• Tidak ada hasil yang ditemukan

1 Pengantar Dinamika Struktur

N/A
N/A
Protected

Academic year: 2021

Membagikan "1 Pengantar Dinamika Struktur"

Copied!
23
0
0

Teks penuh

(1)

1

Bab 1

Pengantar Dinamika Struktur

Dinamika struktur adalah salah satu bagian dari ilmu mekanika yang secara khusus membahas respon struktur terhadap beban dinamik, misalnya akibat gempa. Dalam bahasan dinamika struktur, beban maupun respon struktur tidak hanya ditentukan oleh arah, lokasi dan besarnya, tetapi juga oleh variabel waktu.

Secara khusus, besarnya respon struktur yang berupa gaya dalam, merupakan fungsi dari waktu, sebagai bentuk respon terhadap gangguan atau beban luar, yang rumusannya ditentukan oleh parameter yang dimiliki struktur ybs, diantaranya massa, kekakuan dan redaman yang berpengaruh pada getaran yang dialami struktur.

Getaran adalah sebuah gerakan bolak-balik yang berada disekitar titik keseimbangan dimana kuat lemahnya bergantung pada besar kecilnya energi yang diberikan. Getaran adalah sebuah fenomena fisik yang logis dan dapat diterangkan oleh prinsip dasar mekanika. Konsep matematik yang digunakan dalam penjabaran getaran selalu dapat dihubungkan dengan fenomena fisik yang dapat diukur dari eksperimen, sehingga getaran mudah untuk dipelajari karena dapat dihubungkan dengan kejadian-kejadian sebenarnya di alam.

Semua benda yang mempunyai masa dan elastisitas dapat bergetar bila mendapat gangguan. Getaran dapat dibedakan menjadi dua jenis yaitu getaran bebas dan getaran paksa. Getaran bebas terjadi bila system bergetas akibat gaya yang terdapat dalam system itu sendiri tanpa adanya gangguan atau gaya dari luar. Sistem akan bergetar pada frekuensi alaminya, yang tergantung pada massa dan kekakuan system. Jika sistem bergetar karena adanya gangguan atau gaya dari luar maka ini disebut sebagai getaran paksa. Pada getaran paksa, sistem akan bergetar pada frekuensi gaya luarnya. Jika frekuensi gaya luar dan frekuensi alami system sama akan terjadi resonansi yang menyebabkan getaran membesar. Sehingga perhitungan frekuensi alami sangat penting terutama dalam desain bangunan sipil.

(2)

2

Getaran pada titik tertentu akan mengalami redaman yang diakibatkan oleh disipasi energi akibat gesekan atau tahanan dalam bentuk lain.

Dalam analisis dinamik dikenal gaya inersia yang timbul akibat massa bangunan yang mengalami percepatan. Penyelesaian analisis struktur akan sangat sulit bila memodelkan struktur sebagai sosok yang kontinyu (sebagai kontinum), sehingga dalam pemodelan dinamik dilakukan diskretisasi struktur yaitu penyederhanaan struktur menjadi bagian-bagian struktur yang terpenggal tapi menerus.

Suatu sistem struktur mempunyai derajat kebebasan atau degree of freedom (DOF). Derajat kebebasan ini menunjukkan koordinat bebas sistem dimana dalam koordinat tersebut sistem dapat mengalami perpindahan. Jumlah derajat kebebasan pada struktur yang bergetar dalam koordinat derajat kebebasan tertentu, dimodelkan sama dengan jumlah titik massa (nodal) yang diperhitungkan akan mengalami perpindahan dan percepatan dalam arah masing-masing koordinat derajat bebas.

Tujuan analisis dinamik pada struktur adalah mendapatkan respons perpindahan, gaya atau kecepatan dari struktur yang diakibatkan oleh beban-beban yang bervariasi terhadap waktu. Setelah melakukan analisis pergerakan dari massa dengan memperhatikan penyederhanaan degree of freedom akan terbentuk persamaan gerak yang dapat memberikan persamaan respons struktur.

1.1 Single Degree of Freedom

1.1.1 Getaran Bebas Tanpa Redaman

Pergerakan linear sebuah struktur dapat diidealisasi kedalam bentuk portal 1 lantai seperti terlihat pada Gambar _ di bawah ini. Struktur ini memiliki Massa dan Kekakuan dan terkena gaya luar sebesar p(t).

(3)

3

Gambar 1.1 Struktur SDOF Tanpa Redaman

Pada struktur tanpa redaman persamaan pergerakan dapat dituliskan sebagai berikut

̈ (1)

Getaran bebas diakibatkan oleh gangguan pada kondisi perpindahan awal ( ) atau kecepatan awal ̇( ) yang terdefinisikan sebagai berikut

( ) ̇( ) ̇ (2)

Dengan menurunkan dari rumusan dinamik diatas akan didapat bentuk lain dari persamaan dinamik __ pada struktur

̈ (3) Karena √ (4) Maka ̈ (5) (6) ̇ (7) ̇( ) ̇ (8)

(4)

4

̇ (9)

( ) (10)

Denga penurunan yang dapat dilihat diatas didapat persamaan umum simpangan

̇ (11)

Dimana adalah kecepatan sudut, frekuensi natural dari system (structural circular frequency of vibration) dengan satuan rad/detik. Gambar 2 merupakan gambaran dari persamaan 11, dimana terlihat bahwa system mengalami vibrasi dan bergerak disekitar kondisi equilibriumnya (u=0), posisi ini akan berulang tiap Tn. Persamaan 11 ini yang disebut sebagai persamaan gerakan harmonis sederhana (simple harmonic motion)

Gambar 1.2 Getaran Bebas dari sebuah system tanpa Redaman

adalah periode alami (structural period of vibration) yaitu waktu yang dibutuhkan utuk menjalani satu putaran perpindahan. Periode alami memiliki satuan detik dan dapat

(5)

5

(12)

adalah frekuensi alami (structural frequency of vibration) dengan satuan Hertz atau rotasi/detik. (13) Sehingga ̇ ( ) (14) ̈ ( ) (15) Gambar 1.3 Kolom,:Jepit-Jepit (16 )

(6)

6

Gambar 1.4 Kolom: Sendi-Sendi

( 17 )

Gambar 1.5 Batang Tarik

= gaya geser arah horisontal

= gaya tarik aksial batang Akibat ( )

(7)

7

Gambar 1.6 Dinding Geser

[ ( ) ] ( ) untuk u = 1 maka ( ) untuk u = 1 maka (a) (b) Gambar 1.7 Kolom

(8)

8 ∑ ( ) (a) Balok Kaku Rigid Beam (=∞) ∑ (b)

Balok Tidak Kaku Beam with No Stiffness (=0)

(c)

(9)

9 Joint Rotation ( ) untuk u = 1 maka Joint Translation Gambar 1.9 Balok(3) Contoh Soal

1. Buat grafik yang menggambarkan hubungan k vs ρ dan T vs ρ untuk struktur portal sebagai berikut:

m h

(10)

10

Untuk menjawab pertanyaan ini, seperti yang telah diketahui

∑(

)

∑( )

Dengan mengasumsikan Ebalok =Ekolom dan besar L dan h yang sudah ditentukan pada soal, ρ dapat divariasikan dengan rasio Ibalok/Ikolom.

∑( ) ∑( )

Pada contoh perhitungan, pakai Ib=Ic Maka ρ=1/4 ∑ [ ] [ ]

Pada sumbu ordinat, k/(EIk/h3)=96/7.

(11)

11 √ √

Pada sumbu ordinat, dengan menggunakan skala non-dimensi, To = T/√(mh3/EIk)

Berikut adalah tabel perhitungan perbandingan ρ, k, dan T

Ib/Ic ρ k T0 0 0 6 2.5651 0.007813 0.001953 6.104854 2.542976 0.015625 0.003906 6.208494 2.521661 0.03125 0.007813 6.412214 2.481281 0.0625 0.015625 6.80597 2.408435 0.125 0.03125 7.542857 2.287768 0.25 0.0625 8.842105 2.113012 0.5 0.125 10.90909 1.902329 1 0.25 13.71429 1.696654 2 0.5 16.8 1.53294 4 1 19.5 1.422861 8 2 21.42857 1.357323 16 4 22.61538 1.321228 32 8 23.28 1.302232 64 16 23.63265 1.292479 128 32 23.81443 1.287537 ∞ ∞ 24 1.28255

(12)

12

Beberapa kesimpulan yang didapat dari tabel dan grafik di atas adalah:

a. Nilai terkecil dari ρ adalah 0 dengan kondisi di mana EIbalok≈0. Pada kondisi real, nilai EI tidak akan pernah 0. Nilai k akan bersifat asimtotik menuju limit 0. b. Nilai terbesar dari ρ adalah ∞ di mana EI balok dianggap kaku sempurna (∞).

Nilai k akan bersifat asimtotik menuju harga k = Σ12EIk/h3. c. Nilai k berbanding lurus dengan ρ.

d. Nilai T berbanding terbalik dengan ρ

e. Besar kekakuan struktur berbanding terbalik dengan besar perioda yang dialami struktur. 0 5 10 15 20 25 30 0.001 0.01 0.1 1 10 100 k/ (E Ik / h 3) ρ

k vs ρ

0 0.5 1 1.5 2 2.5 3 0.001 0.01 0.1 1 10 100 T ( d e tik) ρ

T vs ρ

(13)

13 Soal

1. Buat grafik yang menggambarkan hubungan k vs L/h dan T vs L/h untuk struktur portal sebagai berikut:

Berikan ulasan terhadap hasil yang diperoleh.

2. Buat grafik yang menggambarkan hubungan k vs L/h dan T vs L/h untuk struktur portal beton bertulang sebagai berikut:

Pelat beton :

 t =12 cm  SIDL =100 kg/m2  LL =250 kg/m2

Kolom : 300/500 ; Balok : 300/500

Berikan ulasan terhadap hasil yang diperoleh. m

h

L

L=6 m L

(14)

14 1.1.2 Getaran Bebas Dengan Redaman

Gambar 1.10 Sistem SDOF dengan redaman

Untuk system dinamik bebas dengan redaman, persamaan gerak system menjadi:

̈ ̇ (18)

Dimana c adalah redaman pada struktur. Karena (19) (20) (21) (22) √ (23) Sehingga ̈ ̇ (24)

(15)

15

Dimana

= koefisien redaman kritis

= Rasio Redaman, merupakan sebuah property tak berdimensi dari system yang bergantung pada massa dan kekakuan.

c = konstanta redaman, yang menyatakan energy yang terdisipasi dalam sebuah cycle getaran bebas atau forced harmonic vibration.

Sistem Underdamped

( ) [ ( ) ( ) ( ) ] (25)

Pada system underdamped,

Getaran Harmonis dengan Redaman

̈ ̇ ( ) (26)

( ) ( ) (27)

(16)

16

Gambar 1.11 Getaran Bebas dari system Underdamped, Redaman Kritis dan Sistem Overdamped

Gambar 1.12 Respons Sistem dengan redaman terhadap gaya harmonic

> 1

(17)

17 1.2 Multi Degree of Freedom

Struktur yang lebih dari satu lantai dapat didiskretisasi menjadi sebuah struktur yang memiliki Multi degree of freedom seperti terlihat pada Gambar 1.13 di bawah ini.

Gambar 1.13 Multi Degree of Freedom(4)

Persamaan gerak getaran bebas untuk struktur MDOF tanpa redaman dapat ditulis dalam bentuk matriks sebagai berikut

[ ]{ ̈} [ ]{ } { } (28)

(18)

18 [ ]

[ ]

(29)

Matriks kekakuan dapat ditulis sebagai berikut

[K]= (30)

Karena gerakan pada sebuah system getaran bebas berupa gerakan simple harmonic, nilai perpindahan u dapat direpresentasikan sebagai berikut

{ } { ̅} (31)

Sehingga percepatan da[at di[eroleh sebagai berikut

{ ̈} { } (32)

Dengan mensubtitusi persamaan kedalam bentuk persamaan eigenvalue diperoleh

([ ] { }){ } { } (33)

Solusi dari persamaan diatas dapat diperoleh dengan mencari solusi non-trivial berupa determinan matriks =0

(19)

19 Contoh Soal

Pada struktur seperti Gambar __ susun mode shape dari struktur.

Dari informasi di atas dapat disusun matriks massa dan kekakuan dari struktur.

Sehingga didapat bentuk persamaan eigenvalue

Sehingga didapat persamaat karakteristik

(20)

20

Dengan menyelesaikan persamaan diatas akan didapatkan

Dengan mengetahui nilai B dapat dicari mode shape dengan mensubtitusi satu persatu nilai B ke dalam persamaan

(21)

21

w1 = 8.438 w2= 25.768 w3= 40.388 w4= 50.800

Gambar 1. Mode shape

Gambar 1. Defleksi total pada struktur sebagai jumlah dari defleksi komponen

∑ (35) { } ∑{ } [ ]{ } (36)

(22)

22

Kontribusi Mode (n)

{ ( )}= { ( )} (t) (1) (37)

Dimana { ( )} = mode shape (n) dan ( )= scalar Persamaan Kesetimbangan

[ ]{ ̈} [ ]{ ̇} [ ]{ } [ ]{ ̈ } (2) (38) Dengan mensubstitusi (1) to (2):

[ ]{ ( )}{ ̈ } [ ]{ ( )}{ ̇ } [ ] { ( )}{ } [ ]{ ̈ } (39)

Dengan mengalikan persamaan tersebut dengan{ ( )}

{ ( )} [ ]{ ( )}{ ̈ } { ( )} [ ]{ ( )}{ ̇ } { ( )} [ ] { ( )}{ } { ( )} [ ]{ } ̈

(40)

Persamaan dapat ditulis ulang secara sederhana sebagai berikut yang bentuknya mirip dengan persamaan SDOF ̈ ̇ ̈ (3) (41) Dimana { ( )} [ ]{ ( )} { ( )} [ ]{ ( )} { ( )} [ ] { ( )} { ( )} [ ]{ } { }= unit column matrix( )

(23)

23

̈ ̇ ̈ (42)

dimana

MPF = Modal Participation Factor = = ∑

Nilai ̈ ( ) ̇ (t) bisa didapatkan dengan menggunakan integrasi satu demi satu Maximum | | ( ) Sd(n)

Maximum | ̇ | ( ) Sv(n) = ( ) Sd(n) Maximum | ̈ | ( ) Sa(n) = ( ) Sd(n) Gaya Geser pada bangunan menjadi

{Fn} max = [m]{v(t)}max = [m]{ n} Yn max = [m]{ n} ( ) Sd(n) (43) Persamaan tersebut dapat ditulis ulang sebagai berikut

{Fn} max = [m]{ n} ( ) Sa(n) (44)

Dimana nilai base shear atau gaya geser dasar yang sesuai adalah

Gambar

Gambar 1.1 Struktur SDOF Tanpa Redaman
Gambar 1.2 Getaran Bebas dari sebuah system tanpa Redaman
Gambar 1.5 Batang Tarik
Gambar 1.8 Portal (3)
+5

Referensi

Dokumen terkait

Desain Silo dengan struktur beton prategang ini diharapkan dapat memikul gaya-gaya dalam yang terjadi yakni gaya akibat beban material pengisi silo, beban gempa dan

Pada bab ini, dibahas respon sistem SDOF baik yang tidak teredam maupun dengan redaman viskous terhadap gaya luar, dalam bentuk gerakan harmonis, yaitu struktur yang

Tingkah laku struktur bila beban yang bekerja pada struktur tersebut terus bertambah secara linier, maka pada saat struktur dengan beban relatif kecil, besarnya

Penelitian yang dilakukan berupa analisis kinerja struktur bangunan gedung bertingkat tinggi akibat beban angin karena nilai besarnya beban angin dipengaruhi oleh

Beban gempa, yang diterapkan pada analisis struktur sebagai gaya lateral akibat percepatan tanah, merupakan gaya yang dominan pada struktur bangunan tinggi, dibandingkan pada

Sedangkan Sedangkan dalam dinamika struktur akan dipelajari perilaku struktur jika struktur tersebut dalam dinamika struktur akan dipelajari perilaku struktur jika

2.5 Pembebanan Jembatan Rangka Baja Canai Dingin Pejalan Kaki Beban merupakan gaya luar yang bekerja pada suatu struktur.. Umumnya penentuan besarnya beban yang bekerja pada

Beban hidrodinamika horisontal dan vertikal dan respon dinamik dari struktur lepas pantai bersama-sama dengan distribusi perpindahan, gaya aksial dan momen lentur pada struktur