• Tidak ada hasil yang ditemukan

Directory UMM :Data Elmu:jurnal:J-a:Journal of Computational And Applied Mathematics:Vol100.Issue2.1998:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Data Elmu:jurnal:J-a:Journal of Computational And Applied Mathematics:Vol100.Issue2.1998:"

Copied!
3
0
0

Teks penuh

(1)

Journal of Computational and Applied Mathematics 100 (1998) 225–227

Letter to the Editor

Summation formulae involving the Laguerre polynomial

H. Exton

Nyuggel, Lunabister, Dunrossness, Shetland ZE2 9JH, UK

Received 24 January 1998; received in revised form 23 February 1998

Abstract

A general result involving the generalized hypergeometric function is deduced by the elementary manipulation of series. Kummer’s rst theorem for the conuent hypergeometric function and two summation formulae for the Gauss hypergeometric function are then applied and new summation formulae involving the Laguerre polynomial are deduced.

c

1998 Elsevier Science B.V. All rights reserved.

AMS classication:33C25; 33C15

Keywords:Laguerre; Hypergeometric; Kummer

The Laguerre polynomial is a terminating form of the conuent hypergeometric function given by

Lan(x) = (a+ 1; n)1F1[−n;a+ 1;x] (1)

and occurs frequently in many branches of pure and applied mathematics (see, for example, [1, p. 268]).

The Pochhammer symbol (a; n) = (a+n)= (a) is frequently used in the course of this paper as is the generalized hypergeometric function

AFB[a1; a2; : : : ; aA;b1; b2; : : : ; bB;x]

=X

n

[(a1; n)(a2; n)· · ·(aA; n)xn]=[(b1; n)(b2; n)· · ·(bB; n)n!]; (2)

which has been exhaustively studied by many authors such as Slater [3] and Exton [2].

Numerous summation formulae involving the Laguerre polynomial are known, and in this note expressions of this type not previously recorded in the literature are obtained by applying two summation formulae for the Gauss hypergeometric function to a quite general result deduced by the elementary manipulation of series. All indices of summation are taken to run over all of the

(2)

226 H. Exton / Journal of Computational and Applied Mathematics 100 (1998) 225–227

non-negative integers. Any values of parameters leading to results which do not make sense are tacitly excluded.

Consider the double series (assumed to be absolutely convergent or terminating)

S=X

m; n

[(d; m+n)xm+nymC

n]=[m!n!(e; n)]: (3)

Replace m+n by N and after re-arranging, we have

S=X

n; N

[(d; N)xnyN−nC

n]=[(e; n)n!(N −n)!]: (4)

Put

Cn= [(a1; n)(a2; n)· · ·(aA; n)]=[(h1; n)(h2; n)· · ·(hH; n)] (5)

and equate (3) and (4). With a slight modication of the notation, we have the transformation

[(d; n)(a1; n)(a2; n)· · ·(aA; n)xnyn]=[n!(h1; n)(h2; n)· · ·(hH; n)]1F1[d+n;e;x]

= [(d; n)xn]=[(e; n)n!]A+2FH[a1; a2; : : : ; aA;1−e−n;−n;h1; h2; : : : ; hH;y]: (6)

This expression is a special case of a result given by Slater [3, p. 60] and obtained by other means. Erdelyi [1, p. 253] has listed the formula

1F1[a;c;x] = exp(x)1F1[c−a;c;−x] (7)

known as Kummer’s rst theorem.

If (1) and (7) are applied to (6), then after putting d=e, a quite general summation formula involving the Laguerre polynomial is obtained, namely

X

n

[(a1; n)(a2; n)· · ·(aA; n)xnyn]=[(h1; n)(h2; n)· · ·(hH; n)n!]Len−1(x)

= exp(x)X

n

[xn=n!]A+2FH[a1; a2; : : : ; aA;1−e−n;−n;h1; h2; : : : ; hH;y]: (8)

Considerable simplication can be achieved if the inner hypergeometric on the right is summable in closed form. This can be eected by using the results

2F1[a;−n;c; 1] = (c−a; n)=(c; n) (Vandermonde’s theorem) (9)

and

2F1[a; b; 1 +a−b;−1] = [ (1 +a−b) (1 +a=2)]=[ (1 +a) (1 +a=2−b)]

(Kummer’s summation theorem) (10)

which are included in Appendix III of Slater [3].

(3)

H. Exton / Journal of Computational and Applied Mathematics 100 (1998) 225–227 227

Put y= 1 and apply (9) when,

2F1[1−e−n;−n;h; 1] = (h+e−1 +n; n)=(h; n)

= [(h=2 +e=2−1=2; n)(h=2 +e=2; n)4n]=[(h+e−1; n)(h; n)]: (11)

On inserting this result into (9), we have, after some manipulation

X

A similar expression may also be deduced from (10), noting that

2F1[−n;1−e−n;e;−1] = (1−n=2)= (1−n) =1=22n= (1=2−n=2): (15)

2, the following interesting special case is obtained:

exp(x)X

[1] A. Erdelyi, Higher Transcendental Functions, McGraw Hill, New York, 1953. [2] H. Exton, Multiple Hypergeometric Functions, Halsted, New York, 1976.

Referensi

Dokumen terkait

Subjek penelitian penderita kelainan refraksi miopia yang dikoreksi dengan menggunakan pemeriksaan subjektif dibanding dengan hasil koreksi dengan pemeriksaan

Analisis Kandungan Sikap Pada Buku Teks Ipa Kurikulum 2013 Dan Implementasinya Dalam Pembelajaran Di Smp. Universitas Pendidikan Indonesia | repository.upi.edu

Building on input from across the scientiic community, this report identiies key priorities for Antarctic and Southern Ocean research over the coming decade, along with

Membandingkan hasil koreksi kelainan refraksi pada pemeriksaan subjektif ( trial and error ) dengan pemeriksaan objektif (streak retinoskopi) tanpa sikloplegik pada

Rerata Persentase Kemunculan Indikator Sikap.

the world explored the many facets of animal-based research that could contribute to irreproducible results, including perspectives on improving experimental planning,

pemeriksaan subjektif ( trial and error ) dengan pemeriksaan objektif (streak.. retinoskopi) tanpa sikloplegik pada penderita miopia di Poli Mata divisi.

Sebuah skripsi yang diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Pendidikan pada Fakultas Pendidikan Bahasa dan Sastra. ©Atria Ramadhanty Irawan 2014