwa kurva karakteristik inverse time over excitation protection action dihasilkan oleh delapan grup dari nilai setting, dimana nilai setting tersebut adalah nilai dari parameter V/Hz generator. Delapan grup nilai setting ditunjukkan pada tabel 2.

Tabel 4.2. Nilai Setting Proteksi Inverse time Over Excitation

NO. Name U/F setting Time delay(S)

1 Upper limit 1.40 1.073 2 Setting 1 1.35 1.463 3 Setting 2 1.30 2.793 4 Setting 3 1.25 4.769 5 Setting 4 1.20 6.831 6 Setting 5 1.15 9.756 7 Setting 6 1.10 18.893 8 Setting 7 1.05 23.892

(7)

Berikut ini adalah kurva karakteristik Proteksi Inverse time Over Excitation. Dapat diamati bahwa semakin tinggi nilai V/Hz, semakin singkat time delay kerja proteksi.

Gambar 4.1 Kurva Karakteristik Proteksi Inverse Time Over Excitation

4.2.2 Analisa Kelayakan Kerja Sistem Proteksi Generator

Penyebab trip unit karena over eksitasi pada 12 September 2011, 7 November 2011 dan 2 Februari 2012. dikarenakan bekerjanya sistem proteksi over eksitasi pada generator. Ketika unit mengalami trip karena sistem proteksi bekerja, berikut adalah pertanyaan yang muncul :

o Apakah proteksi bekerja berdasarkan setting yang benar?

Dalam upaya perlindungan suatu peralatan yang mempunyai sistem kontrol, maka yang harus dipastikan adalah apakah koordinasi antara sistem kontrol dan sistem proteksi sudah tepat. Generator PLTU Lontar mempunyai AVR sebagai sistem kontrolnya sehingga perlu dipastikan apakah sistem kontrol tersebut telah dikoordinasikan dengan baik dengan sistem proteksi overeksitasi. Untuk memastikan kesesuaian koordinasi setting antara sistem kontrol dan sistem proteksi generator, selanjutnya akan dibandingkan kondisi menurut standar referensi internasional dengan kondisi aktual di PLTU Banten 3 Lontar.

(8)

Gambar 4.2 Bagan Urutan Koordinasi Setting antara Sistem Kontrol dan Sistem Proteksi Generator

Dengan contoh perhitungan koordinasi yang diberikan oleh IEEE/ANSI sebagai berikut :

o Sistem kontrol AVR (contoh : V/Hz Limiter)

V/Hz Limiter disetting pada nilai 1,05  artinya limiter akan mulai bekerja setelah nilai rasio V/Hz mencapai nilai tersebut.

o Sistem proteksi Over eksitasi (V/Hz) Generator Terdiri dari Definite Time dan Inverse Time. Definite Time :

V/Hz = 1,18 pu dengan time delay 2-6 second (1st set point) V/Hz = 1,1 pu dengan time delay 45-60 second (2nd set point) Inverse Time :

Minimum pick up V/Hz = 1,1 pu set dengan time delay yang lebih besar daripada Definite Time.

- Koordinasi Setting berdasarkan Kondisi Aktual PLTU Banten 3 Lontar :

Berikut adalah kondisi aktual koordinasi setting antara sistem kontrol dan sistem proteksi overeksitasi pada PLTU Banten 3 Lontar :

(9)

V/Hz Limiter disetting pada nilai 1,1  artinya limiter akan mulai bekerja setelah nilai rasio V/Hz mencapai nilai tersebut.

ii. Sistem proteksi Over eksitasi Generator Lontar, terdiri dari Definite Time dan Infinite Time.

Definite Time :

V/Hz = 1,3 pu dengan time delay 1 second (1st stage) V/Hz = 1,1 pu dengan time delay 0,5 second (2nd stage)

Alarm stage, V/Hz = 1,05 pu dengan time delay 10 second.

Inverse Time :

Tabel 4.3. Nilai setting Proteksi Inverse time Over Excitation

NO. Name U/F setting Time delay(S)

1 Upper limit 1.40 1.073 2 Setting 1 1.35 1.463 3 Setting 2 1.30 2.793 4 Setting 3 1.25 4.769 5 Setting 4 1.20 6.831 6 Setting 5 1.15 9.756 7 Setting 6 1.10 18.893 8 Setting 7 1.05 23.892

(10)

- Perbandingan Koordinasi Setting Sistem Kontrol Generator (V/Hz Limiter) dan Sistem

Proteksi Over Eksitasi antara Kondisi Aktual PLTU Lontar dengan Standar Referensi

IEEE/ANSI

Berikut adalah grafik yang menggambarkan contoh perhitungan koordinasi setting yang direkomendasikan oleh IEEE/ANSI :

Gambar 4.3 Kondisi Koordinasi Setting antara Sistem Kontrol dengan Sistem Proteksi Generator (Standar IEEE/ANSI)

Dapat diamati pada gambar grafik 3.3, bahwa antara sistem kontrol generator dan sistem proteksi generator tidak terjadi irisan. Sehingga sistem proteksi generator hanya akan bekerja setelah sistem kontrol generator tidak mampu lagi mengontrol.

Pada kondisi dengan koordinasi setting seperti ini, ketika terjadi kenaikan V/Hz, maka yang pertama kali bekerja untuk menormalkan kondisi adalah V/Hz Limiter. Sistem proteksi over eksitasi tidak akan langsung bekerja, tetapi akan bekerja hanya setelah V/Hz Limiter tidak mampu mengontrol kenaikan parameter V/Hz. Sehingga unit tidak mudah trip karena kenaikan parameter V/Hz.

(11)

Kondisi aktual PLTU Banten 3 Lontar dapat digambarkan dengan grafik berikut ini :

Gambar 4.4 Kondisi Aktual Koordinasi Setting antara Sistem Kontrol dengan Sistem Proteksi Generator

Dapat diamati bahwa ada daerah dimana terjadi irisan antara waktu dimana proteksi mulai bekerja (garis biru) dengan waktu dimana V/Hz limiter (garis merah) mulai bekerja. Artinya ada kondisi dimana sistem kontrol (V/Hz Limiter) belum bekerja sedangkan sistem proteksi generator sudah bekerja. Kondisi ini terjadi pada daerah yang diarsir pada gambar 3.4. tiga kali kejadian trip karena over eksitasi terjadi pada daerah itu.

Kondisi sistem kita pun akan rawan karena setiap kali terjadi kenaikan parameter V/Hz, maka yang bekerja terlebih dahulu adalah sistem proteksinya, bukan V/Hz Limiter. Sehingga rawan terjadi trip karena kenaikan parameter V/Hz.

Sehingga dapat ditarik kesimpulan bahwa terdapat penyimpangan jika dibandingkan dengan Standar Referensi pada IEEE/ANSI.

Namun, yang perlu menjadi catatan di sini adalah bahwa nilai-nilai setting pada gambar 3.3 bukanlah suatu keharusan untuk dijadikan pedoman, akan tetapi yang dijadikan pedoman adalah tidak adanya irisan antara daerah kerja sistem kontrol dan sistem proteksi generator.

(12)

Pembahasan trip unit akibat over eksitasi telah dibahas sebelumnya, pada saat ini membahas mengenai langkah apa yang diambil agar trip unit akibar over eksitasi tidak terulang kembali.

4.3 Root Cause Failure Analysis (RCFA)

Root Cause Failure Analysis merupakan metode dalam menentukan akar masalah yang kemudian ditentukan pula solusi atau pemecahan masalahnya.

Gambar 4.5 Root Cause Failure Analysis ( RCFA )

Dari hasil RCFA, didapatkan tiga Failure Defense Task untuk meminimalisir resiko unit trip karena over eksitasi.

1. Setting ulang koordinasi V/Hz Limiter dan proteksi Over Excitation generator dimana telah diajukan proposal ke PLN dan DNC terkait hal ini.

2. Dilakukan knowledge sharing terkait parameter V/Hz kepada operator.

3. Dilakukan penambahan monitoring parameter V/Hz di DCS karena tidak adanya monitoring menyebankan operator sulit untuk mengontrol parameter tersebut.

(13)

4.4 Upaya Pengembangan untuk Meminimalisir Unit Trip karena Over Excitation

Berdasarkan analisa yang telah dilakukan maka dirumuskan rekomendasi terkait untuk meminimalisir resiko unit trip karena over eksitasi. Berikut dijelaskan rekomendasi tersebut :

1. Setting ulang koordinasi kerja V/Hz limiter dan proteksi over excitation

Nilai setting V/Hz Limiter seharusnya disetting di bawah nilai setting terendah dari proteksi Over Excitation. Direkomendasikan untuk mengubah nilai setting V/Hz Limiter dari 1,1 menjadi 1,05.

Pemilihan nilai setting 1,05 diambil berdasarkan standar IEEE, bahwa pada nilai 1,05 ke atas generator akan mengalami kondisi over eksitasi. Perubahan setting ini akan menyebabkan tidak adanya irisan antara kerja sistem kontrol (V/Hz Limiter) dengan sistem proteksi generator. Sehingga akan terjadi koordinasi yang tepat antara system kontrol (V/Hz Limiter) dengan sistem proteksi generator berdasarkan rekomendasi standar IEEE.

Kondisi sekarang (sebelum dilakukan perubahan setting), tampak pada gambar 3.3 bahwa V/H Limiter disetting pada 1,1 sehingga terjadi irisan antara V/Hz Limiter dengan sistem proteksi over eksitasi. Setelah dilakukan perubahan, kondisi koordinasi setting akan seperti ditunjukkan pada gambar 3.4. Tidak terjadi irisan antara V/Hz Limiter dengan sistem proteksi.

(14)

Gambar 4.6 Kondisi Setelah Perubahan Setting V/Hz Limiter

Akan tetapi, setting ulang koordinasi setting ini tidak cukup. Berdasarkan standar internasional, ada kondisi dimana V/Hz Limiter mengalami kegagalan fungsi (failure) sehingga upaya pengembangan untuk meminimalisir kondisi tersebut diperlukan. Upaya pengembangan untuk meminimalisir resiko V/Hz Limiter failure dilakukan dengan monitoring V/Hz di DCS. Berdasarkan RCFA, operator sulit untuk mengontrol parameter tersebut karena tidak adanya monitoring V/Hz di DCS. Oleh karena itu, penambahan monitoring parameter V/Hz Generator sangat diperlukan. 2. Penambahan perhitungan dan monitoring parameter V/Hz generator pada DCS PLTU

Lontar.

Selain tidak tepatnya nilai seting V/Hz limiter, faktor lain yang menjadi sebab trip unit karena over eksitasi ialah karena operator tidak dapat memantau nilai parameter V/Hz dikarenakan tidak adanya display monitoring parameter V/Hz pada DCS. Dengan alasan tersebut maka diperlukan adanya suatu pengembangan yaitu penambahan Perhitungan dan Monitoring Parameter V/Hz Generator pada DCS PLTU Lontar. Sehingga setelah dilakukan penambahan monitoring parameter V/Hz diharapkan operator dapat memantau nilai parameter V/Hz secara kontinyu, serta

(15)

dapat mengantisipasi kenaikan parameter V/Hz bahkan sebelum Sistem Kontrol (V/Hz Limiter) bekerja.

3. Penyusunan Instruksi Kerja (IK) dan knowledge sharing mengenai prosedur operasi monitoring parameter V/Hz

Penambahan monitoring parameter pada DCS harus disertai dengan instruksi kerja mengenai monitoring parameter tersebut. Instruksi kerja tersebut akan menjadi pedoman bagi operator dalam pemantauan dan selanjutnya mengambil tindakan berdasarkan hasil pantauan.

Pada saat terjadi kenaikan parameter V/Hz, dengan berdasarkan rumus :

V/Hz = (V/Vn)/(f/fn)

Dengan adanya Instruksi Kerja dan pemasangan parameter V/Hz maka operator dapat memantau dan mengatur sistem eksitasi sebagai berikut :

- Menaikkan frekuensi, dengan salah satu cara adalah menaikkan beban unit. Akan tetapi hal ini tidak efektif untuk dilakukan, karena jika dibandingkan dengan power grid, sistem PLTU Lontar terlalu kecil.

- Menurunkan tegangan generator, dengan cara menaikkan arus eksitasi. Hal ini dapat dilakukan dengan mudah karena telah ada fasilitas untuk melakukan itu di DCS.

Sehingga ketika terjadi kenaikan parameter V/Hz adalah menurunkan tegangan generator dengan cara menaikkan arus eksitasi. Pada aktual kondisi di lapangan, lembar IK ini ditempel di meja operasi unit 1, 2 dan 3 sehingga dapat membantu kinerja operator. Detail dari instruksi kerja tersebut terlampir dalam lampiran.

(16)

IK (instruksi kerja) monitoring V/Hz yang ditempel di meja operasi :

Gambar 4.7 IK monitoring V/Hz yang ditempel di meja operasi

Berdasarkan RCFA, salah satu faktor yang berkontribusi adalah belum adanya pengetahuan operator mengenai parameter V/Hz generator. Sehingga dilakukan knowledge sharing berupa IHT (In House Training).

(17)

4.5 Manfaat Setelah Dilaksanakan Pengembangan 1. Manfaat Finansial

Jika kehandalan unit tidak tercapai dan unit trip, berikut ini adalah kerugian yang didapatkan :

a. Kerugian produksi

Kejadian trip unit akan mengakibatkan berkurangnya jumlah waktu produksi selama kegagalan itu belum teratasi. Perhitungan mengenai kerugian produksi adalah sebagai berikut :

Produksi 1 unit PLTU Banten 3 Lontar = 315 MW = 315.000 KW Harga pokok produksi per KWH = Rp 470,00

Jadi kerugian produksi per unit tiap jamnya adalah = 315.000 x Rp 470,00

= Rp 148.050.000,00 /jam b. Kerugian biaya start up unit

Kejadian unit trip akan mengakibatkan start up unit perlu dilakukan.

Dengan asumsi kebutuhan HSD untuk pembakaran air guna memperoleh steam adalah 224.000 Liter.

Harga 1 liter HSD adalah Rp 9.000,00

Jadi kerugian untuk biaya start up per unit adalah = 223.000 x Rp 9.000,00

= Rp 2.007.000.000,00

Total kerugian akibat trip karena Over Excitation yang bisa dihindari yaitu sebesar Rp 148.050.000,00 / jam untuk 1 jam stop produksi dan Rp 2.007.000.000,00 untuk biaya start up unit menggunakan HSD, belum termasuk kerugian-kerugian yang lain.

(18)

2. Manfaat Non Finansial

i. Memudahkan kerja operator dalam pemantauan parameterparameter yang berpengaruh terhadap trip.

Ketersediaan tampilan parameter dalam display DCS akan memudahkan kerja operator dalam pemantauan parameterparameter yang berpengaruh terhadap trip dan melakukan tindak lanjut berdasarkan kondisi parameter tersebut. ii. Meningkatkan kehandalan unit

Salah satu ukuran keandalan unit adalah tingkat frekuensi trip. Semakin sering suatu unit mengalami trip, maka dikatakan tingkat keandalannya rendah. Dengan implementasi saran pengembangan, maka trip unit karena over eksitasi dapat diminimalisir, sehingga keandalan unit meningkat. iii. Meningkatkan ketersediaan unit

Semakin sering suatu unit mengalami trip, maka dikatakan tingkat ketersediaannya rendah. Dengan implementasi saran pengembangan, maka trip unit karena over eksitasi dapat diminimalisir, sehingga ketersediaan unit meningkat.

iv. Meningkatkan citra PT Indonesia Power

Tingkat kehandalan dan ketersediaan pembangkit yang tinggi akan meningkatkan citra PT Indonesia Power, baik sebagai perusahaan pembangkit tenaga listrik maupun sebagai perusahaan jasa operasi dan pemeliharaan pembangkit.

Gambar

Tabel 4.1. Kondisi Detail pada Saat Unit Trip
Tabel 4.2. Nilai Setting Proteksi Inverse time Over Excitation
Gambar 4.1 Kurva Karakteristik Proteksi Inverse Time Over Excitation
Gambar 4.2 Bagan Urutan Koordinasi Setting antara Sistem Kontrol dan Sistem Proteksi Generator
+7

Referensi

Dokumen terkait

Berdasarkan hasil yang diperoleh di atas dari pertanyaan kuesioner nomor 8, di dapat bahwa sebagian besar responden-responden yang merupakan mahasiswa/i dari Bina

Pemberian kompos disertai inokulan cair Azotobacter menurunkan kadar Hg di tailing dan berpotensi meningkatkan serapan Hg pada tanaman jagung, sehingga dapat dimanfaatkan

Dengan demikian berdasarkan hasil temuan dan analisis data penelitian tindakan bimbingan konseling maka dapat disimpulkan bahwa layanan bimbingan kelompok

Dalam penelitian ini, penulis menggunakan pendekatan kualitatif dengan objek penelitian sesuai dengan judul yang ditentukan yaitu desa tematik seni dan budaya Jurang

Susah kalau orang yang sudah melik, orang yang sudah ngayah sama Beliau ditolak jadi masalah. Kemarin itu saya keluar service motor, ngga ada rencana

Budaya Tiongkok dengan konsep keseimbangan yang merupakan asosiasi dari bentuk yin dan yang, erat kaitannya dengan tema berbentuk segi delapan yang memiliki makna

4.2.1 Keyakinan Diri dari Komunitas Lesbian di Kota Bandung Sebagai seorang lesbian, mereka pun ingin meyakinkan masyarakat dapat menerima komunitas ini dari beberapa

Bab IV berisi tentang ulasan pembahasan, pada bab ini akan dijelaskan mengenai analisis data yang merupakan analisis hasil penelitian dan pembahasan, berupa