• Tidak ada hasil yang ditemukan

IV. HASIL DAN PEMBAHASAN. A. Karakteristik Pengeringan Lapisan Tipis Buah Mahkota Dewa

N/A
N/A
Protected

Academic year: 2021

Membagikan "IV. HASIL DAN PEMBAHASAN. A. Karakteristik Pengeringan Lapisan Tipis Buah Mahkota Dewa"

Copied!
16
0
0

Teks penuh

(1)

IV. HASIL DAN PEMBAHASAN

A. Karakteristik Pengeringan Lapisan Tipis Buah Mahkota Dewa

1. Perubahan Kadar Air terhadap Waktu

Pengeringan buah mahkota dewa dimulai dari kadar air awal bahan sampai mendekati kadar air keseimbangan. Pada Lampiran 17 disajikan gambar mahkota dewa setelah dikeringkan. Data kadar air awal dan kadar air akhir bahan hasil dari penelitian ini pada berbagai tingkat suhu dan kecepatan udara disajikan pada Tabel 2, Tabel 3, Tabel 4, dan Tabel 5 berikut ini.

Tabel 2. Kadar air awal (M0) dan kadar air akhir buah mahkota dewa pada

berbagai tingkat suhu dengan kecepatan udara pengering 1.4 m/dt No Suhu (°C) RH (%) Kadar Air (%bb) Kadar Air (%bk) Lama Pengeringan (menit) Awal Akhir Awal Akhir

1. 50 34 86.06 12.69 626.77 14.73 280 2. 45 48 85.92 12.69 610.66 14.54 340 3. 40 52 85.42 12.89 585.70 14.79 320 4. 35 65 85.85 13.06 606.69 15.03 420

Tabel 3. Kadar air awal (M0) dan kadar air akhir buah mahkota dewa pada

berbagai tingkat suhu dengan kecepatan udara pengering 1 m/dt No Suhu (°C) RH (%) Kadar Air (%bb) Kadar Air (%bk) Lama Pengeringan (menit) Awal Akhir Awal Akhir

1. 50 34 88.94 11.64 804.17 13.14 200 2. 45 48 89.50 11.45 852.35 12.94 200 3. 40 54 88.78 10.98 791.23 12.30 230 4. 35 65 88.72 11.71 786.30 13.23 290

(2)

Tabel 4. Kadar air awal (M0) dan kadar air akhir buah mahkota dewa pada

berbagai tingkat suhu dengan kecepatan udara pengering 0.5 m/dt No Suhu (°C) RH (%) Kadar Air (%bb) Kadar Air (%bk) Lama Pengeringan (menit) Awal Akhir Awal Akhir

1. 50 38 85.59 12.70 594.01 14.53 300 2. 45 46 84.87 12.12 560.67 13.76 330 3. 40 53 84.83 12.35 559.59 14.09 350 4. 35 65 84.63 12.59 557.86 15.63 540

Tabel 5. Kadar air awal (M0) dan kadar air akhir buah mahkota dewa pada

berbagai tingkat suhu dengan kecepatan udara pengering 0.1 m/dt No Suhu (°C) RH (%) Kadar Air (%bb) Kadar Air (%bk) Lama Pengeringan (menit) Awal Akhir Awal Akhir

1. 50 32 86.09 12.47 627.04 14.41 320 2. 45 42 86.29 12.43 629.40 14.19 330 3. 40 55 86.18 12.30 623.44 13.99 420 4. 35 65 86.21 12.62 624.88 14.44 520

Berdasarkan Tabel 2 sampai dengan Tabel 5 di atas dapat dilihat bahwa pada kondisi pengeringan dengan suhu dan tingkat RH yang berbeda menghasilkan penurunan kadar air yang berbeda pula. Parameter yang mempengaruhi proses pengeringan ini adalah suhu pengering, RH pengering, kadar air awal bahan, kadar air akhir bahan, dan kecepatan udara pengering (Brooker, 1974). Kemampuan bahan untuk melepaskan air dari bagian permukaan semakin besar dengan meningkatnya suhu udara pengering yang digunakan. Dari Tabel 2 sampai dengan 5 di atas dapat dilihat bahwa semakin tinggi suhu udara pengering, maka semakin cepat pula pengeringan yang dilakukan. Begitu pula dengan nilai RH, jika RH yang terukur rendah maka pengeringan yang dilakukan lebih cepat dan juga jika nilai RH yang terukur tinggi maka pengeringan yang dilakukan berlangsung lebih lambat.

(3)

Pada percobaan kali ini terjadi sedikit penyimpangan, yaitu pada beberapa kondisi buah mahkota dewa terjadi proses pengeringan yang lebih cepat. Pada Tabel 2, perlakuan suhu 45 °C proses pengeringan terjadi sedikit lebih lambat dibandingkan dengan perlakuan suhu 40 °C. Kemudian pada Tabel 3, perlakuan suhu 50 °C waktu pengeringan yang terjadi cenderung sama dibandingkan dengan perlakuan suhu 45 °C. Hal ini disebabkan oleh kadar air awal, kualitas bahan, dan tingkat kematangan buah mahkota dewa yang dipetik tidak dapat diprediksi secara tepat memiliki kondisi yang sama. Data lengkap hasil pengukuran dan perhitungan penelitian ini disajikan pada Lampiran 1 sampai dengan Lampiran 16.

Pada Gambar 7 sampai dengan Gambar 10 berikut ini disajikan kurva penurunan kadar air terhadap waktu pada berbagai tingkat suhu dan kecepatan udara pengering.

0 20 40 60 80 100 0 100 200 300 400 500 600 Waktu (menit) Ka da r A ir ( % bb ) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 7. Kurva penurunan kadar air terhadap waktu pada berbagai tingkat suhu dengan kecepatan udara pengering 1.4 m/dt.

(4)

0 20 40 60 80 100 0 100 200 300 400 500 600 Waktu (menit) K a d a r A ir ( % b b ) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 8. Kurva penurunan kadar air terhadap waktu pada berbagai tingkat suhu dengan kecepatan udara pengering 1 m/dt.

0 20 40 60 80 100 0 100 200 300 400 500 600 Waktu (menit) Ka d a r A ir ( % b b ) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 9. Kurva penurunan kadar air terhadap waktu pada berbagai tingkat suhu dengan kecepatan udara pengering 0.5 m/dt.

(5)

0 20 40 60 80 100 0 100 200 300 400 500 600 Wak tu (menit) K a d a r A ir ( % b b ) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 10. Kurva penurunan kadar air terhadap waktu pada berbagai tingkat suhu dengan kecepatan udara pengering 0.1 m/dt.

Berdasarkan Gambar 7 sampai dengan Gambar 10 dapat dilihat bahwa penurunan kadar air (%bb) berlangsung setahap demi setahap hingga mencapai keadaan setimbang. Dari grafik di atas dapat kita lihat pula bahwa pada awal proses pengeringan cenderung mengalami penurunan kadar air (%bb) lebih cepat dan pada menjelang akhir proses pengeringan kadar air (%bb) cenderung semakin lambat. Dari grafik tersebut juga bisa kita analisis bahwa jika suhu pengeringan semakin tinggi diberikan maka semakin cepat pula buah mahkota dewa yang dikeringkan untuk mencapai keadaan seimbang. Seperti terlihat pada Gambar 7, durasi waktu pengeringan cenderung lebih lambat dibandingkan dengan durasi waktu pengeringan yang terlihat pada Gambar 8. Hal ini dikarenakan kualitas bahan dan tingkat kematangan buah mahkota dewa yang dipetik tidak dapat diprediksi secara tepat memiliki kondisi yang sama.

2. Laju Pengeringan terhadap Waktu

Laju pengeringan dalam proses pengeringan suatu bahan memiliki arti penting, dimana laju pengeringan akan menggambarkan cepat atau lambatnya suatu proses pengeringan. Penguapan massa air dari permukaan bahan akan bertambah cepat dengan adanya kenaikan suhu dalam proses

(6)

pengeringan. Data laju pengeringan rata-rata selama proses pengeringan buah mahkota dewa dapat dilihat pada Tabel 6 di bawah ini.

Tabel 6. Laju pengeringan rata-rata buah mahkota dewa pada berbagai tingkat suhu dengan berbagai kecepatan udara

No Kecepatan Udara (m/dt) Suhu (°C) RH (%) Laju Pengeringan Rata – rata (%bk/menit) 1. 1.4 50 34 3.1971 45 48 2.5332 40 52 2.2394 35 65 1.6872 2. 1 50 34 4.1389 45 48 4.1426 40 54 3.8946 35 65 3.4404 3. 0.5 50 38 3.2367 45 46 2.8717 40 53 1.9282 35 65 1.3310 4. 0.1 50 32 2.5314 45 42 2.0890 40 55 2.6231 35 65 1.5859

Dari data laju pengeringan di atas dapat dilihat bahwa jika semakin tinggi suhu udara pengeringan, maka semakin naik laju rata-rata pengeringan yang terjadi. Hal ini disebabkan karena penguapan air akan berlangsung semakin cepat seiring dengan bertambahnya suhu. Berdasarkan data Tabel 6 di atas dapat dianalisis bahwa suhu pengeringan berbanding lurus dengan laju pengeringan rata-rata.

Pada Gambar 11 sampai dengan Gambar 14 disajikan kurva laju pengeringan terhadap waktu pada berbagai tingkat suhu dengan berbagai kecepatan udara pengering.

(7)

0 2 4 6 8 10 0 100 200 300 400 500 600 Waktu (menit) L a ju P e ng e r ing a n ( % bk/ m e ni t) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 11. Kurva laju pengeringan terhadap waktu pada berbagai tingkat suhu dengan kecepatan udara pengering 1.4 m/dt.

0 2 4 6 8 10 12 0 100 200 300 400 500 600 Waktu (menit) L a ju P e ng e r ing a n ( % bk/ m e ni t) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 12. Kurva laju pengeringan terhadap waktu pada berbagai tingkat suhu dengan kecepatan udara pengering 1 m/dt.

(8)

0 2 4 6 8 10 0 100 200 300 400 500 600 Wak tu (menit) L a ju P eng er ing a n (% bk/ m eni t) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 13. Kurva laju pengeringan terhadap waktu pada berbagai tingkat suhu dengan kecepatan udara pengering 0.5 m/dt.

0 2 4 6 8 10 0 100 200 300 400 500 600 Waktu (menit) L a ju P eng er ing a n ( % b k /m en it ) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 14. Kurva laju pengeringan terhadap waktu pada berbagai tingkat suhu dengan kecepatan udara pengering 0.1 m/dt.

Berdasarkan Gambar 11 sampai dengan Gambar 14 dapat dilihat bahwa laju pengeringan menjadi tinggi jika suhu pengeringan juga tinggi. Pada awal-awal proses pengeringan laju pengeringan yang terjadi cenderung cepat kemudian mendekati keseimbangan laju pengeringan menjadi lambat.

Laju pengeringan menjadi semakin rendah bila kadar air bahan mendekati kadar air keseimbangan. Menurut Hall (1957), bahwa suatu bahan dapat dikatakan kering jika laju air yang keluar dari bahan sama

(9)

dengan udara sekelilingnya. Pada proses pengeringan ini pada laju pengeringan terjadi sedikit penyimpangan. Pada Gambar 11 laju pengeringan dengan menggunakan perlakuan suhu 40 °C terjadi sedikit lebih cepat pada awal proses dibandingkan dengan perlakuan suhu 45 °C. Kemudian pada Gambar 12 laju pengeringan pada awal proses dengan menggunakan perlakuan suhu 45 °C sedikit lebih cepat dibandingkan dengan perlakuan suhu 50 °C. Begitu pula yang terjadi pada Gambar 12, laju pengeringan pada awal proses dengan menggunakan perlakuan suhu 35 °C terjadi sedikit lebih cepat dibandingkan dengan perlakuan suhu 40 °C. Hal ini dikarenakan kualitas bahan dan tingkat kematangan buah mahkota dewa yang dipetik tidak dapat diprediksi secara tepat memiliki kondisi yang sama.

Pada Gambar 15 sampai dengan Gambar 18 berikut ini disajikan kurva laju pengeringan mahkota dewa terhadap kadar air pada berbagai tingkat suhu dan berbagai kecepatan udara.

0 2 4 6 8 10 12 0 20 40 60 80 100 Kadar Air (% bb) L a ju P e n g eri n g a n ( % b k /m en it ) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 15. Kurva laju pengeringan terhadap kadar air pada berbagai tingkat suhu dengan kecepatan udara pengering 1.4 m/dt.

(10)

0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 Kadar Air (% bb) L a ju P e ng e r ing a n ( % bk/ m e ni t) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 16. Kurva laju pengeringan terhadap kadar air pada berbagai tingkat suhu dengan kecepatan udara pengering 1 m/dt.

0 2 4 6 8 10 0 20 40 60 80 100 Kadar Air (% bb) L a ju P e ng e r ing a n ( % bk/ m e ni t) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 17. Kurva laju pengeringan terhadap kadar air pada berbagai tingkat suhu dengan kecepatan udara pengering 0.5 m/dt.

(11)

0 2 4 6 8 10 0 20 40 60 80 100 Kadar Air (% bb) L a ju P e ng e r ing a n ( % bk/ m e ni t) T = 50 °C T = 45 °C T = 40 °C T = 35 °C

Gambar 18. Kurva laju pengeringan terhadap kadar air pada berbagai tingkat suhu dengan kecepatan udara pengering 0.1 m/dt.

B. Kadar Air Keseimbangan dan Konstanta Pengeringan Buah Mahkota Dewa

1. Kadar Air Keseimbangan (Me) Buah Mahkota Dewa

Kadar air keseimbangan adalah kadar air yang pada prosesnya tidak terjadi perpindahan uap dari dan ke dalam. Pada proses pengeringan, kadar air keseimbangan memiliki arti penting karena dapat menentukan kadar air terendah yang dapat dicapai pada proses tersebut. Pada penyimpanan, kadar air keseimbangan berguna untuk menjaga agar produk tidak mengalami adsorpsi uap air selama penyimpanan berlangsung.

Kadar air keseimbangan berhubungan erat dengan tekanan uap dalam buah mahkota dewa. Pada kadar air tertentu tiap bahan mempunyai karakteristik tekanan uap pula. Bila tekanan uap di dalam bahan lebih besar daripada tekanan uap udara lingkungannya, akan terjadi desorpsi uap ke udara. Bila tekanan uap di bahan lebih kecil, akan terjadi desorpsi uap air di udara ke dalam bahan. Kadar air keseimbangan akan tercapai bila tekanan uap di dalam dan di luar bahan sama besarnya.

Nilai kadar air keseimbangan (Me) buah mahkota dewa dari tiap-tiap perlakuan disajikan dalam Tabel 7 berikut ini.

(12)

Tabel 7. Kadar air keseimbangan (Me) buah mahkota dewa pada berbagai tingkat suhu dengan berbagai kecepatan udara

No Kecepatan Udara (m/dt) Suhu (°C) RH (%) Me (%bk)

1. 1.4 50 34 7 45 48 7.5 40 52 8 35 65 9 2. 1 50 34 7 45 48 7.5 40 54 8 35 65 8.5 3. 0.5 50 38 8.5 45 46 9 40 53 9.5 35 65 10 4. 0.1 50 32 8 45 42 8.5 40 55 9 35 65 9.5

Nilai Me yang ditetapkan pada Tabel 7 di atas merupakan hasil koefisien determinasi (R2) terbaik. Dari data yang disajikan dalam bentuk Tabel 7 di atas dapat dilihat bahwa jika semakin tinggi suhu udara pengeringan, maka semakin rendah nilai kadar air keseimbangan (Me) yang diperoleh. Nilai Me yang diperoleh hanya dipengaruhi oleh RH pengering, sedangkan perbedaan kadar air tidak berpengaruh. Berdasarkan Tabel 7 di atas, jika RH yang diperoleh semakin tinggi maka semakin tinggi pula nilai Me yang diperoleh. Pada Tabel 8 berikut ini adalah pemodelan Me setelah dilakukan analisis menggunakan persamaan Henderson dan Perry. Lampiran 18 sampai dengan Lampiran 21 disajikan nilai uji Me berdasarkan pemodelan pada Tabel 8 dengan berbagai kondisi suhu, RH, dan kecepatan udara pengering.

(13)

Tabel 8. Pendugaan pemodelan Me menggunakan persamaan Henderson dan Perry No Kecepatan Udara (m/dt) Pemodelan Me 1 1.4 Me = 17.707 [-ln (1-RH)/T]0.1972 2 1 Me = 14.594 [-ln (1-RH)/T]0.1544 3 0.5 Me = 16.626 [-ln (1-RH)/T]0.1433 4 0.1 Me = 14.720 [-ln (1-RH)/T]0.1251

2. Konstanta Pengeringan (k) Buah Mahkota Dewa

Konstanta pengeringan merupakan koefisien yang berkaitan dengan nilai difusivitas (D) dan faktor geometris bahan (A), sehingga nilai konstanta pengeringan berbeda untuk setiap model pengeringan lapisan tipis. Nilai konstanta pengeringan diperoleh bersamaan dengan nilai kadar air keseimbangan menggunakan metode grafik. Pada Tabel 9 berikut ini disajikan nilai konstanta pengeringan (k) buah mahkota dewa pada berbagai tingkat suhu dengan berbagai kecepatan udara. Hasil regresi linear untuk mencari nilai k dan A pada berbagai kecepatan udara pengering disajikan pada Lampiran 22 sampai dengan Lampiran 25.

(14)

Tabel 9. Konstanta pengeringan (k) buah mahkota dewa pada berbagai tingkat suhu dengan berbagai kecepatan udara

No Kecepatan Udara (m/dt) Suhu (°C) RH (%) k 1. 1.4 50 34 0.2255 45 48 0.2159 40 52 0.2260 35 65 0.2050 2. 1 50 34 0.3166 45 48 0.3330 40 54 0.3044 35 65 0.2751 3. 0.5 50 38 0.2405 45 46 0.2325 40 53 0.2551 35 65 0.1800 4. 0.1 50 32 0.2147 45 42 0.2392 40 55 0.1981 35 65 0.1854

Berdasarkan data Tabel 9 di atas dapat dianalisis bahwa jika nilai k hanya dipengaruhi oleh suhu udara pengering. Jika suhu udara pengering semakin tinggi, maka nilai k yang diperoleh juga semakin tinggi. Pada Tabel 10 berikut ini adalah pemodelan k setelah dilakukan analisis menggunakan persamaan Arrhenius.

(15)

Tabel 10. Pendugaan pemodelan k menggunakan persamaan Arrhenius No Kecepatan Udara (m/dt) Pemodelan k 1 1.4 k = exp [(0.024/T)-1.464] 2 1 k = exp [(0.051/T)-1.055] 3 0.5 k = exp [(0.103/T)-1.262] 4 0.1 k = exp [(0.063/T)-1.411]

C. Uji Ketepatan Model

Pengujian model nilai Me dan nilai k dilakukan dengan menggunakan metode uji error pada pemodelan tersebut. Jika error yang diperoleh kecil, maka pemodelan tersebut bisa digunakan untuk menduga nilai Me dan k buah mahkota dewa. Pada Tabel 11 dan Tabel 12 berikut ini disajikan perbandingan nilai Me antara hasil percobaan dengan hasil pendugaan berikut nilai error - nya.

Tabel 11. Perbandingan nilai Me antara hasil percobaan dengan hasil pendugaan berikut nilai error – nya

No Kecepatan Udara (m/dt) Suhu (°C) RH (%) Me Percobaan Me Pendugaan Error 1. 1.4 50 34 7 6.88 0.02 45 48 7.5 7.68 0.02 40 52 8 8.05 0.01 35 65 9 8.87 0.01 2. 1 50 34 7 6.96 0.01 45 48 7.5 7.59 0.01 40 54 8 7.94 0.01 35 65 8.5 8.49 0.001 3. 0.5 50 38 8.5 8.54 0.005 45 46 9 8.99 0.001 40 53 9.5 9.41 0.01 35 65 10 10.05 0.01 4. 0.1 50 32 8 8.01 0.001 45 42 8.5 8.47 0.004 40 55 9 9.02 0.002 35 65 9.5 9.49 0.001

(16)

Tabel 12. Perbandingan nilai k antara hasil percobaan dengan hasil pendugaan berikut nilai error – nya

No Kecepatan Udara (m/dt) Suhu (°C) RH (%) k Percobaan k Pendugaan Error 1. 1.4 50 34 0.2255 0.23142 0.0256 45 48 0.2159 0.23142 0.0671 40 52 0.2260 0.23144 0.0235 35 65 0.2050 0.23147 0.1144 2. 1 50 34 0.3166 0.34854 0.0916 45 48 0.3330 0.34857 0.0447 40 54 0.3044 0.34864 0.1269 35 65 0.2751 0.34871 0.2111 3. 0.5 50 38 0.2405 0.28368 0.1522 45 46 0.2325 0.28374 0.1806 40 53 0.2551 0.28382 0.1410 35 65 0.1800 0.28390 0.3660 4. 0.1 50 32 0.2147 0.24422 0.1209 45 42 0.2392 0.24424 0.0206 40 55 0.1981 0.24428 0.1890 35 65 0.1854 0.24433 0.2412

Berdasarkan Tabel 11 dan Tabel 12 di atas dapat dilihat bahwa nilai error pada pengujian nilai Me dan k cenderung bernilai kecil. Dalam hal ini berarti model persamaan semi teoritis Henderson dan Perry dan juga persamaan Arrhenius dapat diterima serta dapat digunakan untuk menduga nilai penurunan kadar air buah mahkota dewa.

Gambar

Tabel 2. Kadar air awal (M 0 ) dan kadar air akhir buah mahkota dewa pada
Tabel 5. Kadar air awal (M 0 ) dan kadar air akhir buah mahkota dewa pada
Gambar 7. Kurva penurunan kadar air terhadap waktu pada berbagai tingkat  suhu dengan kecepatan udara pengering 1.4 m/dt
Gambar 8. Kurva penurunan kadar air terhadap waktu pada berbagai tingkat  suhu dengan kecepatan udara pengering 1 m/dt
+7

Referensi

Dokumen terkait

Dapat memprediksi I meramalkan pola permintaan (demand) akan jasa layanan Kapal Ferry Cepat untuk rute Surabaya - Kupang berdasarkan data..

Cara yang ditetapkan oleh BTPN dengan maksud untuk mempermudah debitur dalam pemberian kredit pension serta mengawasidalam pelaksanaannya. Analisa Kredit dan pengumpulan

1.2.1 Mengidentifikasi materi pelajaran apresiasi seni rupa sesuai dengan lingkungan sosial budaya peserta didik 1.2.2 Mengembangkan materi pelajaran.. apresiasi seni rupa

The Fourier series is redone using complex exponentials, and frequency response is defined in terms of this Fourier series, for periodic inputs.. The purpose of the lab in week 9

Dengan pemahaman akan karakteristik dari perilaku tersebut, maka apa yang ditampilkan oleh konsum en saat m elakukan proses pem belian tersebut pada akhirnya lebih banyak diw

KOH, dan media bentonit tanpa aktivasi tanpa pengaturan pH.74 Gambar 4.16 Persentase penyisihan COD pada reaktor dengan penambahan media bentonit teraktivasi H 3 PO 4 ,

Hasil diatas didukung penelitian yang dilakukan oleh Meryana (2014) yang menyatakan bahwa terdapat hubungan lama perawatan dengan kepuasan dimana tingkat

Apabila setelah alokasi tersebut dalam huruf e ayat ini masih terdapat sisa yang tidak terjual, maka sisa saham dan/atau obligasi konversi dan/atau waran dan/atau efek