• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:GMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:GMJ:"

Copied!
17
0
0

Teks penuh

(1)

Georgian Mathematical Journal Volume 10 (2003), Number 2, 363–379

ESTIMATES OF FOURIER COEFFICIENTS

V. TSAGAREISHVILI

Abstract. Some well-known properties of the trigonometric system as well as of the Haar and Welsh systems are generalized to general orthonormal systems.

2000 Mathematics Subject Classification: 42A16, 42C10.

Key words and phrases: Orthonormal system, Fourier coefficients, mod-ulus of continuity, bounded variation.

1. Introduction

In the theory of functions an important place is occupied by generalization of properties of specific orthonormal series to general orthonormal systems.

Here we note only some of the authors who have significant results concerning the mentioned problems: Marcinkiewicz [1], Stechkin [2], Olevskii [3], Bochkarev [4], [5], Mitiagin [6], Kashin [7], McLaughlin [8].

It was proved that in many cases some properties of the well-known orthogo-nal systems are typical for general orthogoorthogo-nal systems (see, e.g., [2], [3], [4], [5]). However, not all properties of the well-known orthogonal systems are extending on general orthogonal systems. Therefore, in order to obtain well-known results for general orthogonal systems, we need to impose specific conditions on the given system.

2. Auxiliary Notation and Results

Let δ (0,1]. If a function f C([0,1]), then its modulus of continuity is defined as follows

ω(δ, f) = sup

|h|≤δ

max

0≤x≤1−h|f(x)−f(x+h)|,

where 0 < h1.

If a function f L2([0,1]), then the integral modulus of continuity has the

form

ω2(δ, f) = sup |h|≤δ

µZ 1−h

0 |

f(x)f(x+h)|2dx

1 2

.

We say that a function f Lipα if ω(δ, f) =O(δα) as δ 0.

Let (ϕn) be an orthogonal system on [0,1]. Then the Fourier coefficients with

respect to (ϕn) for the function f ∈L([0,1]) are defined as follows

cn(f) =

Z 1

0

f(x)ϕn(x)dx, n = 1,2, . . . .

(2)

The best approximation with respect to the system (ϕn) in the sense of

L2([0,1]) is defined by the following equality:

En(2)(f) = inf

{am}

° ° ° ° °

f(x)

n

X

m=1

amϕm(x)

° ° ° ° °

2

.

If (ϕn) is a complete system on [0,1], then

En(2)(f) = Ã

X

k=n

c2k(f) !12

.

In the sequel we will denote by (ψn) either one of the orthonormal systems of

Haar or Walsh (see, e.g., [9, p. 53, 54]), or the trigonometric system. For these systems the following results are valid. They are important for our purpose.

Theorem A. If

cn(f) =

1

Z

0

f(x)ψn(x)dx,

then the following relations are valid: a) cn(f) = O

¡

ω¡1

n, f

¢¢

for every f C([0,1]); b) cn(f) = O

¡

ω2

¡1

n, f

¢¢

for every f L2([0,1]).

Theorem B. For every function f L2([0,1]) the relation

En(2)=O

µ

ω2

µ 1

n, f

¶¶

holds.

The relation a) of Theorem A for the Haar system was proved by B. Golubov [10] and the relation b) was proved by P. Ul’yanov [11], for the Walsh system it was proved by Fine [12].

Theorem B for the Haar system was proved by Ul’yanov [11]. As to the trigonometric system, Theorems A and B are well-known (see, e.g., [13, p. 79]). It is well-known that Theorems A and B are not valid for general orthogonal systems. In fact, the following theorem holds.

Theorem C. Let f be a function from L2([0,1]) and (cn) be an arbitrary

sequence from ℓ2 satisfying the condition

X

n=1

c2n= Z 1

0

f2(x)dx.

Then there exists an orthonormal system (ϕn) on [0,1] such that

cn =

Z 1

0

(3)

Theorem C is proved by A. Olevskii [3]. From this theorem follows that if

f L2([0,1]) and the numberscn satisfy the conditions

a)

X

n=1

c2n = Z 1

0

f2(x)dx and b) lim

n→∞

|cn|

ω2(n1 , f)

= +,

then there exists an orthonormal system of functions (ϕn) such that

cn=

Z 1

0

f(x)ϕn(x)dx, n= 1,2, . . . .

Therefore there exists a function f L2([0,1]) such that

lim

n→∞

|cn(f)|

ω2(n1 , f)

= +.

The following propositions are valid (see [15]).

Lemma 1. Let the function f L2([0,1]) take finite values at every point of

the interval [0,1] and ΦL2([0,1]). Then the following equality is valid:

Z 1

0

f(x)Φ(x)dx =

n−1

X

i=1

µ

f

µ

i n

−f

µ

i+ 1

n

¶¶ Z ni

0

Φ(x)dx

+

n

X

i=1

Z ni

i1

n

µ

f(x)f

µ

i n

¶¶

Φ(x)dx+f(1) Z 1

0

Φ(x)dx. (1)

Lemma 2. Let (ϕn)be an orthonormal system of functions on [0,1]. Let En

denote the set of the natural numbers i (i= 1,2, . . . , n) for which there exists a point t ¡i1

n , i n

¢

such that

sign Z t

0

ϕn(x)dx6= sign

Z i−1

n

0

ϕn(x)dx.

Then the inequality

X

i∈En

¯ ¯ ¯ ¯ ¯

Z ni

0

ϕn(x)dx

¯ ¯ ¯ ¯ ¯

µZ 1

0

ϕ2n(x)dx

¶12

(4)

3. Main Results

Let (an) be a sequence of real numbers from ℓ2, Introduce the following

no-tation:

PN(m)(x)

N+m

X

k=N

akϕk(x), m= 1,2, . . . ,

eN ≡

à X

k=N

c2k(f) !12

,

HN ≡sup m

N−1

X

k=1

¯ ¯ ¯ ¯ ¯

Z Nk

0

PN(m)(x)dx

¯ ¯ ¯ ¯ ¯

,

hN ≡

à X

k=N

a2k

!12

.

Theorem 1. Letf C([0,1])and(ϕn)be an orthonormal system of functions

on [0,1] satisfying

1

R

0

ϕn(x)dx= 0, n = 1,2, . . ..

Then the relation

eN =O

µ

ω

µ 1

N , f

¶¶

holds if and only if the condition

HN =O(hN) for every sequence (ak)∈ℓ2

is fulfilled.

Proof. Sufficiency. If cn(f) =

1

R

0

f(x)ϕn(x)dx, then

N+m

X

k=N

c2k(f) =

N+m

X

k=N

ck(f)

Z 1

0

f(x)ϕk(x)dx

= Z 1

0

f(x)

N+m

X

k=N

ck(f)ϕk(x)dx=

Z 1

0

f(x)PN(m)(x)dx. (2)

Using the assertion of Lemma 1, we obtain

Z 1

0

f(x)PN(m)(x)dx=

N−1

X

i=1

µ

f

µ

i N

−f

µ

i+ 1

N

¶¶ Z Ni

0

PN(m)(x)dx

+

N

X

i=1

Z Ni

i

−1

N

µ

f(x)f

µ

i N

¶¶

PN(m)(x)dx+f(1) Z 1

0

(5)

Estimate the right-hand side of equality (3). We have ¯

¯ ¯ ¯ ¯

N−1

X

i=1

µ

f

µ

i N

−f

µ

i+ 1

N

¶¶ Z Ni

0

PN(m)(x)dx

¯ ¯ ¯ ¯ ¯

N−1

X

i=1

¯ ¯ ¯ ¯

f

µ

i N

−f

µ

i+ 1

N

¶¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Z Ni

0

PN(m)(x)dx

¯ ¯ ¯ ¯ ¯

≤ω

µ 1

N , f

¶N−1 X

i=1

¯ ¯ ¯ ¯ ¯

Z Ni

0

PN(m)(x)dx

¯ ¯ ¯ ¯ ¯

≤O(1)ω

µ 1

N , f

hN. (4)

Applying the H¨older inequality, we obtain ¯

¯ ¯ ¯ ¯

N−1

X

i=1

Z Ni

i

−1

N

µ

f(x)f

µ

i N

¶¶

PN(m)(x)dx

¯ ¯ ¯ ¯ ¯

≤ω

µ 1

N , f

¶N−1 X

i=1

Z Ni

i

−1

N

¯ ¯ ¯P

(m)

N (x)

¯ ¯

¯ dx≤ω µ

1

N , f

¶ µZ 1

0

³

PN(m)(x)´2 dx

¶12

=O(1)ω

µ 1

N , f

¶ÃN+m X

k=N

c2k(f) !12

≤O(1)ω

µ 1

N , f

eN. (5)

Finally, since

1

R

0

ϕn(x)dx= 0, n= 1,2, . . . , from (3), (4) and (5) we have

¯ ¯ ¯ ¯

Z 1

0

f(x)PN(m)(x)dx

¯ ¯ ¯ ¯≤

O

µ

ω

µ 1

N , f

eN

¶ +O

µ

ω

µ 1

N , f

eN

=O

µ

ω

µ 1

N , f

eN

.

Hence, applying (2), we get

N+m

X

k=N

c2k(f) =O

µ

ω

µ 1

N , f

eN

,

i.e.,

X

k=N

c2k(f) = O

µ

ω

µ 1

N , f

eN

, (6)

From (6) we have

à X

k=N

c2k(f) !12

=O

µ

ω

µ 1

N , f

¶¶

.

Sufficiency of the theorem is proved. Necessity. Let HN 6=O(hN), i.e.,

lim

N

HN

hN

(6)

Therefore there exist a sequence (an) ∈ℓ2 and natural numbers mN ↑ ∞ such

that

lim

N

H(mN)

N

hN

= +, (7)

where

H(mN)

N =

N−1

X

k=1

¯ ¯ ¯ ¯ ¯

Z Nk

0

P(mN)

N (x)dx

¯ ¯ ¯ ¯ ¯ and

P(mN)

N (x) = N+mN

X

k=N

akϕk(x).

Consider the sequence of functions

fN(x) =

Z x

0

µ sign

Z u

0

P(mN)

N (t)dt

du, N = 1,2, . . . . (8)

Taking into account the condition

1

R

0

ϕn(x)dx = 0, n = 1,2, . . . , from (1) we

obtain

Z 1

0

fN(x)P

(mN)

N (x)dx= N−1

X

i=1

µ

fN

µ

i N

−fN

µ

i+ 1

N

¶¶ Z Ni

0

P(mN)

N (x)dx

+

N

X

i=1

Z Ni

i

−1

N

µ

fN(x)−fN

µ 1

N

¶¶

P(mN)

N (x)dx. (9)

Applying (8) we have ¯

¯ ¯ ¯ ¯

N

X

i=1

Z Ni

i

−1

N

µ

fN(x)−fN

µ

i N

¶¶

P(mN)

N (x)dx

¯ ¯ ¯ ¯ ¯

N1

N

X

i=1

Z Ni

i

−1

N

¯ ¯ ¯P

(mN)

N (x)

¯ ¯ ¯ dx

N1

µZ 1

0

³

P(mN)

N (x)

´2

dx

1 2

= 1

N

N+mN

X

k=N

a2k

1 2

. (10)

Taking into account the assertions of Lemma 2 and (8), we get

N−1

X

i=1

µ

fN

µ

i N

−fN

µ

i+ 1

N

¶¶ Z Ni

0

P(mN)

N (x)dx

= X

i∈FN\EN

µ

fN

µ

i N

−fN

µ

i+ 1

N

¶¶ Z Ni

0

P(mN)

(7)

+ X

i∈EN

µ

fN

µ

i N

−fN

µ

i+ 1

N

¶¶ Z Ni

0

P(mN)

N (x)dx, (11)

where FN ={1,2, . . . , N}.

IfiFN \EN, then

fN

µ

i N

−fN

µ

i+ 1

N

¶ =

Z i+1N

i N

sign Z u

0

P(mN)

N (t)dt du

=1

N sign

Z Ni

0

P(mN)

N (t)dt.

Therefore ¯ ¯ ¯ ¯ ¯ ¯

X

i∈FN\EN

µ

fN

µ

i N

−fN

µ

i+ 1

N

¶¶ Z Ni

0

P(mN)

N (x)dx

¯ ¯ ¯ ¯ ¯ ¯

= 1

N

X

i∈FN\EN

¯ ¯ ¯ ¯ ¯

Z Ni

0

P(mN)

N (x)dx

¯ ¯ ¯ ¯ ¯

. (12)

At last, as far as

¯ ¯ ¯ ¯

fN

µ

i N

−fN

µ

i+ 1

N

¶¯ ¯ ¯ ¯

< 1

N (13)

and, by virtue of Lemma 2, we have

X

i∈EN

¯ ¯ ¯ ¯ ¯

Z Ni

0

P(mN)

N (x)dx

¯ ¯ ¯ ¯ ¯

µZ 1

0

³

P(mN)

N (x)

´2

dx

¶12

= 

N+mN

X

k=N

a2k

1 2

à X

k=N

a2k

!12

≡hN. (14)

Then, taking into account (13) and (14), we obtain ¯

¯ ¯ ¯ ¯

X

i∈EN

µ

fN

µ

i N

−fN

µ

i+ 1

N

¶¶ Z Ni

0

P(mN)

N (x)dx

¯ ¯ ¯ ¯ ¯

N1 hN, (15)

N = 1,2, . . . .

Using (12) and (15), we get ¯

¯ ¯ ¯ ¯

N−1

X

i=1

µ

fN

µ

i N

−fN

µ

i+ 1

N

¶¶ Z Ni

0

P(mN)

N (x)dx

¯ ¯ ¯ ¯ ¯

N1 X

i∈FN\EN

¯ ¯ ¯ ¯ ¯

Z Ni

0

P(mN)

N (x)dx

¯ ¯ ¯ ¯ ¯

N1 X

i∈EN

¯ ¯ ¯ ¯ ¯

Z Ni

0

P(mN)

N (x)dx

¯ ¯ ¯ ¯ ¯

N1 H(mN)

N −

hN

(8)

Hence due to (7) we have

N

¯ ¯ ¯ ¯

1

R

0

fN(x)P

(mN)

N (x)dx

¯ ¯ ¯ ¯

hN ≥

H(mN)

N

hN −

hN

hN

,

and consequently

lim

n→∞ N

¯ ¯ ¯ ¯

1

R

0

fN(x)P

(mN)

N (x)dx

¯ ¯ ¯ ¯

hN

= +. (16)

Further, since

kfNkLip 1=kfNkC+ sup x,y

|fN(x)−fN(y)|

|xy| ,

then from (8) it follows that

kfNkLip 1≤2. (17)

Finally, by virtue of the Banach–Steinhaus theorem (see (16) and (17)) there exists a function f0 ∈Lip 1 such that

lim

n→∞ N

¯ ¯ ¯ ¯

1

R

0

fN(x)P

(mN)

N (x)dx

¯ ¯ ¯ ¯

hN

= +. (18)

As far as

¯ ¯ ¯ ¯

Z 1

0

f0(x)P (mN)

N (x)dx

¯ ¯ ¯ ¯

= ¯ ¯ ¯ ¯ ¯ ¯

Z 1

0

f0(x)

N+mN

X

k=N

akϕk(x)dx

¯ ¯ ¯ ¯ ¯ ¯

= ¯ ¯ ¯ ¯ ¯ ¯

N+mN

X

k=N

ak

Z 1

0

f0(x)ϕk(x)dx

¯ ¯ ¯ ¯ ¯ ¯

= ¯ ¯ ¯ ¯ ¯ ¯

N+mN

X

k=N

akck(f0)

¯ ¯ ¯ ¯ ¯ ¯

N+mN

X

k=N

a2k

1 2 

N+mN

X

k=N

c2k(f0)

1 2

< hN ·eN,

then taking into account that ω¡1

N , f0

¢

=O¡1

N

¢

, from (18) we have

lim

n→∞

hN ·eN

ω¡N1 , f0

¢

·hN

= +,

i.e.,

lim

n→∞ eN

ω¡1

N , f0

(9)

Theorem 2. Let the functions f and Φ be from L2([0,1]). Then

¯ ¯ ¯ ¯

Z 1

0

f(x)Φ(x)dx

¯ ¯ ¯ ¯≤

ω2

µ 1

n, f

(Vn+ 2kΦk2)

+n

Z 1

1−1

n

|f(x)|dx

¯ ¯ ¯ ¯

Z 1

0

Φ(x)dx

¯ ¯ ¯ ¯

, (19)

where Vn= n−1

P

k=1

¯ ¯

Rk/n

0 Φ(x)dx

¯ ¯.

Proof. Applying the Abel transformation, we get

n

n

X

k=1

Z kn

k

−1

n

f(x)dx

Z kn

k

−1

n

Φ(x)dx

=n

n−1

X

k=1

à Z kn

k1

n

f(x)dx

Z k+1n

k n

f(x)dx

! Z nk

0

Φ(x)dx

+n

Z 1

1−1

n

f(x)dx

Z 1

0

Φ(x)dx

=n

n−1

X

k=1

Z kn

k

−1

n

µ

f(x)f

µ

x+ 1

n

¶¶

dx

Z nk

0

Φ(x)dx

+n

Z 1

1−1

n

f(x)dx

Z 1

0

Φ(x)dx. (20)

Since

Z kn

k

−1

n

f(x)Φ(x)dxn

Z nk

k

−1

n

f(t)dt

Z kn

k

−1

n

Φ(x)dx

=n

Z nk

k1

n dt

Z nk

k1

n

f(x)Φ(x)dxn

Z kn

k1

n

f(t)dt

Z nk

k1

n

Φ(x)dx

=n

Z nk

k1

n

à Z nk

k1

n

f(x)dt

Z nk

k1

n

f(t)dt

!

Φ(x)dx

=n

Z nk

k1

n

Z kn

k1

n

(f(x)f(t)) Φ(x)dx dt (21)

and

Z 1

0

f(x)Φ(x)dx=

n

X

k=1

Z kn

k

−1

n

(10)

then, taking into account (20), (21) and (22), one has

Z 1

0

f(x)Φ(x)dx=

n

X

k=1

Z nk

k

−1

n

f(x)Φ(x)dxn

n

X

k=1

Z kn

k

−1

n

f(t)dt

Z nk

k

−1

n

Φ(x)dx

+n

n−1

X

k=1

Z kn

k

−1

n

µ

f(x)f

µ

x+ 1

n

¶¶

dx

Z kn

0

Φ(x)dx+n

Z 1

1−1

n

f(x)dx

Z 1

0

Φ(x)dx

=

n

X

k=1

à Z kn

k1

n

f(x)Φ(x)dxn

Z nk

k1

n

f(t)dt

Z kn

k1

n

Φ(x)dx

!

+n

n−1

X

k=1

Z nk

k

−1

n

µ

f(x)f

µ

x+ 1

n

¶¶

dx

Z nk

0

f(x)Φ(x)dx

+n

Z 1

1−1

n

f(x)dx

Z 1

0

Φ(x)dx=n

n

X

k=1

Z kn

k1

n

Z nk

k1

n

(f(x)f(t)) Φ(x)dx dt

+n

n−1

X

k=1

Z nk

k

−1

n

µ

f(x)f

µ

x+ 1

n

¶¶

dx

Z nk

0

Φ(x)dx+n

Z 1

1−1

n

f(x)dx

Z 1

0

Φ(x)dx.

Consequently,

Z 1

0

f(x)Φ(x)dx=n

n−1

X

k=1

Z kn

k

−1

n

µ

f(x)f

µ

x+ 1

n

¶¶

dx

Z nk

0

Φ(x)dx

+n

n

X

k=1

Z kn

k

−1

n

Z kn

k

−1

n

(f(x)f(t)) Φ(x)dx dt+n

Z 1

1−1

n

f(x)dx

Z 1

0

Φ(x)dx. (23)

Assuming ξn(k)(t) = n1 t+k−n1, we get

Z kn

k

−1

n

µ

f(x)f

µ

x+ 1

n

¶¶

dx= 1

n Z 1 0 µ f µ 1

n t+ k1

n

−f

µ 1

n t+ k n ¶¶ dt = 1 n Z 1 0 µ

f¡ξn(k)(t)¢

−f

µ

ξn(k)(t) + 1

n

¶¶

dt.

Hence we have ¯

¯ ¯ ¯ ¯

Z nk

k1

n

µ

f(x)f

µ

x+ 1

n ¶¶ dx ¯ ¯ ¯ ¯ ¯

n1

Z 1 0 ¯ ¯ ¯ ¯

f¡ξ(nk)(t)¢

−f

µ

ξ(nk)(t) + 1

n ¶¯ ¯ ¯ ¯ dt

n1

Z 1 0 ¯ ¯ ¯ ¯

f(t)f

µ

t+ 1

n

¶¯ ¯ ¯ ¯

dt 1 n|suph|≤1

n

µZ 1

0 |

f(t)f(t+h)|2dt

¶12

= 1

nω2

µ 1

n , f

(11)

By virtue of the H¨older inequality we obtain ¯

¯ ¯ ¯ ¯

Z kn

k

−1

n

Z kn

k

−1

n

(f(x)f(t)) Φ(x)dx dt

¯ ¯ ¯ ¯ ¯

Z nk

k1

n

à Z kn

k1

n

(f(x)f(t))2dx

!12 Ã Z kn

k1

n

Φ2(x)dx

!12

dt

≤ √1 n

à Z nk

k

−1

n

Z kn

k

−1

n

(f(x)f(t))2dx dt

!12 ÃZ k

n

k

−1

n

Φ2(x)dx

!12

. (25)

Applying the equality (see [11])

Z b

a

Z b

a |

f(x)f(t)|pdx dt= 2 Z b−a

0

µZ b−ξ

a |

f(y+ξ)f(y)|pdy

dξ,

we get

Z kn

k

−1

n

Z kn

k

−1

n

(f(x)f(t))2dx dt= 2 Z n1

0

à Z nk−ξ

k

−1

n

|f(y+ξ)f(y)|2dy

!

dξ. (26)

Therefore, by virtue of (25) and (26) we have

¯ ¯ ¯ ¯ ¯

n

X

k=1

Z kn

k

−1

n

Z kn

k

−1

n

(f(x)f(t)) Φ(x)dx dt

¯ ¯ ¯ ¯ ¯

≤ √2 n

n

X

k=1

à Z 1n

0

Z kn−ξ

k

−1

n

(f(y+ξ)f(y))2dy dξ

!12

·

à Z kn

k

−1

n

Φ2(x)dx

!12

≤ √2 n

à Z n1

0

n

X

k=1

Z kn

k

−1

n

(f(y+ξ)f(y))2dy dξ

!12

·

à n X

k=1

Z kn

k

−1

n

Φ2(x)dx

!12

≤ √2 n

à Z n1

0

Z 1

0

(f(y+ξ)f(y))2dy dξ

!12

·

µZ 1

0

Φ2(x)dx

¶12

≤ √2 n ·

1

√ n ω2

µ 1

n, f

· kΦk2 =

2kΦk2

n ω2

µ 1

n, f

. (27)

At last, taking into account (24), we have

¯ ¯ ¯ ¯ ¯

n−1

X

k=1

Z kn

k

−1

n

µ

f(x)f

µ

x+ 1

n

¶¶

dx

Z nk

0

Φ(x)dx

¯ ¯ ¯ ¯ ¯

n1 ω2

µ 1

n, f

·

n−1

X

k=1

¯ ¯ ¯ ¯ ¯

Z kn

0

Φ(x)dx

¯ ¯ ¯ ¯ ¯

= ω2 ¡1

n, f

¢

(12)

Hence from (23) and (27) we get ¯

¯ ¯ ¯

Z 1

0

f(x)Φ(x)dx

¯ ¯ ¯ ¯≤

n·ω2

¡1

n, f

¢

n Vn+n

2kΦk2

n ω2

µ 1

n, f

+n

Z 1

1−1

n

|f(x)|dx

¯ ¯ ¯ ¯

Z 1

0

Φ(x)dx

¯ ¯ ¯ ¯

.

Theorem 2 is proved completely. ¤

Theorem 3. Let (ϕn) be an orthonormal system of functions on [0,1]

satis-fying the condition

1

R

0

ϕn(x)dx= 0, n= 1,2, . . .. Then

cn(f) =O

µ

ω2

µ 1

n, f

¶¶

for every f L2([0,1])

if and only if

Vn =O(1),

where Vn= n−1

P

k=1

¯ ¯

R kn

0 ϕn(x)dx|.

Proof. Sufficiency. Assuming in (19) that Φ(x) = ϕn(x), we obtain

¯ ¯ ¯ ¯

Z 1

0

f(x)ϕn(x)dx

¯ ¯ ¯ ¯≤

ω2

µ 1

n, f

(Vn+ 2kϕnk2)+n

Z 1

1−1

n

|f(x)|dx

¯ ¯ ¯ ¯

Z 1

0

ϕn(x)dx

¯ ¯ ¯ ¯

.

Since Vn = n−1

P

k=1

¯ ¯

k n

R

0

ϕn(x)dx|=O(1) and

1

R

0

ϕn(x)dx= 0, n = 1,2, . . ., we have

|cn(f)|=O

µ

ω2

µ 1

n, f

¶¶

.

Necessity. IfVn 6=O(1), then as it is known (see [15]) there exists f0 ∈Lip 1

such that

lim

n→∞n|cn(f0)|= +∞. (28)

As far as ω2

¡1

n, f0

¢

=O¡1

n

¢

, from (28) we have

lim

n→∞

cn(f0)

ω2

¡1

n, f0

¢ = +∞. ¤

Theorem 4. Let (ϕn) be an orthonormal system on [0,1] satisfying

1

Z

0

ϕn(x)dx= 0, n= 1,2, . . . .

Then the relation

eN =O

µ

ω2

µ 1

N , f

¶¶

(13)

holds if and only if

HN =O(hN)

for every sequence (an)∈ℓ2.

Proof. Sufficiency. Let f L2([0,1]). As it was shown above (see (2)), the

equality

N+k

X

m=N

c2m(f) = Z 1

0

f(x)

N+k

X

m=N

cmϕm(x)dx =

Z 1

0

f(x)PN(k)(x)dx (29)

holds. By virtue of Theorem 2, we get ¯

¯ ¯ ¯

Z 1

0

f(x)PN(k)(x)dx

¯ ¯ ¯ ¯≤

ω2

µ 1

N , f

¶ ³

HN + 2kPN(k)k2

´

. (30)

Since

kPN(k)k2 =

µZ 1

0

³

PN(k)(x)´2 ¶12

= 

 Z 1

0

ÃN+k X

m=N

cm(f)ϕm(x)

!2

dx

1 2

= ÃN+k

X

m=N

c2m(f) !12

≤eN,

and by virtue of the condition of Theorem 4 HN =O(eN), from (30) we have

¯ ¯ ¯ ¯

Z 1

0

f(x)PN(k)(x)dx

¯ ¯ ¯ ¯≤

c·ω2

µ 1

N , f

eN,

where cdoes not depend on N. Finally, from (29) we get

N+k

X

m=N

c2m(f)c·ω2

µ 1

N , f

eN, k= 1,2, . . . ,

hence

X

m=N

c2m(f)c·ω2

µ 1

N , f

eN. (31)

From (31) we have

eN =O

µ

ω2

µ 1

N , f

¶¶

.

Thus the sufficiency is proved.

Necessity. Let HN 6= O(hN). Then by virtue of Theorem 1 there exists a

function f0 ∈Lip 1 such that

lim

n→∞ N eN = +∞.

As far as for the functionf0 the relationω2

¡1

N , f0

¢

=O¡N1¢holds, from (31) it follows

lim

n→∞

eN

ω2

¡1

n, f0

(14)

Theorem is proved completely. ¤ Theorem 5. From every orthonormal system ϕn on [0,1] satisfying the

condition

1

R

0

ϕn(x)dx = 0, n = 1,2, . . . , one can choose a subsystem ψk = ϕnk

for which the following conditions are fulfilled: 1) cn(f) = O

¡

ω2

¡1

n, f

¢¢

,

2) eN =O

¡

ω¡1

N , f

¢¢

,

3) eN =O

¡

ω2

¡1

N , f

¢¢

.

Proof. Let

εi(k) =

X

s=1

à Z ki

0

ϕs(x)dx

!2

, i= 1,2, . . . , k.

By virtue of the Bessel inequality, εi(k)≤1 for everyi= 1,2, . . . , k. Therefore

for each fixed k we can choose a number si(k) such that the inequality

X

s=si(k)

à Z ki

0

ϕs(x)dx

!2

< 1 k3

holds. Now if s(k) = max

1≤i≤ksi(k), then

X

s=s(k)

à Z ki

0

ϕs(x)dx

!2

< 1 k3.

Hence for every i= 1,2, . . . , k we have ¯

¯ ¯ ¯ ¯

Z ki

0

ϕs(x)dx

¯ ¯ ¯ ¯ ¯

< 1 k3/2

if ss(k). Assuming ϕs(k)=ψk, we get

¯ ¯ ¯ ¯ ¯

Z ki

0

ψk(x)dx

¯ ¯ ¯ ¯ ¯

< 1 k3/2.

This inequality implies the inequality

Vk = k−1

X

i=1

¯ ¯ ¯ ¯ ¯

Z ki

0

ψk(x)dx

¯ ¯ ¯ ¯ ¯

<1, n = 1,2, . . . , (32)

and also the estimate

k−1

X

i=1

¯ ¯ ¯ ¯ ¯

Z ki

0

k+l

X

m=k

amψm(x)dx

¯ ¯ ¯ ¯ ¯

Ãk+l X

m=k

a2m

!12 k−1

X

i=1

k+l

X

m=k

à Z ki

0

ψm(x)dx

!2

1 2

Ãk+l X

m=k

a2m

!12

·

k−1

X

i=1

1

k <

Ãk+l X

m=k

a2m

!12

(15)

is valid. Therefore

Hk =O(hk). (33)

Hence the validity of Theorem 5 follows from Theorems 1,2,3,4 and from the

relations (32) and (33). ¤

Remark 1. It follows from the proof of Theorem 1 that the relation

eN =O

µ

ω2

µ 1

N , f

¶¶

(34)

holds for everyf C([0,1]) if and only if relation (34) holds for everyf Lip 1. Hence it follows

Corollary 1. Relation (34) holds for every f L2([0,1]) if and only if the

condition

eN =O

µ 1

N

holds for every function f Lip 1.

Corollary 2. The relation

cn(f) = O

µ

ω2

µ 1

n, f

¶¶

holds for every f L2([0,1]) if and only if the condition

cn(f) =O

µ 1

n

holds for every f Lip 1 (see [15]).

Remark 2. a) If (ϕn) is a trigonometric system, then the inequality

Vn= n−1

X

k=1

¯ ¯ ¯ ¯ ¯

Z kn

0

sinπnx dx

¯ ¯ ¯ ¯ ¯

n−1

X

k=1

1

πn <

1

π

is valid.

b) Let (χn) be the Haar system (see [11]). Then if n = 2m+l (1≤l ≤2m),

we have

¯ ¯ ¯ ¯ ¯

Z nk

0

χn(x)dx

¯ ¯ ¯ ¯ ¯

≤2−m2 < √2

n.

On the other hand, note that only one integral

k n

R

0

χn(x)dx is different from

zero when k = 1,2, . . . , n. Thus

Vn = n−1

X

k=1

¯ ¯ ¯ ¯ ¯

Z nk

0

χn(x)dx

¯ ¯ ¯ ¯ ¯

(16)

Further on, it is easy to verify that if n = 2s+l, in case l 2s the following

estimate is valid:

n−1

X k=1 ¯ ¯ ¯ ¯ ¯

Z kn

0

Pn(q)(x)dx

¯ ¯ ¯ ¯ ¯ ≡

n−1

X k=1 ¯ ¯ ¯ ¯ ¯

Z kn

0

n+q

X

m=n

amχm(x)dx

¯ ¯ ¯ ¯ ¯ ≤ n X k=1 ¯ ¯ ¯ ¯ ¯ Z k

2s+1

0

n+q

X

m=n

amχm(x)dx

¯ ¯ ¯ ¯ ¯ + n X k=1 ¯ ¯ ¯ ¯ ¯

Z kn

k

2s+1

Pn(q)(x)dx

¯ ¯ ¯ ¯ ¯ . (36)

Applying the H¨older inequality, we get

n X k=1 ¯ ¯ ¯ ¯ ¯

Z nk

k

2s+1

Pn(q)(x)dx

¯ ¯ ¯ ¯ ¯ ≤ Z 1 0 |

Pn(q)(x)|dx

Ãn+q X

m=n

a2m

!12

≤hn. (37)

Then, if n+q >2s+1, then

n X k=1 ¯ ¯ ¯ ¯ ¯ Z k

2s+1

0

n+q

X

m=n

amχm(x)dx

¯ ¯ ¯ ¯ ¯ ≤ n X k=1 ¯ ¯ ¯ ¯ ¯ Z k

2s+1

0

2s+1

X

m=n

amχm(x)dx

¯ ¯ ¯ ¯ ¯ + n X k=1 ¯ ¯ ¯ ¯ ¯ Z k

2s+1

0

n+q

X

m=2s+1+1

amχm(x)dx

¯ ¯ ¯ ¯ ¯ . (38)

Since m2s+1, we have

Z k

2s+1

0

χm(x)dx= 0

and the second summand in (38) is equal to zero. On the other hand, as far as 2s+1n2s, we get

n X k=1 ¯ ¯ ¯ ¯ ¯ Z k

2s+1

0

2s+1

X

m=n

amχm(x)dx

¯ ¯ ¯ ¯ ¯ ≤

2s+1

X

m=n

|am| n X k=1 ¯ ¯ ¯ ¯ ¯ Z k

2s+1

0

χm(x)dx

¯ ¯ ¯ ¯ ¯ ≤

2s+1

X

m=n

|am| ·

1

m ≤

Ã2s+1

X

m=n

a2m

!

1 2 Ã2s+1

X

m=n

1

m

!

1 2

≤hn. (39)

Finally, taking into account in (36) the inequalities (37), (38) and (39), we obtain n X k=1 ¯ ¯ ¯ ¯ ¯

Z kn

0

Pn(q)(x)dx

¯ ¯ ¯ ¯ ¯

=O(hn).

Consequently,

Hn=O(hn).

c) Let now (ϕn) be the Walsh system (see [12]). Then since

¯ ¯ ¯ ¯ ¯

Z nk

0

ϕn(x)dx

(17)

we get

Vn= n−1

X

k=1

¯ ¯ ¯ ¯ ¯

Z kn

0

ϕn(x)dx

¯ ¯ ¯ ¯ ¯

<1.

In this case the inequality

Hn =O(hn)

is analogously proved as in case of the Haar system.

In conclusion, we can say that the efficiency of the conditions of Theorems 1, 2, and 3 is evident.

It should be noted that the above results were partially announced in [14].

References

1. J. Marcinkiewicz,Quelques theoremes sur les s´eri´es orthogonales.Ann. Polon. Math.

16(1937), 84–96.

2. S. B. Steˇckin, On absolute convergence of Fourier series. (Russian) Izv. Akad. Nauk SSSR, Ser. Mat.17(1953), 87–98.

3. A. M. Olevski˘ı, Orthogonal series in terms of complete systems. (Russian) Mat. Sb.

(N.S.)58(100)(1962), 707–748.

4. S. V. Boˇckarev,Absolute convergence of Fourier series in complete orthogonal systems. (Russian)Uspekhi Mat. Nauk27(1972), No. 2(164), 53–76.

5. S. V. Boˇckarev, A Fourier series that diverges on a set of positive measure for an arbitrary bounded orthonormal system. (Russian)Mat. Sb. (N.S.) 98(140)(1975), No. 3(11), 436–449.

6. V. S. Mityagin,Absolute convergence of series of Fourier coefficients. (Russian) Dokl. Akad. Nauk SSSR157(1964), 1047–1050.

7. V. S. Kashin,Some problem relating to the convergence of orthogonal systems. (Russian)

Trudy Math. Inst. Steklov.2(1972), 469–475.

8. J. R. McLaughlin,Integrated orthonormal series.Pacific J. Math.42(1972), 469–475. 9. G. Alexitis, Convergence problems of orthogonal series. (Russian) Gosizd. Fiz.-Mat.

Lit., Moscow,1958.

10. B. I. Golubov,On Fourier series of continuous functions with respect to a Haar system. (Russian)Izv. Akad. Nauk SSSR Ser. Mat.28(1964), 1271–1296.

11. P. L. Ul’janov,On Haar series. (Russian)Mat. Sb.(N.S.)63(105)(1964), 356–391. 12. N. J. Fine,On the Walsh functions. Trans. Amer. Math. Soc.65(1949), 372–414. 13. A. Zygmund,Trigonometric series, I.Cambridge University Press, Cambridge,1959. 14. V. Tsagareishvili,About the Fourier coefficients of the functions of the classL2 with

respect to the general orthonormal system. Reports of Enlarged Session of the Seminar of I. Vekua Inst. Appl. Math.9(1994), No. 2, 46–47.

15. V. Tsagareishvili,On the Fourier coefficients for general orthonormal systems.Proc. A. Razmadze Math. Inst.124(2000), 131–150.

(Received 8.04.2002) Author’s address:

Referensi

Dokumen terkait

Keywords: IT organisation; Relationship management; Culture gap; IT service delivery; IT performance Journal of Strategic Information Systems 8 (1999) 29–60.. 0963-8687/99/$ - see

played by the zeros of orthogonal polynomials on the real line is now played by the zeros of para-orthogonal polynomials, and the Gaussian formulas by the Szego formulas, see,

Otherwise, if we consider these relations in the cases of vector orthogonal polynomials of dimension 1 and − 1, we can apply alternatively several relations in order to compute

Keywords: Nonsymmetric systems; Krylov subspace; Multiple right-hand sides; Lanczos’ method; Bi-orthogonality; Hankel matrix; Orthogonal polynomials; Transpose-free

For classical orthogonal polynomials of a discrete variable, the recurrence coecients are known explicitly and Theorem 8.1 can be used to obtain the zero distributions... Then is

This paper is concerned with cost-oriented assembly line balancing. This problem occurs especially in the &#34;nal assembly of automotives, consumer durables or personal

A sum- mary is given of criteria cur- rently used to defi ne quality within the course but con- cerns about maintaining quality whilst also reacting to changing external and inter-

Hypothesizes that, for acade- mics, while budgetary com- munication may be positively related to budgetary attitudi- nal response, this relation- ship is dependent on the level of