• Tidak ada hasil yang ditemukan

Prosiding Seminar Nasional Mekanisasi Pertanian 2010 ISBN :

N/A
N/A
Protected

Academic year: 2021

Membagikan "Prosiding Seminar Nasional Mekanisasi Pertanian 2010 ISBN :"

Copied!
12
0
0

Teks penuh

(1)

PERANCANGAN MODEL FAKTOR ERGONOMI MAKRO TERHADAP PRODUKTIVITAS SISTEM KERJA PADA PABRIK GULA

SCHEME MODEL THE MACRO ERGONOMICS FACTOR TO WORK SYSTEM IN SUGAR MILL PRODUCTIVITY

Farry Apriliano Haskari, Sam Herodian, Lenny Saulia Institut Pertanian Bogor

ABSTRACT

Sugar mill is part of sugar industry represent a dynamic work system which occupies machine and human labour. The good scheme ergonomic covers the micro and macro ergonomics to improve productivity of work system. This research was conduct in order to learn and determine the macro and micro parameter of ergonomics at the work system in sugar mill. The determination of these parameters was applied application in scheme model of micro and macro ergonomic factors to improve work system productivity. The illumination, temperature, humidity, noise, vibration, and operator perceptions was measured as data input for modelling system using artificial neural network. As the result, the optimum productivity level in PG Bungamayang may reachable if the combination of macro and micro ergonomic factors for the illumination 12667.99 lux, temperature 28.88 0C, humidity 86.92%, noise 91.6 dB, vibration 2.8 m/s2 and very care to organizational work system of the operator perception level with the predicted productivity level equal to 1882.95 ton cane/shift, and in PG Jatitujuh may reachable if illumination 6667.85 lux, temperature 28.41 0C, humidity 49.44%, noise 64.8 dB, vibration 1.31 m/s2 and very care to organizational work system of the operator perception level, with the predicted productivity level equal to 1619.29 ton cane / shift.

Key words:Macro ergonomic, work system, productivity

PENDAHULUAN

Pabrik gula yang merupakan bagian dari industri gula merupakan sebuah sistem kerja yang dinamis yang memiliki hubungan yang erat antara teknologi sebagai mesin dan manusia sebagai tenaga kerja. Nagamachi (1996) telah mengkaji masalah hubungan antara perancangan sistem kerja, ergonomi makro dan produktivitas. Dari hasil penelitiannya disimpulkan bahwa perlu dilakukan harmonisasi antara teknologi dan manusia sehingga didapat sistem yang produktivitasnya meningkat.

Hendrick (2002) mempublikasikan bahwa perancangan ergonomi yang baik mencakup ergonomi makro dan mikro yang dikaitkan dengan organisasi akan memeberikan keuntungan ekonomi yang juga baik. Sesuai dengan definisi ergonomi,

(2)

dimana sebuah sistem kerja harus dapat menjamin keamanan, kesehatan dan keselamatan kerja, serta terpenuhinya kebutuhan hidup mendasar, akan memberikan dampak terhadap hasil kerja tersebut yaitu meningkatnya efektifitas dan efisiensi industri. Dampak lainnya adalah sedikitnya absensi karyawan, kualitas produk meningkat, kecelakaan kerja berkurang, biaya kesehatan dan asuransi berkurang dan tingkat keluar masuk karyawan (turn-over) juga berkurang. Pada gilirannya akan meningkatkan pendapatan perusahan dan mengurangi pengeluaran (walaupun pada awalnya perlu investasi ergonomi). Dengan demikian ergonomi yang baik berarti juga ekonomi yang baik.

Produktivitas kerja berhubungan erat dengan kemampun kerja manusia (human factor). Dalam rangka meningkatkan produktivitas, perbaikan prestasi kerja operator merupakan salah satu syarat penting. Sebagai dua perusahan besar yang bergerak dalam produksi gula, PT PG Jatitujuh dan PG Bungamayang menjalankan produksi dengan menggunakan mesin-mesin untuk memproduksi produk dalam skala besar. Dengan adanya mesin-mesin tersebut, pekerjaan dengan bahan baku sangat besar dapat ditangani dengan baik serta menambah efisiensi kerja. Namun, di sisi lain dengan adanya mesin-mesin tersebut tanpa disadari menimbulkan dampak yang kurang baik bagi kesehatan jika tidak diperhatikan dengan cermat. Kebisingan, getaran dari mesin-mesin yang digunakan oleh para tenaga kerja dan keadaan iklim lingkungan kerja seperti temperatur udara, pencahayaan dan kelembaban secara tidak langsung dapat merugikan kesehatan, menurunkan performansi dan Produktivitas tenaga kerja.

Penelitian ini bertujuan untuk mempelajari dan menentukan parameter ergonomi mikro dan makro pada sistem kerja pengolahan tebu di pabrik gula yang diaplikasikan dalam perancangan model faktor ergonomi makro terhadap produktivitas sistem kerja pada pabrik gula.

METODOLOGI PENELITIAN Waktu dan Tempat

Penelitian ini telah dilaksanakan di dua pabrik gula yaitu di PT. Perkebunan Nusantara VII (Persero) unit usaha PG Bungamayang dan PG Jatitujuh Cirebon. Pemilihan dua pabrik tersebut dengan pertimbangan perbedaan tingkat produktivitas. Waktu penelitian dimulai pada bulan Mei sampai Juni 2008.

Prosedur Penelitian

Prosedur penelitian yang digunakan secara garis besar terdiri dari studi pendahuluan, pengambilan data, pemodelan sistem, kalibrasi dan validasi, kemudian dilanjutkan dengan analisa dan kesimpulan.

(3)

HASIL DAN PEMBAHASAN Kondisi Lingkungan Fisik

Hasil pengukuran kondisi lingkungan fisik meliputi tingkat pencahyaan (illuminasi), suhu, kelembaban, kebisingan dan getaran. Pengukuran ini dilakukan di kedua pabrik gula pada stasiun gilingan, pemurnian, pemasakan, pengupan, puteran,

boiler dan power house dengan mengukur kondisi lingkungan fisik di tempat operator

bekerja. Pada PG Bungamayang dilakukan pada 24 titik pengukuran dan di PG Jatitujuh dilakukan pada 48 titik pengukuran dengan 10 kali ulangan pada

masing-masing titik. 1 10 100 1000 10000

Shift Pagi Shift Siang Shift Malam PG Bunga Mayang Il lum ina si ( lux) 1 10 100 1000 10000

Shift Pagi Shift Siang Shift Malam PG Jati Tujuh Il lum ina si ( lux) 28 30 32 34 36 38 40

Shift Pagi Shift Siang Shift Malam PG Bunga Mayang Su hu ( 0C) 28 30 32 34 36 38 40

Shift Pagi Shift Siang Shift Malam PG Jati T ujuh Su hu ( 0C) 28 38 48 58 68 78

Shift Pagi Shift Siang Shift Malam PG Bunga Mayang Ke le m ba ba n ( % ) 28 38 48 58 68 78

Shift Pagi Shift Siang Shift Malam PG Jati Tujuh K el em bab an ( % )

(4)

Gambar 5. Rata-rata tingkat illuminasi (lux), suhu (0C), kelembaban (%), kebisingan (dB) dan getaran (m/s2) pada shift pagi, shift siang dan shift malam di tujuh stasiun PG Bungamayang dan PG Jatitujuh

Beban Kerja, Kelelahan dan Kecelakaan Kerja Beban Kerja Menggunakan Heart Rate

Pengukuran beban kerja dilakukan dengan pengukuran detak jantung dengan heart rate dan menggunakan kuisioner. Pengukuran detak jantung dilakukan pada stasiun boiler dengan pertimbangan bahwa lingkungan kerja di stasiun boiler memiliki aktivitas fisik yang besar, dan kondisi iklim serta getaran dan kebisingan yang cukup tinggi. Pengukuran beban kerja dilakukan pada tiga shift yaitu pagi, siang dan malam. Kegiatan yang diamati pada stasiun ini yaitu kegiatan mengatur bagas pada tungku pembakaran boiler.

Gilingan Pemurnian Penguapan Masakan

Puteran Power House Boiler

80 85 90 95 100

Shift Pagi Shift Siang Shift Malam PG Bunga Mayang K ebi si nga n ( dB ) 80 85 90 95 100

Shift Pagi Shift Siang Shift Malam PG Jati T ujuh K ebi si nga n ( dB ) 0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00

Shift Pagi Shift Siang Shift Malam PG Bunga Mayang Ge ta ra n (m /s 2) 0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00

Shift Pagi Shift Siang Shift Malam PG Jati Tujuh Ge ta ra n (m /s 2)

(5)

Tabel 10. Tingkat beban kerja operator boiler di stasiun boiler pada PG Jatitujuh Shift

Kerja Operator IRHR

Tingkat Beban

Kerja

TEC BME WEC WEC'

(kkal/min) (kal/kg.min) Pagi I 1,46 sedang 1,40 1,015 0,38 6,5 II 1,52 berat 3,01 1,120 1,89 26,3 Siang I 1,33 sedang 1,13 1,015 0,11 1,9 II 1,46 sedang 2,68 1,120 1,56 21,7 Malam I 1,42 sedang 1,31 1,015 0,30 5,0 II 1,55 berat 3,18 1,120 2,06 28,6

Keterangan: 1<IRHR<1,25 (ringan), 1,25<IRHR<1,5 (sedang), 1,5<IRHR<1,75 (berat), 1,75<IRHR<2,0 (sangat berat), 2,0<IRHR (luar biasa berat) (Syuaib 2003)

Tabel 11. Tingkat beban kerja operator boiler di stasiun boiler pada PG Bungamayang Shift Kerja Opera tor IRHR Tingkat Beban Kerja

TEC BME WEC WEC'

(kkal/min) (kal/kg.min

)

Pagi I 1,42 sedang 1,49 0,865 0,63 13,8

II 1,33 sedang 1,72 1,025 0,69 12,2

Siang III 1,67 berat 3,02 1,085 1,93 27,2

IV 1,42 sedang 1,73 0,995 0,74 12,4

Malam V 1,39 sedang 1,98 1,065 0,92 13,6

VI 1,48 sedang 2,57 1,225 1,35 15,9

Keterangan: IRHR (Increase Ratio of Heart Rate), TEC (Total Energy Cost), BME (Basal

Metabolic Energy), WEC’ (Work Energy Cost per Weight)

Hasil kuisioner perspektif operator terhadap beban kerja, kecelakaan kerja, kelelahan dan lingkungan organisasi secara umum pada PG Bungamayang (79 orang responden) dan PG Jatitujuh (54 orang responden) dapat dilihat pada Tabel 12.

Tabel 12. Perspektif operator terhadap beban kerja, kecelakaan kerja, kelelahan dan lingkungan organisasi secara umum pada proses pabrikasi produksi gula

Beban Kerja Kecelakaan Kerja Kelelahan Lingkunan Organisasi Beban Kerja Kecelakaan Kerja Kelelahan Lingkungan Organisasi

Boiler Berat Sedang Sedang Sangat Peduli Berat Ringan Ringan Sangat Peduli

Evaporator Sedang Sedang Sedang Sangat Peduli Sedang Sedang Sedang Sangat Peduli

Gilingan Sedang Sedang Ringan Sangat Peduli Berat Sedang Ringan Sangat Peduli

Masakan Ringan Ringan Ringan Peduli Sedang Ringan Berat Sangat Peduli

Pemurnian Ringan Ringan Ringan Peduli Sedang Ringan Ringan Sangat Peduli

Power House Sedang Sedang Sedang Sangat Peduli Berat Sedang Berat Sangat Peduli

Puteran Sedang Sedang Sedang Sangat Peduli Berat Sedang Sedang Sangat Peduli

Stasiun

(6)

Simulasi

Simulasi jaringan syaraf tiruan (JST) menggunakan software Matlab R2008a dengan menggunakan neural network toolbox.

Sebaran Data

Aplikasi model dengan menggunakan jaringan syaraf tiruan (JST) dipengaruhi oleh pola sebaran data yang digunakan dalam proses training (pembelajaran), aplikasi model JST tidak akan memberikan hasil yang baik jika fenomena yang diamati berada di luar sebaran data yang digunakan pada proses training (Siang JJ 2005). Ada enam parameter yang dijadikan sebagai data input pada model JST tahap pertama, dengan sebaran data untuk pabrik gula PG Bungamayang dan PG Jatitujuh adalah sebagai berikut:

Tabel 13. Sebaran data input pada enam parameter ergonomi untuk model JST tahap pertama

Parameter data Input Sebaran data

PG Bungamayang PG Jatitujuh

Illuminasi 3,6 – 20.000 lux 1,77 – 20.000 lux

Suhu Lingkungan 28,6 – 37 0C 27,6 – 39,7 0C

Kelembaban 19,9 – 91,7% 4,9 – 83,5%

Kebisingan 61-115 dB 64,8-99,5 dB

Getaran 0 – 4,98 m/s2 0,19 – 8,56 m/s2

Persepsi Operator terhadap

Lingkungan Organisasi 1 - 4 1 - 4

Sumber : Hasil pengukuran pada PG Bungamayang dan PG Jatitujuh dalam tiga shift kerja

Selain data input yang digunakan pada proses training (pembelajaran) model JST pada tahap pertama, digunakan juga data output yang memiliki tiga parameter yaitu data persepsi karyawan pabrik gula PG Bungamayang dan PG Jatitujuh terhadap beban kerja, kelelahan, dan kecelakaan kerja yang digunakan sebagai indikator beban kerja, kelelahan dan kecelakaan kerja pada proses produksi dengan sebaran data pada selang 1-4.

Selanjutnya dilakukan proses training (pembelajaran) model JST pada tahap kedua, yang menggunakan data input dari data output model JST tahap pertama dengan hasil akhir (output) model JST tahap kedua adalah tingkat produktivitas jumlah ton tebu yang digiling per shift (ton cane/shift). Sebaran data produktivitas pada PG Bungamayang menyebar pada selang 1.831,5-2.208,9 ton cane/shift dan PG Jatitujuh menyebar pada selang 1.385,8-1.504,7 ton cane/shift.

Analisis Model

Analisis model dilakukan dengan mengkalibrasi dan memvalidasi pada model JST tahap pertama dan model JST tahap kedua, pada masing-masing pabrik gula.

(7)

Kalibrasi dan Validasi Model JST

Kalibrasi model dilakukan guna melihat kesesuaian antara data output yang digunakan pada proses training dengan data output yang dihasilkan dari Model JST yang dibangun. Model JST tahap pertama dan kedua yang dibangun diuji coba dengan beberapa variasi jumlah hidden layer (lapisan tersembunyi) dan variasi jumlah node pada hidden layer.

Validasi Model JST tahap pertama dan kedua dilakukan dengan membandingkan hasil keluaran model dengan data baru diluar data yang digunakan pada proses training, dengan tujuan untuk melihat ketepatan model dalam melakukan pendugaan atau prediksi terhadap parameter-parameter yang digunakan dalam model. Validasi Model JST dilakukan dengan cara merubah variasi jumlah node hidden layer.

Nilai R2 berkorelasi dengan nilai error model, dimana semakin besar nilai R2

(mendekati 1) maka nilai error model akan semakin kecil, menunjukkan bahwa output yang dihasilkan oleh model semakin mendekati nilai output data. Data error dihitung dengan menggunakan mean square error (MSE).

Kalibrasi dan Validasi Model JST PG Bungamayang

Dari hasil kalibrasi dan validasi Model JST tahap pertama diperoleh Model JST

6-2-1 dengan jumlah sepuluh node pada hidden layer, memiliki nilai kalibrasi R2=0,768 dan nilai validasi R2=0,765. Dan untuk Model JST tahap kedua diperoleh

Model JST 3-1-1 dengan tiga node pada hidden layer, memiliki nilai kalibrasi R2=0,789

dan nilai validasi R2=0,818.

Kalibrasi dan Validasi Model JST PG Jatitujuh

Dari hasil kalibrasi dan validasi Model JST tahap pertama diperoleh Model JST 3-3-1 dengan jumlah node 300 pada hidden layer, memiliki nilai kalibrasi R2=0,881 dan validasi R2=0.858. Dan untuk Model JST tahap kedua diperoleh Model JST 3-4-1

dengan 300 node pada hidden layer menunjukkan nilai kalibrasi R2=0,6646 dan validasi R2=0,7018.

Prediksi Model

Pengaruh parameter-parameter input terhadap parameter output dianalisa dengan cara memasukkan nilai parameter input yang bervariasi ke dalam JST dan kemudian mengamati kecendrungan nilai parameter output. Untuk mempelajari suatu parameter input, variasi tingkatan nilai parameter tersebut dimasukkan kedalam Model JST sementara nilai parameter-parameter input yang lain dianggap tetap (ceteris paribus). Nilai input yang digunakan pada prediksi model adalah seperti pada Tabel 13.

Pengaruh masing-masing parameter input terhadap parameter output diprediksi dengan menggunakan model JST tahap pertama dan model JST tahap kedua masing-masing pabrik gula. Pengaruh parameter input yang diduga adalah sebagai berikut:

(8)

Gambar 6 Prediksi model terhadap beban kerja, kecelakaan kerja, kelelahan dan produktivitas (ton cane/shift) dengan perubahan persepsi operator pada organisasi

beban kerja kecelakaan kerja kelelahan produktivitas

0,0 1,0 2,0 3,0 4,0 5,0 3, 6 1337 2670 4003 3653 6669 8002 9335 1066 8 12 00 1 13 33 5 14 66 8 16 00 1 17 33 4 18 66 7 20 00 0 Illumnasi (lux) PG Bunga Mayang Sk or 1300 1400 1500 1600 1700 1800 1900 P ro du ktiv ita s ( to n c a n e/s h ift ) 0,0 1,0 2,0 3,0 4,0 5,0 1, 77 1335 2668 4001 5335 6668 8001 9334 10667 12001 13334 14667 16000 17334 18667 20000 Illumnasi (lux) PG Jati Tujuh S kor 1300 1400 1500 1600 1700 1800 1900 P rod ukt ivi ta s ( to n c a n e/ sh ift ) 0,0 1,0 2,0 3,0 4,0 5,0 0 0, 27 0,53 0,8 1,07 1,33 1,6 1,87 132, 2,4 2,67 2,93 3,2 3,47 3,73 4 Persepsi operator pada lingkungan organisasi

PG Jati Tujuh Sk or 1300 1400 1500 1600 1700 1800 1900 P rod ukt ivi ta s ( ton c a ne /s hi ft ) 0,0 1,0 2,0 3,0 4,0 5,0 0, 0 0,3 0,5 0,8 1,1 1,3 1,6 1,9 2,1 2,4 2,7 2,9 3,2 3,5 3,7 4,0 Persepsi operator pada lingkungan organisasi

PG Bunga Mayang S kor 1300 1400 1500 1600 1700 1800 1900 P rodukt ivi ta s ( ton c ane /s hi ft ) 0,0 1,0 2,0 3,0 4,0 5,0 28 ,6 29,4 30,3 31,1 32 ,832 33,6 34,5 35,3 36,2 37 Suhu (0C) PG Bunga Mayang Sk or 1300 1400 1500 1600 1700 1800 1900 P ro du ktiv ita s ( to n c a n e/s h ift ) 0,0 1,0 2,0 3,0 4,0 5,0 27, 6 28, 8 30 31, 2 32, 4 33, 7 34, 9 36, 1 37, 3 38, 5 39, 7 Suhu (0C) PG Jati Tujuh Sk or 1300 1400 1500 1600 1700 1800 1900 P rodu kt iv it as ( ton c ane /s hi ft ) 0,0 1,0 2,0 3,0 4,0 5,0 19, 9 24, 7 29, 5 34, 3 39, 1 43, 8 48, 6 53, 4 58, 2 63 67, 8 72, 6 77, 3 82, 1 86, 9 91, 7 Kelembaban (%) PG Bunga Mayang S kor 1200 1300 1400 1500 1600 1700 1800 1900 P rodu kt ivi ta s ( ton c ane /s hi ft ) 0,0 1,0 2,0 3,0 4,0 5,0 4, 9 10,1 15,4 20,6 25,9 31,1 36,3 641, 46,8 52,1 57,3 62,5 67,8 73 78,3 83,5 Kelembaban (%) PG Jati Tujuh S kor 1200 1300 1400 1500 1600 1700 1800 1900 P rodukt ivi ta s ( ton c a ne /s hi ft )

(9)

Gambar 7 Prediksi model terhadap beban kerja, kecelakaan kerja, kelelahan dan produktivitas (ton cane/shift) dengan perubahan illuminasi (lux), suhu (0C), kelembaban (%), kebisingan (dB) dan getaran (m/s2)

Optimasi Model

Optimasi model dilakukan untuk mendapatkan bentuk rancangan sistem kerja berdasarkan pertimbangan ergonomi mikro dan makro yang optimum sehingga dalam proses produksi sesuai dengan kondisi ergonomi mikro dan makro yang sesuai dengan nilai ambang batas bagi operator. Metode optimasi yang dipakai adalah random search, yaitu dengan memasukkan parameter input ergonomi mikro dan makro yang bervariasi kedalam Model JST kesatu dan Model JST kedua dan kemudian memilih nilai output terbaik dari variasi input tersebut.

Optimasi Rancangan Sistem Kerja

Untuk mendapatkan nilai produktivitas yang optimum, nilai parameter input yang digunakan adalah nilai parameter optimum yang memenuhi syarat ergonomi atau sesuai dengan ambang batas yang dijinkan ( Tabel 14).

beban kerja kecelakaan kerja kelelahan p roduktivitas 0,0 1,0 2,0 3,0 4,0 5,0 64, 8 67, 1 69, 4 71, 7 74, 1 76, 4 78, 7 81 83, 3 85, 6 87, 9 90, 3 92, 6 94, 9 97, 2 99, 5 Kebisingan (dB) PG Jati Tujuh S kor 1300 1400 1500 1600 1700 1800 1900 P rodukt ivi ta s ( ton c a ne /s hi ft ) 0,0 1,0 2,0 3,0 4,0 5,0 61, 0 64, 6 68, 2 71, 8 75, 4 79, 0 82, 6 86, 2 89, 8 93, 4 97, 0 100, 6 104, 2 107, 8 111, 4 115, 0 Kebisingan (dB) PG Bunga Mayang S kor 1300 1400 1500 1600 1700 1800 1900 P rodukt iv it as ( ton c ane /s hi ft ) 0,0 1,0 2,0 3,0 4,0 5,0 0, 19 0,75 1,31 1,86 2,42 2,98 3,54 14, 4,65 5,21 5,77 6,33 6,89 7,44 8 8,56 Getaran (m/s2) PG Jati Tujuh Sk or 1300 1400 1500 1600 1700 1800 1900 P ro du ktiv ita s ( to n c a n e/s h if t ) 0,0 1,0 2,0 3,0 4,0 5,0 0, 0 0,3 0,7 1,0 1,3 1,7 2,0 2,3 2,7 3,0 3,3 3,7 4,0 4,3 4,7 5,0 Getaran (m/s2) Pg Bunga Mayang S kor 1300 1400 1500 1600 1700 1800 1900 P rodukt ivi ta s ( ton c a ne /s hi ft )

(10)

Tabel 14 Nilai input JST yang digunakan dalam optimasi tingkat produktivitas

Parameter

Input ergonomi Nilai input JST

Illuminasi 100-300 lux Suhu 25-30 0C Kelembaban 50-70% Kebisingan 60-85 dB Getaran 0-2 m/s2 Persepsi L. Organisasi 3-4

Dari Tabel 14 kemudian dibuat pasangan kombinasi input JST yang digunakan dalam pendugaan tingkat produktivitas pada PG Bungamayang dan PG Jatitujuh yang optimum, pasangan kombinasi ini terdiri dari enam parameter input data yang membentuk 2.196.150 kombinasi input JST.

Dari hasil prediksi tingkat produktivitas optimum yang dapat dicapai PG Bungamayang untuk tingkat produktivitas sebesar 1.858-1.865 ton cane/shift dengan kombinasi input untuk illuminasi antara 100-120 lux, suhu 25 0C, kelembaban antara

60-70%, kebisingan 85 dB, getaran antara 1,6-2 m/s2 dan operator peduli sampai sangat peduli pada lingkungan organisasinya. Apabila pembebanan tingkat produktivitas pada PG Bungamayang sebesar 93,25% dari kapasitas maksimal (6.000 Ton Cane/Day), maka optimasi ini akan memberikan peningkatan tingkat produktivitas sebesar 1,47-1,86% (81-102 Ton Cane/Day).

Sedangkan pada hasil prediksi untuk tingkat produktivitas optimum PG Jatitujuh dicapai sebesar 1.464-1.592 ton cane/shift dengan kombinasi input untuk illuminasi antara 220-260 lux, suhu 28-29 0C, kelembaban antara 62-66%, kebisingan 80 dB,

getaran antara 1,2-1,6 m/s2 dan operator sangat peduli pada lingkungan organisasinya. Apabila pembebanan tingkat produktivitas pada PG Jatitujuh sebesar 96,44% dari kapasitas maksimal (4.500 Ton Cane/Day), maka optimasi ini akan memberikan peningkatan tingkat produktivitas sebesar 1,1-9,7% (51-435 Ton Cane/Day).

KESIMPULAN

Kesimpulan yang dapat ditarik dari hasil penelitian ini adalah sebagai berikut: :

1 Faktor ergonomi mikro (illuminasi, suhu, kelembaban, kebisingan, dan getaran) dan makro (shift kerja, lingkungan organisasi) memiliki pengaruh terhadap tingkat produktivitas di proses pabrikasi gula pada PG Bungamayang dan PG Jatitujuh.

(11)

2 Tingkat produktivitas yang optimum di PG Bungamayang dapat dicapai apabila kombinasi faktor ergonomi mikro dan makro untuk illuminasi antara 100-120 lux, suhu 25 0C, kelembaban antara 60-70%, kebisingan 85 dB, getaran antara 1,6-2 m/s2 dan operator peduli sampai sangat peduli pada lingkungan organisasinya dengan tingkat produktivitas yang dicapai antara 1.858-1.865 ton cane/shift, memberikan peningkatan tingkat produktivitas sebesar 1,47-1,86% (81-102 Ton Cane/Day).

3 Tingkat produktivitas yang optimum di PG Jatitujuh dapat dicapai apabila kombinasi faktor ergonomi mikro dan makro untuk illuminasi antara 220-260 lux, suhu 28-29 0C, kelembaban antara 62-66%, kebisingan 80 dB, getaran antara

1,2-1,6 m/s2 dan operator sangat peduli pada lingkungan organisasinya dengan tingkat produktivitas yang dicapai antara 1.464-1.592 ton cane/shift, memberikan peningkatan tingkat produktivitas sebesar 1,1-9,7% (51-435 Ton Cane/Day).

SARAN

1 Perlu penelitian lebih lanjut pengaruh jadwal waktu istirahat dan lamanya dalam tiga shift kerja terhadap tingkat produktivitas.

2 Perlu penelitian lebih lanjut pengaruh tingkat polusi udara seperti debu, bau-bauan, dan gas berbahaya.

3 Operator disarankan menggunakan APD (alat pelindung diri) sesuai dengan kondisi lingkungan fisik dimana operator bekerja

DAFTAR PUSTAKA

Agro Observer (2006). Industri Gula Indonesia Semakin Seksi. Jakarta.

Hendrick Hal W. 2002. Good Ergonomics is Good Economics. Prosiding International Seminar on Egonomics and Sport Physiology; Denpasar, 14-17 Oktober 2002. Denpasar.

Herodian S, Morgan K, dan Saulia L. 1999. Pedoman Praktikum Ergonomika Ergonomika Proyek Peningkatan Perguruan Tinggi. Bogor: Institut Pertanian Bogor.

(12)

Nagamachi, Mitsuo. 1996. Relationship Between Job Design, Macroergonomics, and Productivity [Abstract]. Di dalam: International Journal Of Human Factor In Manufacturing, 1996 John Wiley and Sons, Volume 6 Issue 4, Pages 309 – 322. http://www3.interscience.wiley.com/cgi-bin/jissue [18 October 2005].

Siang JJ. 2005. Jaringan Syaraf Tiruan dan Pemrograman Menggunakan Matlab. Jakarta: Andi Offset.

Syuaib MF. 2003. Ergonomic Study on the Proces of Matering Tractor Operation. Desertasi. Japan: Tokyo University of Agriculture and Technology, Tokyo.

Gambar

Gambar 5.  Rata-rata tingkat illuminasi (lux), suhu ( 0 C), kelembaban (%), kebisingan (dB) dan
Tabel 11.  Tingkat beban kerja operator boiler di stasiun boiler pada PG Bungamayang
Tabel 13. Sebaran data input pada enam parameter ergonomi untuk model JST tahap pertama
Gambar 6   Prediksi model terhadap beban kerja, kecelakaan kerja, kelelahan dan produktivitas  (ton cane/shift) dengan perubahan persepsi operator pada organisasi
+3

Referensi

Dokumen terkait

Selanjutnya penelitian yang dilakukan oleh [11] tidak jauh berbeda dengan penelitian [10] yakni membuat sistem informasi kuliah kerja nyata mulai dari proses

Berdasarkan hasil uji hipotesis yang menjelaskan bahwa adanya pengaruh variabel pengetahuan system informasi terhadap minat pengguna layanan E- Banking, ini menunjukkan

Berdasarkan tinjauan pustaka di atas, penelitian ini dibuat berdasarkan kesamaan pada penelitian yang sudah dilakukan atas variabel kecerdasan emosional, perbedaan

Beberapa saran yang bermanfaat untuk menindaklanjuti penelitian ini adalah perlunya dipelajari metode lain dalam penaksiran parameter pada model regresi untuk data panel

Anggarkan beban hidup maksimum yang boleh ditanggung oleh rasuk ini dengan hanya mempertimbangkan tegasan keratan yang dibenarkan pada tengah rentang adalah sifar

Proses yang dikaji pada penelitian adalah pengelolaan informasi Bidikmisi, pengelolaan data pendaftaran mahasiswa Bidikmisi, portal, serta proses monitoring dan evaluasi