• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:DM:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:DM:"

Copied!
10
0
0

Teks penuh

(1)

Testing Block Sphericity

of a Covariance Matrix

Prueba de Esfericidad por Bloques

para una Matriz de Covarianza

Liliam Carde˜

no (

lacero@matematicas.udea.edu.co

)

Daya K. Nagar (

nagar@matematicas.udea.edu.co

)

Departamento de Matem´aticas Universidad de Antioquia, Medell´ın

A. A. 1226, Colombia

Abstract

This article deals with the problem of testing the hypothesis thatq p-variate normal distributions are independent and that their covariance matrices are equal. The exact null distribution of the likelihood ratio statistic whenq= 2 is obtained using inverse Mellin transform and the definition of Meijer’sG-function. Results forp= 2, 3, 4 and 5 are given in computable series forms.

Key words and phrases: block sphericity, distribution, inverse Mellin transform, Meijer’sG-function, residue theorem.

Resumen

Este art´ıculo trata el problema de probar la hiptesis de que q dis-tribuciones normales p-variadas son independientes y con matrices de covarianza son iguales. La distribuci´on exacta nula del estad´ıstico de raz´on de verosimilitudes cuando q = 2 se obtiene usando la transfor-mada inversa de Mellin y la definicin de la G-funcin de Meijer. Los resultados parap = 2, 3, 4 y 5 se dan en forma de series calculables.

Palabras y frases clave: esfericidad por bloques, distribuci´on, trans-formada inversa de Mellin, funci´onGde Meijer, teorema del residuo.

(2)

1

Introduction

Suppose that the pq×1 random vector X has a multivariate normal distri-bution with mean vector µ and covariance matrix Σ and that X, µ and Σ are partitioned as

X=¡

X′1 X′2 · · · X′q¢′

, µ=¡

µ′

1 µ′2 · · · µ′q

¢′

and

Σ =

      

Σ11 Σ12 · · · Σ1q

Σ21 Σ22 · · · Σ2q

.. .

Σq1 Σq2 · · · Σqq

      

where Xi and µi arep×1 and Σij isp×p,i, j= 1, . . . , q. Consider testing

the null hypothesis H that the subvectorsX1,X2, . . . ,Xq are independent

and that the covariance matrices of these subvectors are equal, i.e.,

H : Σ =

      

∆ 0 · · · 0

0 ∆ · · · 0 ..

.

0 0 · · ·

      

against the alternative Ha thatH is not true. In H the common covariance matrix ∆ is unspecified. Olkin, while extending the circular symmetric model to the case where the symmetries are exhibited in blocks, definedHand called

it block sphericity hypothesis (see [13]). LetA be the sample sum of squares

and product matrix formed from a sample of size N =n+ 1. PartitionAas

A= (Aij) whereAij isp×p,i, j= 1, . . . , q. The likelihood ratio statistic for

testingH (see [17]) is given by

Λ = det(A)

1 2N

det³1qPq

i=1Aii

´12qN.

The null hypothesis is rejected if ΛΛ0 where Λ0 is determined by the null

distribution and level of significance. When p = 1, the hypothesis of block sphericity reduces to the Mauchly sphericity hypothesisH : Σ =σ2I

q which

(3)

[6, 7], Muirhead [10], Gupta [3], Nagar, Jain and Gupta [11] and Amey and Gupta [1]. The hypothesis of block sphericity is useful in multivariate repeated measures designs (see [17]). Since,AWpq(n,Σ), thehth null moment of Λ can be obtained by integrating over Wishart density. We have

E(Λh) =q1

Theorem 3.3.22 of [5], we obtain

E

Substituting (1.3) in (1.2) and using (1.1) we obtain the hth null moment of

Λ as

(4)

distribution of −2 ln Λ is chi-square with 12p(q1)(pq+p+ 1) d.f. The null distribution of ΛN2, in series involving Bernoulli polynomials, is available in

[?, CG]

In this article we will derive the exact null distribution of V = ΛN1 by

using inverse Mellin transform and residue theorem (see [14, 12]).

2

Exact density of

V

In order to obtain the exact density functionf(v) of V = ΛN1 we start with

the null moment expression. Substitutingq= 2 in (1.4) thehth moment ofV

is simplified as

E(Vh) = 2ph

2p

Y

j=1

½Γ[1 2h+

1

2(n−j+ 1)]

Γ[12(nj+ 1)]

¾ p Y

j=1

½ Γ[

n12(j1)] Γ[h+n12(j1)]

¾

This will be rewritten in a slightly different form by using duplication formula for gamma function

Γ(2z) = 2

2z−1

π Γ(z)Γ

µ

z+1 2

.

Then

E(Vh) =K(n, p)

p

Y

j=1

½

Γ(h+n2p1 + 2j) Γ[h+n12(j1)]

¾

(2.1)

where

K(n, p) =

p

Y

j=1

½ Γ[n

−12(j−1)]

Γ(n2p1 + 2j)

¾

. (2.2)

Now the density functionf(v) ofV = ΛN1 is obtained by taking inverse Mellin

transform ofE(Vh) as

f(v) = (2πι)−1Z

L

E(Vh)v−h−1dh,0< v <1, (2.3)

where ι =√1 andL is a suitable contour. Substituting (2.1) in (2.3) and applying the transformationh+n2p=t, one obtains

f(v) =K(n, p)vn−2p−1(2πι)−1Z

L1

p

Y

j=1

½

Γ(t+ 2j1) Γ[t+ 2p12(j1)]

¾

v−tdt,

(5)

where L1 is the changed contour andK(n, p) is defined in (2.2). Now, using

the definition of Meijer’sG-function (see [8]), the density ofV is written as

f(v) =K(n, p)vn−2p−1Gp,0

p,p

·

v¯¯ ¯

2p−12(j−1), j= 1, . . . , p

2j−1, j= 1, . . . , p

¸

,0< v <1,

where Gp,0

p,p[ ] is the Meijer’sG-function.

Explicit expressions for the density of V for particular values of p will be obtained by evaluating the integral in (2.4) with the help of of residue theorem.

From (2.4), the density for p= 2 is obtained as

f(v) =K(n,2)vn−5(2πι)−1

Z

L1

Γ(t+ 1) (t+ 3)Γ(t+72)v

−tdt, 0< v <1. (2.5)

The integrand has simple poles at t=r1, r= 0,1,3,4, . . ., and a pole of order two att=3. The residue att=r1,r6= 2, is

lim

t→−r−1

·

(t+ 1 +r)Γ(t+ 1) (t+ 3)Γ(t+72) v

−t

¸

= lim

t→−r−1

·

(t+ 1 +r)(t+ 1 +r1)· · ·(t+ 1)Γ(t+ 1) (t+ 1 +r1)· · ·(t+ 1)(t+ 3)Γ(t+7

2)

v−t

¸

= lim

t→−r−1

· Γ(

t+ 1 +r+ 1)

(t+ 1 +r1)· · ·(t+ 1)(t+ 3)Γ(t+7 2)

v−t

¸

= 1

(−1)r+1r! (r2)Γ(5 2−r)

vr+1.

Simplifying Γ(52 −r) in the above expression using the result Γ(β j) =

(−1)jΓ(β)Γ(1β)

Γ(1−β+j) we obtain the residue att=−r−1 as

π1 Γ(r−

3 2)

r! (r2)v

r+1, r

6

(6)

The residue att=−3 is derived as

where ψ( ) is the psi function (ver [9]). Now applying the residue theorem to the right hand side of (2.5), the density f(v) is obtained as using residue theorem, the density in this case is obtained (for 0< v <1) as

(7)

The integrand has simple poles att=−1,2, poles of order two att=−1−r,

r= 2,3,7,8, . . ., and poles of order three att=1r,r= 4,5,6. Evaluating residues at these poles and using the residue theorem, we get the density for

(8)
(9)

The method employed above can also be used to derive the exact density for p6. However, because of the higher order of poles, the expressions for the density will involve generalized Riemann zeta function (see [9]).

Acknowledgment

This research was supported by the Comit´e para el Desarrollo de la Investi-gaci´on, Universidad de Antioquia research grant no. IN358CE.

References

[1] Amey, A. K. A., Gupta, A. K.Testing sphericity under a mixture model, Australian Journal of Statistics,34(1992), 451–460.

[2] Chao, C. C., Gupta, A. K. Testing of homogeneity of diagonal blocks

with blockwise independence, Communications in Statistics–Theory and

Methods,20(7) (1991), 1957–1969.

[3] Gupta, A. K.On the distribution of sphericity test criterion in the

multi-variate Gaussian distribution, Australian Journal of Statistics,19(1977),

202–205.

[4] Gupta, A. K., Chao, C. C. Nonnull distribution of the likelihood ratio criterion for testing the equality of diagonal blocks with blockwise

inde-pendence, Acta Mathematica Scientia, 14(2) (1994), 195–203.

[5] Gupta, A. K., Nagar, D. K. Matrix Variate Distributions, Chapman & Hall/CRC Press, Boca Raton, 1999.

[6] Khatri, C. G., Srivastava, M. S. On exact nonnull distribution of like-lihood ratio criteria for sphericity test and equality of two covariance

matrices, Sankhy¯a,A33 (1971), 201–206.

[7] Khatri, C. G., Srivastava, M. S. Asymptotic expansion of the nonnull

distribution of likelihood ratio criteria for covariance matrices, Annals of

Statistics,2(1974), 109–117.

[8] Luke, Y. L. The Special Functions and Their Approximations, Vol. I, Academic Press, New York, 1969.

[9] Magnus, W., Oberhettinger, F., Soni, R. P.Formulas and Theorems for

(10)

[10] Muirhead, R. J.Forms for distribution for ellipticity statistic for bivariate

sphericity, Communications in Statistics,A5(1976), 413–420.

[11] Nagar, D. K., Jain, S. K., Gupta, A. K. Distribution of LRC for test-ing sphericity structure of a covariance matrix in multivariate normal

distribution, Metron,49(1991), 435–457.

[12] Nagar, D. K., Jain, S. K., Gupta, A. K. On testing circular stationarity

and related models, Journal of Statistical Computation and Simulation,

29(1988), 225–239.

[13] Olkin, I. Testing and estimation for structures which are circular

sym-metric in blocks, inMultivariate Statistical Inference(D. G. Kabe and R.

P. Gupta, eds.), North-Holland, 1973, 183–195.

[14] Springer, M. D. Algebra of Random Variables, John Wiley & Sons, New York, 1979.

[15] Sugira, N. Asymptotic expansion of the distribution of likelihood ratio

criteria for covariance matrices, Annals of Mathematical Statistics, 42

(1969), 764–767.

[16] Sugira, N. Exact nonnull distributions of sphericity tests for trivariate

normal population with power comparison, American Journal of

Mathe-matical and Management Sciences, 15(3&4) (1995), 355–374.

[17] Thomas, D. Roland.Univariate repeated measures techniques applied to

Referensi

Dokumen terkait

rndonesa (uNrKoM) Bandlng adash Perguru.i Tinggi Swasta yang be.aii sejak Errui 2000, n.mun da am pec^embangannya untuk sellap pe ode p€ne,im*n mahasism

From the external research results, it is possible to know Company X opportunities and threats in the near future which will later on be useful in creating a marketing

Lamanya proses dalam pengelolaan data pasien, meliputi diagnosa penyakit diabetes mellitus , konsultasi kebutuhan nutrisi makanan / konsultasi gizi serta

Jika diasumsikan kondisi ideal dan parameter Eb/It, faktor aktifitas suara, chiprate, bitrate, dan faktor akurasi kontrol daya bernilai tetap maka didapat

Penelitian ini dilakukan untuk menguji apakah faktor kebijakan perpajakan, undang- undang perpajakan, administrasi perpajakan, resiko deteksi, dan moral wajib pajak

kualifikasi Pekerjaan Pembangunan Gedung Instalasi Produksi PSBN “Tan Miyat” Bekasi tahun anggaran 2016. Perusahaan yang dievaluasi dokumen kualifikasi adalah : Perusahaan :

Sementara di sisi lain, structure dan substance yang seharusnya memberikan posisi dan peran pemerintah daerah kuat di mata hukum justru tidak digunakan secara optimal

Yang menjadi perhatian penulis dalam meneliti di PT.Wahana Adiwidia adalah dimana pada perusahaan ini belum tersedia pemasaran untuk penjualan property rumah atau