• Tidak ada hasil yang ditemukan

DISINI 2000-Sol00fix

N/A
N/A
Protected

Academic year: 2017

Membagikan " DISINI 2000-Sol00fix"

Copied!
12
0
0

Teks penuh

(1)

HIGH SCHOOL MATHEMATICS CONTEST

pre vious gu replus 2 square sofside1 eachm issing 1 matchstick. Thusthen gureinthese quence

: :

contains4+23n=6 n+4 matchs ticks. Thelarges tvaluen forwhich 500 matchs ticksis sucientis

:

thus82 ( which us es up682+4 =496 m atchs ticks). Now thenumb e r ofsquares in ther st gureis

3and each subsequent gurec ontains2 more s quar esthanthepreviousone . Ther efor ethenumb e r of

th

which im pliesthat `=16. BytheThe oremofPythagorasthelengthofthediago nalis

p

squareunits . Ther efor e,theprobabilityofhittingthes hade dar eais

2

6. Letus comp utethesumoftheprop e rdivisors ofeach ofthe5 p ossibleanswers inthelist:

13: 1<13

16: 1+2+4+8=15<16

30: 1+2+3+5+6+10+15=42>30

44: 1+2+4+11+22=40<44

50: 1+2+5+10+25=43<50

Theonlyone ofthesewhichqualiesasanabundantnumb e ris30. Ans we ris(C)

(2)

8. Lett heco ordinates ofthep oint Sbe(x;y). SincePSkQRthe ymusthavethesame slop e :

y+2 0501 3

= =

x+3 109 4

or 4y03 x=1

SinceRSkQP weals ohave(bythes am eargum ent):

y01 05+2 3

= =0

x09 1+3 4

or 4y+3 x=31

Fromthe setwo equationsin2 unknowns weeasilys olveforx=5 andy=4. Thusx+y=9.

Answe ris( E)

9. Thediagram b elowshowshow gur es(a),(c),( d),and(e)canbelle dwithc op ie softhe\T"tile. No

m at terhowon e triesgur e(b)cannotb e lledwithcopie sofit.

(a)

(c)

(d)

(e)

Answer is(B )

10. Noter stthat

5555 5 1111 1111

2 =(2 ) =32

3333 3 1111 1111

3 =(3 ) =27

2222 2 1111 1111

6 =(6 ) =36

1111 111 1 1111

Since27<32<36,wehave27 <32 <36 ,whichm eans

3333 5555 2222

3 <2 <6

Answe ris( E)

11. Letu srs tcompu tethenu mb e rofs econdsin1day,1hour,1minute ,and1s ec ond,andt henmu ltiplyby

2000. Now1dayplus1hourisc le ar ly25hours . The n1day,1hour ,plus1m inuteis25260+1=1501

m inute s. Expressed in se conds t his is 1501260 = 90060 seconds. Thus 1 day, 1 hour, 1 minute,

and 1 second is 90 ;061seconds. Th e answer to t heproblem is t his gur emultip lied by 2000; that is,

180; 122; 000, whichto thene ares tmillionis180 ;000 ;000. An sweris(D)

12. If a=b =c,t hen 100a+10b+c=100 a+10 a+a =111 a. Since a can b e any digit, in order for a

numbert obeafactorofthethree-digitnumber,itmus tb eafac torof111. Th efactorsof111 ar e1,3,

37,and111. Theonlyoneoftheseapp earing inthelistis37. Answe ris( E)

2 2 2 2 2 2

(x+y) 0(x0y ) >0 , x +2 xy+y 0x +2 xy0y >0

13.

, 4 xy>0

, xy>0

(3)

14. Leta,b ,cb ethethreesidesoft hetriangle . Letusass umethatabc. Sinc ethep e rim et eris12,we

havea+b+c=12. Le tusnowlistallp ossibles etsofintege rs(a;b;c)s atis fyingtheab oveconditions:

(1;1 ;10); (1;2;9); (1;3 ;8); (1;4 ;7) ; (1;5 ;6); (2;2 ;8);

(2;3;7); (2;4 ;6); (2;5 ;5) ; ( 3;3 ;6); (3;4 ;5); (4;4;4)

However,itis clearthat some ofth ese\triangles"donotactu allye xis t,since inanytrianglethesum

of thelengthsof thetwo sh or ter sidesmust b e gre aterthan thelengthof thel onge st side. With this

addit ionalcondition wehaveonlythefoll owingtriangles(a;b;c) :

( 2;5;5); (3;4 ;5); (4;4;4)

Wecannowexam inethe4s tatementsandconc lude that(i),(ii)and(iv)arec le arlyt rue. Asfor (iii),

wes eethattr iangle(3;4 ;5) ab oveisright-angled; hence(iii)isfals e. An sweris(D)

1

15. The ar ea of t he origi nal triangle is bh. The new tr iangle has alt itude h+m and base b0x . We

2

1

ne ed to nd x sucht hat th e ar ea of the ne w triangle is bh . Clearly the area of the new triangle is

4

1

(h+m )(b0x). Thus

2

1

1

bh= (h+m)( b0x )

4

2

bh

=b0x

2(h+m )

bh 2 bh+2 bm0bh b (2m+h)

x=b0 = =

2(h+m ) 2(h+m ) 2(h+m)

Answe ris( E)

Senior Prelim ina ry

1. Antoninoaver age s15km/hfortherst20km .Thism eansittake shim20 = 15=4= 3hourstocoverth e

rs t20 km. Inor dertoaver age20 km/hfor a 40km dis tance ,he mustc over th edis tance in 2hours.

Heonlyhas2 = 3hr emaininginwhichtoc ove rth elast20km . H isspeedove rth islas t20kmthe nmus t

b e(on average)20 = (2= 3)=30 km/hr. Answer is(B )

2. LetC b ethec entreofthecircle. Sincet hep oint sOandB aree quidistantfromthecentreofthec ir cle

and also e quidistant from the p oint P, and s inc ebot h O and B lie ont he x-axis ,wese e that P has

co ordinates( 3;y)with y<0. Th e slop e ofOC is2 = 3. Sinc e PO isth e tan ge ntlin etothec ir cle atO

weknowt hatPO?OC. Ther eforethes lop eofPO is0 3= 2. H oweve r,t heslop eofPO iscom putedto

b e(y00)= (300)=y=3. Toge therth eseim plythat y=0 9= 2. Ans we ris(C)

3. First of all the numb e r of p os sible ways to cho ose a pair of dis tinc t students from a se t of ve is

0 1

5

5!

= =10. From this we needonly e liminatet hos ewhos e age die rence is 1. Clearl y the re ar e

2 2! 3!

exac tly 4 s uch, nam ely (6;7), (7 ;8), (8;9),and ( 9;10). S oourprobabilityo f successis 6 ou t of10, or

3 = 5. Ans we ris(C)

4. Thes traightsectionsoft heb eltar etange nttoall3pulle ysandthusp e rp e ndic ulartot heradiusofe ach

pulle yatthep ointofcontact . Thust hestraightse ctionsoftheb e ltarethes am ele ngthsasthedis tance s

p

2 2

b e tweenthec entre softhepulleys ,whichare5,12,and 5 +12 =13;sothest raightse ctionsofb elt

addupt o30units. Thecurve ds ectionsofbelt,whentakentogethe r,m akeuponec ompletepulley,or

(4)

5. Letnb ethenumb erofquiz zesMarkhasalr eadytake n. Le txb ehistotals coreonallnqu iz zes. The n

orientations ,on ewithasingleve rte xabovethehorizontalbas eandonewith

asingle ve rte x b elowth ehorizontalbase . Forthersttyp eweh ave6 s uch:

totalof13e quilat eraltr iangle sso far. Howe ve r,there ar etwo other swhich

ares keweds om e whatt oth eedge soft heoutertriangle: (2;6;8)and(3;4 ;9),

which givesu sat otal of15e quilat eralt riangle s. A nswer is(A)

7. Thec ritical ideahere is tor ecognize that whenthe s qu ar e cove rsas mucho f thet riangleas p os sible,

the triangle will also cove r as mu ch of the square as pos sible , and that at this p oint the am ount of

trianglecovered isthesameas theamountof s quar ecove red . Le tA b etheareaof thetr iangle . The n

FromtheTheoremofP yt hagoraswehave

(5)

Fore xac tly thesam ereasonas ab ovewes ee that B mustb e theintege rpart of5 =4,i.e .B =1. The n

n. Thus theprobab ilitythatoneball ofeachc olourischose nis:

mn mn mn 2 mn

14. Addingt hetwogive nequationstoge therwege t:

2 2

15. Alltheun shadedtriangle sinthediagramb e lowar eright-angle dand

thusarecongruent. B ytheThe or emofPythagor aswehave

2 2 2

2. Eachoft he10s traightline sinte rsectseachoftheothe rsexact lyonc e. Thism ake sfor90int ersections;

however,each oftheinte rsections isc ount edtwic ein thisapproach, de p en ding up onwhich ofthetwo

(6)

3. Letus trysuccessivelyt om akeu pe achofthegivenamountsus ing6 coins :

inga right -angle dtrianglewith hyp otenus e40 m and one side of

(7)

Whenweadd all20oftheabovee quat ionstogethe rweget

1

: : :

b =1+3+5+111+39= 20(21+192)=400

20

2

whe re we have used t he well-known formula for the sum of an arithm etic progre ssionwith n ter ms,

1

havingrstt ermaandc om m ondie renced : n(2a+(n01)d ). Answe ris( E)

2

9. Ac cordingtothedenitionofth eop eration3wehave

01 2 1 1

23( 01)=2 0(0 1) = 01=0

2 2

Ans we ris(C)

10. Leta b e thelengthof PQ , QR , andRS. The n th e radiiof th e3 circ le s ar e a,2 a,and 3a. The area

2 2 2

b e tweentheinne randmiddlec irc le sisthe n(2a) 0a =3 a ,andtheare ab etwe enthemiddleand

3

2 2 2 2 2

outercirclesis(3a) 0(2a) =5 a . Thust heratiowewantis3 a :5a = . An sweris(D)

5

Part B

1. (a) Fort his part of theques tion, t he simples t me tho d is s im ply to list all the pos sible numb er s. In

incre asin gorde rtheyare :

111; 112;113 ;122;123 ;133 ;222; 223 ;233 ;and333

foratotalof10 numbers.

(b) Again,m ostjuniorstudentswills im plytr ytolistallt hep os sib leinte ge rs . Inincre asingor dert hey

are :

1111;1112 ;1113;1114;1122 ;1123; 1124 ;1133 ;1134; 1144 ;1222;1223 ; 1224 ;1233;

1234;1244 ;1333;1334;1344 ;1444; 2222 ;2223 ;2224; 2233 ;2234;2244 ; 2333 ;2334;

2344;2444 ;3333;3334;3344 ;3444; and4444

foratotalof35 numbers.

Amores ophisticate dapproach(whichc anb egene ralize d)follows: Wer stdenen(k;d)tob eth e

numberof k-digitinte gerse ndingwiththedigitdands atis fyingthetwo conditions(i)and (ii)in

theproblem state me nt. Sinc e a k-digitnumb erending withthed igit dc onsists ofapp e ndingth e

digitdto all(k01)-digi tnumb ersendingwitha digitles sthanor equaltod ,wehave

n(k;d)=n(k01;1)+n(k01 ;2)+111+n(k01 ;d ) (3 )

Furtherm or e, we als o have n( 1;d) = 1 for all digits d an d n(k;1) = 1 for all integer s k. Th e

re lation ship( 3)all owsustocr eatethefoll owingtable ofvaluesfor n(k;d):

kn d 1 2 3 4

1 1 1 1 1

2 1 2 3 4

3 1 3 6 10

4 1 4 10 20

Eache nt ryinthetableisthesumofth eentriesinthepre viousrowupt oandinc ludingthecolum n

containingthegivene ntry(note thepr esence ofPas cal'sTrianglein thetab le ). Fromtheanswe r

toparts(a)and (b)are:

(a):n(3;1)+n(3;2)+n(3;3)=1+3+6=10

(8)

2. SinceABCD is a s quarethe line s AC and BD are p e rp e ndic ular. Sinc e thecirc le had radius1 unit,

Recognizingthatmultipli c ationisc ommutativeforre alnumb er swecanreorganiz ethepro duc tsin

eachof theab oveine qualitie sandsumthethr ee inequali tiest ogetth edesir edre sult.

5. (a) Let us place 2 ( oute r) c oins next to th e original c oin s o t hat they touch each othe r. Then th e

centre s of t he3 coins form anequilate raltriangle with s ide le ngth e qualto twic ethe radiu s of a

singlec oin. Thereforeth eangle betweenthec entre soft he2 (outer)coinsme as ure dat thec entr e

ofther stc oinis60 . Since6suchan glesmakeupafullr evolutionar oun dtheinnercoin,wecan

have e xac tly 6 out ercoins e achtouching theoriginal (inne r)c oin and alsotouch ing itsothe r two

ne ighb ours.

(b) The reare6 non-over lappings pace swhoseareaswemus tadd;eachisfoundbetween3coinswhich

simultaneous lytouchother ,andwh os ec entr esformthee qu ilate raltriang lem ent ionedinp ar t(a)

ab ove . Thisequilate raltrianglehassidelength2,s inc ewearegive ntheradiiofthecoinsas1. O ur

st rategyto c ompute theare aof one such sp ac e is to n dt he area of theequilater al triangle and

sub tracttheare asofthe3circularsectorsfoundwithint hetrian gle. Thea ltitudeoftheequilater al

p

theequilate ral triangleare each one-sixth of the area of thecoin; there are 3 suchse ctors which

give s us a total area of one-half the area of a s ingle coin to b e subtrac te d fro m the are a of th e

p

equilate raltr iangle . Thus thear ea ofa singles paceis 30(= 2) . Sinc ethe re are6 s uch spac es,

(9)

Senior Final

2. LetP beth eintersectionofAC andBDas inthediagrambelow. The

sumoft heinte rioranglesofa(r egular)p e ntagonis(502)180 =540 .

Soeachinte riorangleinaregularp e nt agonhasm eas ure540 = 5=108 .

Since 4ABC is isosc eles with vertex angle equal to 108 . The base

ages. Thuswearefor cedtoconclude thatt hesummustb e16,sincethe rearetwo distinctse tsofage s

which su mto 16in theab ovetable. Theonly age sfound in thesetwo se ts ar e2,3 ,5,9, and10. We

noticethat1 and6donotappear. An sweris(D)

4. Let V b e the volu me of a full tub (in litr es , say) . The n therate at which thehot water c an ll th e

tub isV= 10 litre s per minute. Similarly t he r at eatwhichthe c oldwate rc anll thetub is V= 8 litre s

p e rm inute. O ntheothe rh anda full tube mpt ie sat therateofV= 5litr esp e rm inut e. Ifall threear e

happ e ningatthesam etimethentherateatwhichthetub llsis:

(10)

Since 19 is pr im e, in orde r for 19( k+10) to b e a p er fe ct s quare, k+10 mus t contain 19 as a factor.

Thesmalles ts uchvalue o c curs whe nk+10=19,i.e .whenk=9,andweindee dgeta p e rfec ts qu ar e

2

int hisc ase,name ly19 . Answer is(B )

5

6. Letnb et henumberin que stion. The nncanb e writtenas 10 +awher eaisanumberwithatm os t

5digit s. Moving theleft-mostdigit(thedigit1)to thee xtre mer ightpro duc esa numb e r10a+1. Th e

5

inform ationintheproble mnowte llsusthat10 a+1=3(10 +a)=300000+3a,or7a=299999. This

yie ld sa=42857 . Son=142857(andtheot hernumb e rwecr eatedis428571) ,thesumofwhos edigit s

is1+4+2+8+5+7=27. An sweris(D)

7. Letusorganiz et hissolut ionbycons ide ringt hes iz eofthelarges tcu b ei nthesubdivisionoftheoriginal

cu b e. Thelar ge stcould havea sideofs iz e4c m, 3c m, 2c m, or1 c m. Ineachofthes e4 c as eswewill

de terminetheminimumnumb er ofc ub esp os sible. Inther stcase,whe n the reis acubeofside4 cm

pre se nt,wec anonlyinc ludec ub esofside1cmtoc om pletethesubdivision,andwewouldne ed61s uch

3 3

sincethecub e ofs ide 4c m us esup64 c m ofthe125 c m in t heoriginal c ub e. Thus, in thiscasewe

have62cub e s in thesub divis ion. Ifwelo ok at theot here xtre me case,name lywhe n thelarges tcube

in thes ub division hassidelengthof1c m, weclearlyneed125 cu b esforthesub d ivision. Weals onot e

he rethatwewillcertainlyd ecreaset henumb e rofcub e sinasub divis ionifwet rytore places etsof121

cu b es bylarger cub e swhe neve rp oss ible. Nowconside r thecasewhen t hereis a cubeof sidelength3

cm pre sent. If we place itanywhe rebut in a corner, thes ub division c anonlybecom ple ted by c ub e s

ofs ide le ngth1c m, whichgive sus1+98=99c ub es intotal. Ifweplac eit ina corne r, wec an the n

plac e4c ub esofs idelength2cmonones ideoft helargerc ub e ,2m ores uchc ub e onas econdsideand

a thir d suchc ub e onth e thirdside; th is give sus1 largecubeand7 me dium cub e sfor a tot al volum e

3

of27+7(8)=83c m which me an swest ill 42 small cubes,for agrand totalof50 cubes. Itis e as yto

se e that ifthe large st cubehasside length2 cmwecan plac e at m os t 8 of themin the original cube

and ther emainde r ofthe volume mus t b e m ade upof c ub e s ofs ide le ngt h 1 c m; thi s givesa total of

8+61=69 c ub es . Thus thesmalle stnumb erofcubespos sibleis50andinthisc as ethe reare7 c ub e s

ofs idele ngth2 cm. An sweris(D)

8. Wen eedtondas eque nceofall9counc illorsbeginningwithAandendingwi thE suchthate achpair

of consecut ive councillors ar e`on speakingte rm s' with each other . When on e rs t looks at the table

provide d,itlo oksalit tledaunting. However ,arstobs ervationist hatam ongthec ouncillor sothe rthan

AandE (whoneedto app e arat th ee ndsofthesequence)c ou ncillor sF andH are only`on speaking

te rms ' with 2 others, one ofwhich is counc illor B. Thusc ounc illo r F mus t re ce ivethe rumor from B

andpass it t oI, or vic ever sa. Sim ilarly, councillorH must he ar therumor fromB andp as sit toC,

or vic e ve rs a. Thus we mus t haveeithe r I0F 0B0H 0C or C0H0B0F0I as consecutive

counc illorsinthese quence. Sin ceA andE lieonth eends,an dne ithe rofthemar e`onsp e akingte rm s

with' e ithe r counc illors C or I, we see that councillors D and Gmus t b e place done on e ith ere nd of

the ab oves ubsequence of 5 c ouncillors. This leaves us with eithe r D0I0F 0B0H 0C0G or

G0C0H 0B 0F 0I0D . Counc illors A and E can b e place d on the front and r ear of e ithe r

of the se se quences to give s t he nal s eque nce as e it her A0D0I0F 0B 0H 0C 0G0E o r

A0G0C0H0B0F0I0D0E. Ine ithe rcasethefourth p e rsonafte rcouncillor A(whostarted

therumor)t ohe artherumorwas councillorB. Answe ris(A)

9. Letuse xaminet het emp er atur edie rencesonthere sp e ctivepairsofthe rm om et ers. Adie re nceof24

onAcorr esp on dstoa die re nceof16 onB;t husthe yar ein theratioof3:2. Adi e renceof12 on

B corresp ondsto adi erenceof72 onC;thusthe yareintheratioof1:6. Nowa te mp e raturedrop

(11)

10. Thenumb e r of p ositiveinte gers le ssthan ore qualto n wh ich ar emult iplesof kis theintege rpart of

n=k (that is ,p er formthe divisionand disc ar d thedecimal fraction ,ifany). This inte gerisc omm on ly

de note dbn=kc. Thust henumberofpos itiveint egersb etwe en200 and2000whicharemultiplesof6 is

2000 200

0 =333033=300

6 6

Similarly,thenumb erof p osit iveintegersb e twe en200and2000whichar emultipl e sof7 is

2000 200

0 =285028=257

7 7

Inord er to countthe numb e r ofpos itive inte ge rsb etwe en200and 2000 which a remultiples of 6 or 7

wec ouldaddtheab ovenumb er s. This ,howeve r,wouldc ountthemult iplesofboth6and7twic e;that

is,t hemultiple sof 42wouldbecounte dtwic e. Thu swene edtosub tractfrom thissumthenumb erof

p ositiveinte ge rsbetween200an d2000whicharemult iplesof42. That numb e ris

2000 200

0 =4704=43

42 42

The refore, the number of p ositive inte gers b e tween 200 and 2000 which are multipl e s of 6 or 7 is

300+257043=514. Butwear easkedforthenu mb e rofp ositiveinte gerswhicha remultip le sof6or7,

but NOTBOTH. Thusweneedto again subt ractthenumb e r ofmult iples of42in thisr ange ,name ly

43. Th enal answe ris514043=471. Answer is(B )

Part B

6

1. First draw the radius OD. Le t E = . Since D E = r = OD, 4DOE is isos celes. The refore,

6 6

DOE = . Since BDO is an e xt erior angle to 4DOE, it is equal in me as ure to the s um of th e

6

opp ositeint eriorangles ofthetriangle,i.e . BDO=2 . Now4BODisisos cele s sin cetwoofitss ide s

6 6 6

areradiiofthecircle. Thus D BO= BDO=2 . S inc e BOAisanexterior angleto4BOE, itis

6 6 6

equal in m easure to thes umof E =and EBO =2 . Thus BOA=3 , whichm eansthat th e

1

valuek int heproblemis .

3

2. Sincethere are 5 re gionsofe qu alare awh ich sumto180 s quare units ,each region has area36 s qu ar e

units. The dime nsions of theinne r square are clearly 6 unit s on a side , and of the out er square ar e

p p

180=6 5unitsonaside. Letxandyb et hedim ensionsofoneofthefou rcongruentre gions,wher e

p p

x<y. Thenx+y=6 5andy0x=6. Onaddingtheseanddividingby2wege ty=3( 5+1),and

p

the nite as ilyfollowsthat x=3( 501).

: : :

3. (a) Notethat 5!=5432 =120, which en ds in the digit0. Thus n!, wher e n>5,must als o e ndin

thedigit0,since5!even ly dividesn!, for n>5. Thusn!+1 e ndsin thedigit1 wheneve rn5,

which m eansthat 25canne vere ve nlyd ividen!+1whe nn5. Weareleft toe xam ine thecases

n=4,3,2,and1. S inc e 4!+1=24+1=25,wese et hat25divide s eve nly4!+1. Thusn=4 is

thelarges tvalueofnsuchthat25even ly dividesn!+1.

(b) Noters tthat (x+2y)+( y+2x )=3x+3 y=3(x+y). Thusthr eeeve nlydividesthesumofth e

twonumb er s. Thisc anberewritte nasy+2x=3(x+y)0(x+2 y ) . Suppos ethat3e ve nlydivide s

(12)

4. (a) SameasProblem#5(b)ontheJu niorPap er(PartB).

(b) Let r b e the radius of each of the four large r c oins which

sur roundt hecoinofradius1. Thenbycons ide ringtwosuch

ne ighb ouringcoinsandthecoinofradius1(asinthediagram

b e low)wehavearight-angledtrianglewhenweconne ctthe

thr eec entr es. TheThe or emofPythagorasthenim pliest hat

2 2 2

5. (a) Thes liceisinthes hapeofanis os cele strianglewithtwosidesequaltothealtitu deoftheequilater al

triangularface s ofside aand thethir d sideof lengtha. B yusing theTheoremof Pythagorason

p

halfofoneequilater altr iangularfac ewese et hatitsalt itudeisgive nbya 3= 2. Thusthep er im eter

p p

ofth etrian gularslic e isa+2(a 3 =2)=a( 1+ 3) .

(b) Wemustnowndtheareaofthetrian gulars licewhoses ide swefoundinpart(a)ab ove. Cons ide r

thealtitude hwhich splitsthe isosc eless lice into 2 congruenthalve s. E achhalf isa right -angle d

Referensi

Dokumen terkait

Penelitian ini bertujuan menggambarkan peningkatan kemampuan menulis karangan dengan topik sederhana menggunakan pendekatan kontekstual pada siswa kelas IV SD Kanisius

Berdasarkan hasil penelitian di Balai Besar Kesehatan Paru Masyarakat tentang hubungan gender dengan keterlibatan orang terdekat dalam pengambilan keputusan pada program

Selain itu bangkitnya raksasa China sebagai salah satu negara adi-daya di wilayah Asia ditambah disetujuinya ASEAN-China Free Trade Assosiation (AC-.. FTA) membuat kita semua

ketika angin merayu malam. yang

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI... PLAGIAT MERUPAKAN TINDAKAN

Awal dari perwujudan bentuk berasal dari pengamatan bentuk bunga baik secara langsung obyek itu sendiri maupun tidak langsung (gambar), inilah yang menjadi sumber

Telkom Kandatel Jakarta Selatan, so f+ it becomes a positive input to increase the promotion activity in

Banyaknya masalah yang ditimbulkan dari masih manualnya proses pencatatan pelatihan pencari kerja ini, dirasakan semakin dibutuhkan suatu sistem informasi (SI) yang mampu