• Tidak ada hasil yang ditemukan

PROS Adi Setiawan Inferensi parameter mean populasi normal Full text

N/A
N/A
Protected

Academic year: 2017

Membagikan "PROS Adi Setiawan Inferensi parameter mean populasi normal Full text"

Copied!
10
0
0

Teks penuh

(1)

M2-1

INFERENSI PARAMETER MEAN POPULASI NORMAL

DENGAN METODE BAYESIAN OBYEKTIF

Adi Setiawan

Program Studi Matematika Industri dan Statistika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro 52-60 Salatiga 50711, Indonesia

adi_setia_03@yahoo.com

ABSTRAK

Dalam statistika, seringkali dilakukan anggapan bahwa sampel diambil dari populasi yang berdistribusi normal. Dalam makalah ini akan dijelaskan tentang bagaimana menggunakan metode Bayesian obyektif untuk mengestimasi mean populasi dalam kasus parameter variansi populasi diketahui atau tidak diketahui. Studi simulasi dilakukan untuk memperjelas penggunaan metode tersebut.

Keywords: prior, posterior, deskrepansi intrinsik, statistik intrinsik

PENDAHULUAN

Dalam statistika, seringkali dilakukan anggapan bahwa sampel diambil dari populasi yang berdistribusi normal. Pada makalah-makalah terdahulu telah dijelaskan bagaimana menggunakan metode Bayesian obyektif dalam melakukan estimasi titik, estimasi interval dan pengujian hipotesis ( Setiawan, 2009a; Setiawan, 2009b; Setiawan, 2010b dan Setiawan, 2011). Dalam makalah ini akan dijelaskan tentang bagaimana menggunakan metode Bayesian obyektif untuk mengestimasi mean populasi dalam kasus parameter variansi populasi diketahui atau tidak diketahui. Studi simulasi dilakukan untuk memperjelas penggunaan metode tersebut.

DASAR TEORI Estimasi Titik

Dalam pandangan Bayesian, hasil dari sembarang masalah inferensi yang dinyatakan dalam distribusi posterior merupakan gabungan dari informasi yang disediakan oleh data dan informasi prior relevan yang tersedia. Akan tetapi apabila tidak tersedia informasi prior, akan dipilih fungsi prior yang relatif uninformative artinya fungsi prior yang memberikan pengaruh minimum pada inferensi fungsi posterior. Secara lebih formal, misalkan bahwa mekanisme probabilitas yang membangkitkan data yang tersedia x dianggap sebagai p(x| θ) untuk suatu θ∈Θ dan kuantitas yang menjadi perhatian adalah fungsi yang bernilai real φ(θ) dari θ. Tanpa menghilangkan keumuman, hal itu juga dapat dijelaskan berikut ini. Misalkan model probabilitas yang digunakan berbentuk {p(x|

θ

,

λ

)} dengan λ adalah parameter nuisance yang dipilih. Dalam hal ini diperlukan untuk mengidentifikasi fungsi prior bersama π(φ,λ) yang akan mempunyai pengaruh minimal pada distribusi posterior marginal dengan kuantitas yang menjadi perhatian φ yaitu

Λ

φ

λ

π

φ

λ

λ

φ

π

( |x) p(x| , ) ( , )d .

Reference prior digunakan sebagai prior yang dapat memberikan pengaruh minimal pada

(2)

M2-2

Diskrepansi intrinsik (intrínsic discrepancy) δ(p1, p2) antara dua fungsi densitas p1(x) dengan

x X1 dan p2(x) dengan x X2 didefinisikan sebagai

{

( ( )| ( )), ( ( )| ( ))

}

min ) ,

(p1 p2 = K p2 x p1 x K p1 x p2 x

δ

dengan

= X dx x p x p x p x p x p K ) ( ) ( log ) ( )) ( | ) ( ( 2 1 1 2 1 .

Untuk dua keluarga fungsi densitas

{

∈Χ ∈Φ

}

= 1( |

φ

), 1(

φ

),

φ

1 p x x

M

dan

{

∈Χ ∈Ψ

}

= 2( |

ψ

), 2(

ψ

),

ψ

2 p x x

M

dapat didefinisikan diskrepansi intrinsik

(

( | ), ( | )

)

inf ) , (

* 1 2

, 2

1

δ

φ

ψ

δ

M M φ ψ p x p x

Ψ ∈ Φ ∈ = . sx

Fungsi kerugian (loss function) dalam kasus ini adalah diskrepansi intrinsik. Misalkan bahwa deskripsi yang sesuai dari tingkah laku probabilistik dari kuantitas random x diberikan oleh model } , , ), , | (

{p x

θ

λ

x∈Χ

θ

∈Θ

λ

∈Λ . Diskrepansi intrinsik antara p(x|

θ

,

λ

) dan keluarga densitas

}

),

,

|

(

{

p

x

θ

0

λ

λ

Λ

adalah ) , ; , ( inf ) ; , (

* 0 0 0

0

δ

θ

λ

θ

λ

θ

λ

θ

δ

=λΛ dengan

{

(

,

|

,

)

,

(

,

|

,

)

}

min

)

,

;

,

(

θ

λ

θ

0

λ

0

θ

0

λ

0

θ

λ

θ

λ

θ

0

λ

0

δ

=

K

K

.

Misalkan {p(x|

θ

,

λ

),x∈Χ,

θ

∈Θ,

λ

∈Λ} adalah model parametrik yang dapat digunakan untuk menggambarkan tingkah laku kuantitas random x. Didefinisikan intrinsik statistik (intrinsic statistic) sebagai

∫∫

Λ Θ =

=

δ

δ

θ

λ

θ

π

θ

λ

θ

λ

θ

x Eπδ x δ x d d

d( 0| ) [ *| ] *( , ; 0) *( , | )

*

(1)

dengan

π

δ*

(

θ

,

λ

|

x

)

adalah posterior referensi untuk parameter dari model p(x|

θ

,

λ

)bila

)

;

,

(

*

θ

λ

θ

0

δ

adalah parameter yang menjadi perhatian.

Estimator intrinsik (intrinsic estimator) atau estimasi titik Bayesian obyektif didefinisikan sebagai yaitu parameter θ yang meminimalkan statistik intrinsik

) | ( min arg ) ( * * ~ ~ x d x

θ

θ

θ

θ∈Θ = = .

Estimasi interval kredibel

Interval kredibel intrinsik 100q% (q-credible region intrinsic) adalah himpunan bagian

R*q = R*q( x, Θ) ⊆ Θ dari ruang parameter Θ sehingga memenuhi

(i)

=

q R

q

d

x

*

0

|

)

,

(

θ

θ

θ

π

(3)

M2-3

dengan d(θi | x) adalah harapan fungsi kerugian reference posterior sebagai proxy untuk nilai dari parameter yang diberikan pada persamaan (1).

Terlihat bahwa pernyataan pada persamaan (1) mempunyai bentuk yang sulit sehingga perhitungannya tidaklah mudah namun dengan menggunakan integrasi numerik, hal itu dengan mudah dapat dilakukan.

Pengujian Hipotesis

Apabila diinginkan untuk melakukan pengujian hipotesis H0 ≡ { θ = θ0 } maka statistik intrinsik pada persamaan (1) merupakan ukuran dari kekuatan bukti melawan penggunaan model M0 dengan

}

,

)

,

|

(

{

0

0

=

p

x

θ

λ

λ

Λ

M

.

Hal itu berarti H0 akan ditolak jika dan hanya jika d(θ0 | x ) untuk suatu batas d* (Juarez, 2004). Bernardo dan Rueda (2002) mengusulkan untuk menggunakan aturan sebagai berikut : jika d* 1 maka tidak ada bukti untuk menolak H0, jika d* ≈ 2,5 maka terdapat bukti lemah (mild) untuk menolak dan jika d* > 5 maka terdapat bukti kuat (strong) untuk menolak H0.

Populasi Normal

Kasus 1

Misalkan dimiliki sampel x1, x2 , ...., xn sampel dari distribusi normal N( μ, σ2) dengan σ diketahui. Misalkan juga

n x x n j j

= = 1

adalah mean dari sampel. Reference prior untuk parameter yang menjadi perhatian yaitu μ

adalah π( μ ) = σ-1 sehingga reference posterior untuk parameter μ adalah

)

/

,

|

(

x

n

N

μ

σ

.

Dapat dibuktikan bahwa deskrepansi intrinsik antara distribusi normal N( μ1, σ2) dan distribusi normal N( μ2, σ2) adalah

2 2 1 2 2 2 1 2 2 1

/

2

1

)

(

2

)

|

,

{

⎥⎦

⎢⎣

⎡ −

=

=

n

n

x

σ

μ

μ

σ

μ

μ

σ

μ

μ

δ

sehingga diperoleh intrinsik statistik yaitu

μ

σ

μ

σ

μ

μ

μ

N x n d

n x

x

d n ( | , / )

/ 2 1 ) ...., , | ( 2 0 1 0 ⎥⎦ ⎤ ⎢⎣ ⎡ −

=

. (2)

Hal itu berarti bahwa estimasi Bayesian obyektif untuk parameter μ adalah μ* yang

meminimalkan intrinsik statistik yaitu

) ,..., | ( min arg ) ,..., ( * * 1 ~ 1 ~ n

n d x x

x x

μ

μ

μ

μ∈Ω = =

dengan ( | 1,..., )

~

n

x x

d

μ

merupakan persamaan (2). Estimasi interval kredibel untuk μ
(4)

M2-4 Kasus 2

Apabila dimiliki sampel x1, x2 , ...., xn sampel dari distribusi normal N( μ, σ2) dengan σ tidak diketahui. Misalkan n x x s n j j

= − = 1 2 2 ) (

adalah variansi dari sampel. Reference prior untuk parameter yang menjadi perhatian yaitu μ dengan σ sebagai parameter nuisance adalah

π( μ, σ ) = π(μ) π(σ|μ) = σ-1 sehingga reference posterior yang bersesuaian adalah

]

2

/

,

2

/

)

1

(

|

[

)

/

,

|

(

)

....,

,

,

|

,

(

1/2 2

2

1

x

x

N

x

n

Gamma

n

ns

x

n

=

μ

σ

σ

σ

μ

π

(

)

⎥⎦

⎢⎣

+

− + 2 2

2 )

1

(

exp

(

μ

)

σ

σ

n

n

s

x

.

Dapat dibuktikan bahwa deskrepansi intrinsik antara distribusi normal N( μ1, σ2) dan distribusi normal N( μ2, σ2) adalah

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + − = 2 2 2 1 2 2 1 ) ( 1 ln 2 } ) , ( , ) , ( {

σ

μ

μ

σ

μ

σ

μ

δ

x n

sehingga diperoleh statistik intrinsik yaitu

σ

μ

σ

μ

π

σ

μ

μ

μ

x x n x x d d

d n ln 1 ( ) ( , | ,..., n)

2 )

...., , |

( 2 0 1

0 1

0 ⎢⎣⎡ ⎥⎦⎤

− +

=

∞ . (3)

Fungsi mempunyai sumbu simetri

μ

0

=

x

sehingga estimasi titik dengan menggunakan

metode Bayesian obyektif adalah =x

^

μ

. Posterior referensi dari

π

(

μ

,

σ

|

x

1

,

x

2

,

....,

x

n

)

adalah distribusi student t yaitu St( μ |

μ

0

=

x

, s/

n

1

, n-1). Hal itu berarti

s x n−1( − )/

=

μ

τ

mempunyai distribusi t dengan derajat bebas n-1. Akibatnya interval kredibel (1-q)100% untuk mean μ adalah

⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − + − − − − − − 1 ,

1 1( /2); 1

1 ); 2 / ( 1 n s t x n s t

x q n q n .

dengan

t

1(q/2);n1 adalah kuantil ke-1-(q/2) dari distribusi t dengan derajat bebas n-1. Hipotesis

H0 : μ = μ0 akan ditolak didasarkan pada statistik intrinsik pada persamaan ( 3 ) mempunyai nilai cukup besar. Berdasarkan saran Bernardo dan Rueda (2002) maka statistik intrinsik yang lebih besar dari 5 menunjukkan bahwa terdapat bukti yang kuat untuk menolak H0.

PERHITUNGAN STATISTIK INTRINSIK, STUDI SIMULASI DAN PEMBAHASAN

(5)

M2-5

-4 -2 0 2 4

0

2

04

06

0

8

0

mean populasi mu dan mean sampel xbar = 0

S

ta

ti

s

ti

k

I

n

tri

n

s

ik

Gambar 1. Nilai statistik intrinsik untuk setiap nilai μ0 yang diberikan dengan menggunakan persamaan (1).

(6)

M2-6

-4 -2 0 2 4

02

0

6

0

1

0

0

(a) mean populasi mu dan mean sampel xbar = -1

Sta

ti

s

ti

k

In

tr

in

s

ik

-4 -2 0 2 4

0

2

04

0

6

08

0

(b) mean populasi mu dan mean sampel xbar = -0.5

Sta

ti

s

ti

k

In

tr

in

s

ik

-4 -2 0 2 4

0

2

04

0

6

08

0

(c) mean populasi mu dan mean sampel xbar = 0.5

Sta

ti

s

ti

k

In

tr

in

s

ik

-4 -2 0 2 4

02

0

6

0

1

0

0

(d) mean populasi mu dan mean sampel xbar = 1.0

Sta

ti

s

ti

k

In

tr

in

s

ik

Gambar 2. Nilai-nilai statistik intrinsik jika dimiliki mean sampel berturut-turut yaitu (a) -1, (b) -0,5, (c) 0,5 dan (d) 1.

(7)

M2-7

Histogram of Statistik Intrinsik

Statistik Intrinsik

D

ens

it

y

2 4 6 8

0

.0

0

.2

0

.4

0

.6

0

.8

1

.0

1

.2

Gambar 3. Histogram dari nilai-nilai statistik intrinsik jika sampel diambil dari distribusi normal dengan mean 0 dan variansi 1 serta digunakan untuk pengujian hipotesis H0 : μ = 0. Dalam hal ini digunakan pengulangan B = 10000.

Histogram of Statistik Intrinsik

(a) Statistik Intrinsik untuk mu = -1

De

n

s

it

y

10 20 30 40 50 60

0.

00

0.

05

0

.10

0.

15

Histogram of Statistik Intrinsik

(b) Statistik Intrinsik untuk mu = -0.5

De

n

s

it

y

0 5 10 15 20 25

0.

00

0.

05

0

.10

0.

15

Histogram of Statistik Intrinsik

(c) Statistik Intrinsik untuk mu = 0.5

De

n

s

it

y

0 5 10 15 20 25 30

0.

00

0.

05

0.

10

0

.15

Histogram of Statistik Intrinsik

(d) Statistik Intrinsik untuk mu = 1

De

n

s

it

y

10 20 30 40 50 60

0.

00

0.

05

0.

10

0

.15

(8)

M2-8 Kasus 2

Pada kasus σ tidak diketahui, estimasi titik untuk parameter mean populasi μ berdasarkan mean sampel ditentukan dengan cara memilih nilai μ yang meminimalkan nilai statistik intrinsik. Gambar 5 menunjukan nilai statistik intrinsik bila digunakan nilai μ antara -4 dan 4 jika diberikan mean sampel x = 0 dan n=10. Terlihat bahwa nilai statistik intrinsik akan mencapai

minimum jika μ =x = 0 sehingga μ = x = 0 merupakan estimasi titik untuk mean populasi μ.

-4 -2 0 2 4

0

5

10

15

20

mean populasi mu

S

ta

tis

tik

I

n

tr

in

s

ik

Gambar 5. Nilai statistik intrinsik jika diberikan mean μ dan mean sampel x = 0.

Gambar 6 menyatakan nilai-nilai statistik intrinsik untuk μ jika diberikan mean sampel berturut-turut yaitu (a) -1, (b) -0,5, (c) 0,5 dan (d) 1. Dalam hal ini juga diberikan variansi sampel adalah 1. Terlihat bahwa nilai statistik akan mencapai minimum pada mean sampelnya. Berdasarkan nilai statistik intrinsik ini juga dapat ditentukan interval kredibel untuk parameter μ.

-4 -2 0 2 4

0

5

10

1

5

20

(a) mean populasi mu dan mean sampel xbar = -1

S

ta

ti

s

ti

k

In

tr

in

s

ik

-4 -2 0 2 4

0

5

10

15

2

0

(b) mean populasi mu dan mean sampel xbar = -0.5

S

ta

ti

s

ti

k

In

tr

in

s

ik

-4 -2 0 2 4

0

5

10

1

5

20

(c) mean populasi mu dan mean sampel xbar = 0.5

S

ta

ti

s

ti

k

In

tr

in

s

ik

-4 -2 0 2 4

0

5

10

1

5

20

(d) mean populasi mu dan mean sampel xbar = 1

S

ta

ti

s

ti

k

In

tr

in

s

ik

Gambar 6. Nilai-nilai statistik intrinsik untuk μ jika diberikan variansi sampel 1 dan mean sampel berturut-turut yaitu (a) -1, (b) -0,5, (c) 0,5 dan (d) 1.

(9)

M2-9

hanya 0,6 % yang mempunyai nilai lebih dari 5. Apabila sampel diambil dari populasi yang mempunyai mean berturut-turut (a) -1 (b) -0,5 (c) 0,5 dan (d) 1 maka nilai-nilai statistik intrinsik dinyatakan pada Gambar 8. Terlihat bahwa nilai-nilai statistik intrinsik cenderung makin membesar jika mean populasi yang menjadi asal dari sampel jauh dari 0.

Histogram of Statistik Intrinsik

Statistik Intrinsik

D

ens

it

y

0 1 2 3 4 5 6

0

.00

.2

0

.40

.6

0

.8

Gambar 7. Histogram dari B = 1000 nilai-nilai statistik intrinsik yang merupakan ukuran kekuatan untuk menolak H0 : μ = 0 jika diberikan sampel yang diambil dari populasi normal dengan mean 0 dan variansi 1.

Histogram of Statistik Intrinsik

Statistik Intrinsik

De

n

s

it

y

0 5 10 15 20 25 30 35

0

.00

0.

05

0.

1

0

0

.15

Histogram of Statistik Intrinsik

Statistik Intrinsik

De

n

s

it

y

0 5 10 15 20 25

0

.00

0.

05

0.

1

0

0

.15

Histogram of Statistik Intrinsik

Statistik Intrinsik

D

ens

it

y

0 5 10 15 20

0

.00

0

.05

0.

10

0.

1

5

Histogram of Statistik Intrinsik

Statistik Intrinsik

D

ens

it

y

5 10 15 20 25 30 35

0

.00

0

.05

0.

10

0.

1

5

Gambar 8. Histogram dari B = 1000 nilai-nilai statistik intrinsik yang merupakan ukuran kekuatan untuk menolak H0 : μ = 0 jika diberikan sampel yang diambil dari populasi normal dengan variansi 1 dan mean populasi berturut-turut (a) – 1 (b) -0,5 (c) 0,5 dan (d) 1.

KESIMPULAN

(10)

M2-10 DAFTAR PUSTAKA

[1] Bernardo, J. dan R. Rueda (2002) Bayesian Hypotesis Testing : A Reference Approach,

International Statistical Review 70, 351-372.

[2] Juarez, M. A. ( 2004 ) Objective Bayesian Methods for Estimation and Hypothesis Testing, Valencia : University of Valencia.

[3] Setiawan, A. (2009a) Estimasi Titik Bayesian Obyektif, Prosiding Seminar Sains dan

Pendidikan Sains IV FSM UKSW, Salatiga.

[4] Setiawan, A. (2009b) Credible Interval Bayesian Obyektif, Prosiding Seminar Nasional

Matematika, Universitas Katolik Parahyangan, Bandung.

[5] Setiawan, A. (2010b) Pengujian Hipotesis dengan Metode Bayesian Obyektif, disampaikan

dalam Konferensi Nasional Matematika XV 30 Juni – 3 Juli 2010, UNIMA, Tondano.

[6] Setiawan, A. (2011) Pengujian Hipotesis tentang Parameter Populasi Berdistribusi Eksponensial dengan Metode Bayesian Obyektif, Prosiding Seminar Nasional Statistika

Gambar

Gambar 1. Nilai statistik intrinsik untuk setiap nilai μ0 yang diberikan dengan menggunakan persamaan (1)
Gambar 2.  Nilai-nilai statistik intrinsik jika dimiliki mean sampel berturut-turut yaitu (a) -1,  (b) -0,5,  (c) 0,5  dan (d) 1
Gambar 3. Histogram dari nilai-nilai statistik intrinsik jika sampel diambil dari distribusi normal dengan mean 0 dan variansi 1 serta digunakan untuk pengujian hipotesis  H0 : μ = 0
Gambar 5.  Nilai statistik intrinsik jika diberikan mean μGambar  6  menyatakan nilai-nilai statistik intrinsik untuk Berdasarkan nilai statistik intrinsik ini juga dapat ditentukan interval kredibel untuk parameter  μberturut-turut yaitu (a) -1,  (b) -0,5
+2

Referensi

Dokumen terkait

Penyusunan Perubahan RENJA Dinas Pertanian Tanaman Pangan dan Hortikultura Kabupaten Banyuasin Tahun 2019 dilaksanakan melalui serangkaian kegiatan diawali dengan

From the data that has been taken, it is obtained that the features of teacher talk used by the teacher in teaching speaking descriptive in the seventh

Multimedia pembelajaran interaktif ini dapat diperoleh dari program Dana Alokasi Khusus (DAK) atau/dan Block Grant berupa bantuan khusus dari pemerintah yang

Berikut sequence diagram untuk pengelolaan tarif perjalanan dinas dimana sekretariat dinas dapat melihat, mencari, menginput, mengedit dan menghapus data jenis uang harian

Untuk melindungi benih kacang hijau dari pengaruh kondisi lingkungan simpan yang tidak baik yaitu kelembaban relatif dan suhu tinggi dapat dilakukan dengan cara

Setiap anggota Ikatan Pustakawan Indonesia memiliki tanggung jawab untuk melaksanakan kode etik ini dalam standar yang setinggi- tingginya untuk kepentingan

Para kaunselor dan klien yang mengunakan terapi tingkah laku kognitif perlu meneroka tingkah laku yang memberi ganjaran yang baik yang tidak melibatkan pengunaan

d. Sek Sekund under da er dapat te pat terja rjadi ko di kolpi lpitis d tis dan vu an vulvi lvitis tis.. Pada servisitis kroniks kadang dapat dilihat bintik putih dalam daerah