• Tidak ada hasil yang ditemukan

S KOM 1005178 Bibilography

N/A
N/A
Protected

Academic year: 2017

Membagikan "S KOM 1005178 Bibilography"

Copied!
4
0
0

Teks penuh

(1)

Anshar Abdullah, 2015

IMPLEMENTASI ALGORITMA K-MEANS DAN k-NEAREST NEIGHBOR UNTUK TOPIC DETECTION AND TRACKING PADA MICROBLOG TWITTER Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

DAFTAR PUSTAKA

Al-Shalabi, R., Kanaan, G., Gharaibeh, M. (2006). “Arabic Text Categorization Using kNN Algorithm”. The 4th International Multiconference on Computer and Information Technology, CSIT.

Allan, J., dkk. (1998), “Topic detection and tracking Pilot Study Final Report”. SIGIR '98 Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval.

Allan, J., dkk. (1998), “On-line new event detection and tracking”. SIGIR '98

Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval.

Allan, J., dkk. (2000), “First story detection in TDT is hard”. CIKM '00

Proceedings of the ninth international conference on Information and knowledge management.

APJII (2014). “Pengguna Internet Indonesia Tahun 2014”. Asosiasi Penyelenggara Jasa Internet Indonesia.

Arifin, D., Arieshanti, I., Zainal, A. (2012), “Implementasi Algoritma K-Nearest Neighbour yang Berdasarkan One Pass Clustering Untuk Kategorisasi Teks”. Institut Teknologi Sebelas November.

Ayman, N.,Topic detection and tracking Within Social Networks.[Online].

Tersedia di: http://www.cse.aucegypt.edu/~rafea/CSCE590/Spring11/

Presentations/Topic%20Detection%20and%20Tracking%20within%20So

cial%20Networks.pdf [8 Agustus 2014].

(2)

70

Anshar Abdullah, 2015

IMPLEMENTASI ALGORITMA K-MEANS DAN k-NEAREST NEIGHBOR UNTUK TOPIC DETECTION AND TRACKING PADA MICROBLOG TWITTER Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Cselle, G., Albrecht, K. dan Wattenhofer, R (2007). “BuzzTrack: topic detection and tracking in email”. IUI '07 Proceedings of the 12th international conference on Intelligent user interfaces.

Dieter, F., dkk. (2012). Social Media Monitoring. [Online]. Tersedia di: http://oc.sti2.at/sites/default/files/SMM%20Handouts.pdf. [8 Juli 2015].

Even, Y., Zohar. (2002). Introduction To Text Mining. [Online]. Tersedia di: http://www.docstoc.com/docs/25443990/Introduction-to-Text-Mining. [16

Februari 2015].

Feinerer, I., Hornik, K., dkk. (2008). Text Mining Infrastructure. Journal of Statistic Software Volume 25.

Fensel, D., dkk. (2012). Social Media Monitoring. STI Innsbruck.

Fiscus, J., Doddington, G. (2002). ” Topic detection and tracking Evaluation Overview”. The Information Retrieval Series Volume 12, 2002, pp 17-31.

Grossman, D., dan Ophir, F. (1998). “Information Retrieval: Algorithm and Heuristics”. Kluwer Academic Publisher.

Hoogma, N. (2005). “The Modules and Methods of Topic detection and tracking”. 2nd Twente Student Conference on IT.

Huang, J.Z., Michael Ng., dkk. (2006). “Text Clustering: Algorithms, Semantics,

and Systems”. PAKDD Tutorial.

Hulth, A. (2003). “Improved Automatic Keyword Extraction Given More Linguistic Knowledge”. EMNLP '03 Proceedings of the 2003 conference on Empirical methods in natural language processing.

Kirkorian, R., New Tweets per second record, and how!.[Online]. Tersedia : https://blog.twitter.com/2013/new-tweets-per-second-record-and-how [20

(3)

71

Anshar Abdullah, 2015

IMPLEMENTASI ALGORITMA K-MEANS DAN k-NEAREST NEIGHBOR UNTUK TOPIC DETECTION AND TRACKING PADA MICROBLOG TWITTER Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Larson, R. (2006). Principles of Information Retrieval. [Online]. Tersedia :

http://courses.ischool.berkeley.edu/i240/s09/Lectures/Lecture_17.ppt

[8 April 2015].

Likert, R. (1932). “A Technique for the Measurement of Attitudes”. Archives of Psychology 140: 1–55.

Manning, D., dkk. (2009). “An Introduction to Information Retreival”. Cambridge University Press.

Munzner, T. (2008). “Process and Pitfalls in Writing Information Visualization Research Papers”. Springer LNCS Volume 4950.

Narwati. (2010). “Pengelompokan Mahasiswa Menggunakan Algoritma K-Means”. Jurnal Dinamika Informatika Vol 2, No 2, 2010.

Notoatmodjo, S. (2005). Metodologi Penelitian. Jakarta : PT Rineka Cipta.

Pemerintahan Kota Bandung. (2015). Pariwisata [Online]. Tersedia :

http://bandung.go.id/rwd/index.php [6 April 2015].

Petrovic, S., dkk.(2010) . ”Streaming First Story Detection with application to Twitter”. Proceedings Of The 11th Annual Conference Of The North American Chapter Of The Association For Computational Linguistics (Naacl Hlt). Amerika.

Roscoe, J.T. (1975). Fundamental Research Statistics for the Behavioral Sciences

2nd Edition. New York : Holt Rinehart & Winston.

Saraswati, N.W.S. (2011). Tesis: Text Mining Dengan Metode Naive Bayes Classifier dan Support Vector Machines Untuk Sentiment Analysis. [Online]. Tersedia di:

(4)

72

Anshar Abdullah, 2015

IMPLEMENTASI ALGORITMA K-MEANS DAN k-NEAREST NEIGHBOR UNTUK TOPIC DETECTION AND TRACKING PADA MICROBLOG TWITTER Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu

Sameh, H. (2005). “Applying Clustering of Hierarchical K-means-like Algorithm on Arabic Language”. International Journal of Information Technology, Citeseer.

Semiocast., (2012). Twitter reaches half a billion accounts. [Online]. Tersedia: http://semiocast.com/en/publications/2012_07_30_Twitter_reaches_half_a

_billion_accounts_140m_in_the_US [22 Januari 2014].

Small, S., dkk. (2008). To Catch a Predator: A Natural Language Approach for

Eliciting Malicious Payloads. SS'08 Proceedings of the 17th Conference on Security Symposium. Amerika.

Sommerville, I. (2011). Software Engineering 9th Edition. Pearson.

Statista. (2015). Number of Twitter users in Asia Pacific from 2012 to 2018, by

country (in millions). [Online]. Tersedia:

http://www.statista.com/statistics/303861/twitter-users-asia-pacific-country/ [21 Februari 2015].

Statistic Brain. (2014). Twitter Statistic. [Online]. Tersedia: http://www.statisticbrain.com/twitter-statistics/ [22 Januari 2014].

Sun, Y. 2012., Event Detection Tutorial for Twitter Project. [Online]. Tersedia di:

https://wiki.engr.illinois.edu/download/attachments/200016061/Tutorial+o

n+Event+Detection+for+Twitter+Project.pptx diakses pada 4 Januari

2013.

Referensi

Dokumen terkait

Pengujian menunjukkan sebelum algoritma k-Nearest Neighbor ditambahkan dengan forward selection hasil akurasi adalah 86% sedangkan pengujian menggunakan algoritma k-Nearest

crawler , dan juga algoritma apa yang akan digunakan pada perangkat lunak. distributed twitter crawler (jika ada algoritma yang digunakan) yang

Penelitian dengan menggunakan algoritma genetika untuk mengoptimalkan penentuan parameter K pada algoritma K Nearest neighbor sehingga akurasinya meningkat. Hasil

PENERAPAN ALGORITMA FUZZY K-NEAREST NEIGHBOR UNTUK PENENTUAN RESIKO KREDIT KEPEMILIKAN

Konsep penelitian dengan algoritma K-nearest neighbor telah banyak dilakukan oleh peneliti- peneliti sebelumnya diantaranya yaitu, k-nearest neighbor merupakan teknik yang sangat

Analisis Sentimen Media Sosial Twitter Dengan Algoritma K-Nearest Neighbor Dan Seleksi Fitur Chi-Square Kasus Omnibus Law Cipta Kerja.. Jurnal Sains Komputer & Informatika

Berikut merupakan hasil dari penerapan metode-metode algoritma pada dataset diabetes: Gambar 3.4 Hasil K Nearest Neighbor Gambar 3.4 menunjukkan hasil dari proses K Nearest Neighbor

2.2 K-Nearest Neighbor KNN K-Nearest Neighbor atau KNN merupakan sebuah algoritma klasifikasi dalam machine learning yang menggunakan data pembelajaran sebagai acuan untuk menentukan