• Tidak ada hasil yang ditemukan

Slides for Chapter 3: Networking and Internetworking - Chapter 3 slides

N/A
N/A
Protected

Academic year: 2019

Membagikan "Slides for Chapter 3: Networking and Internetworking - Chapter 3 slides"

Copied!
29
0
0

Teks penuh

(1)

Slides for Chapter 3:

Networking and Internetworking

From

Coulouris, Dollimore and

Kindberg

Distributed Systems:

Concepts and Design

(2)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.1

Network performance

Example

Range

Bandwidth

(Mbps)

Latency

(ms)

Wired:

LAN

Ethernet

1-2 kms

10-1000 1-10

WAN

IP routing

worldwide 0.010-600 100-500

MAN

ATM

250 kms

1-150

10

Internetwork Internet

worldwide 0.5-600

100-500

Wireless:

WPAN

Bluetooth (802.15.1) 10 - 30m

0.5-2

5-20

WLAN

WiFi (IEEE 802.11) 0.15-1.5 km 2-54

5-20

WMAN

WiMAX (802.16)

550 km

1.5-20

5-20

(3)

Figure 3.2

Conceptual layering of protocol software

Layer n

Layer 2

Layer 1

Message sent

Message received

Communication

medium

(4)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.3

Encapsulation as it is applied in layered protocols

Presentation header

Application-layer message

Session header

Transport header

(5)

Figure 3.4

Protocol layers in the ISO Open Systems Interconnection (OSI) model

Application

Presentation

Session

Transport

Network

Data link

Physical

Message sent

Message received

Sender

Recipient

Layers

(6)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.5

OSI protocol summary

Layer

Description

Examples

Application

Protocols that are designed to meet the communication requirements of

specifc applications, often defning the interface to a service.

HTTP,

CORBA IIOP

FTP

, SMTP,

Presentation

Protocols at this level transmit data in a network representation that is

independent of the representations used in individual computers, which may

difer. Encryption is also performed in this layer, if required.

Secure Sockets

(SSL),CORBA Data

Rep.

Session

At this level reliability and adaptation are performed, such as detection of

failures and automatic recovery.

Transport

This is the lowest level at which messages (rather than packets) are handled.

Messages are addressed to communication ports attached to processes,

Protocols in this layer may be connection-oriented or connectionless.

TCP, UDP

Network

Transfers data packets between computers in a specifc network. In a WAN

or an internetwork this involves the generation of a route passing through

routers. In a single LAN no routing is required.

IP, ATM virtual

circuits

Data link

Responsible for transmission of packets between nodes that are directly

connected by a physical link. In a WAN transmission is between pairs of

routers or between routers and hosts. In a LAN it is between any pair of hosts.

Ethernet MAC,

ATM cell transfer,

PPP

Physical

The circuits and hardware that drive the network. It transmits sequences of

binary data by analogue signalling, using amplitude or frequency modulation

of electrical signals (on cable circuits), light signals (on fbre optic circuits)

or other electromagnetic signals (on radio and microwave circuits).

(7)

Figure 3.6

Internetwork layers

Underlying network

Application

Network interface

Transport

Internetwork

Internetwork packets

Network-specific packets

Message

Layers

Internetwork

protocols

(8)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.7

Routing in a wide area network

Hosts

Links

or local

networks

A

D

E

B

C

1

2

5

4

3

6

(9)

Figure 3.8

Routing tables for the network in Figure 3.7

Routings from D

Routings from E

To

Link

Cost

To

Link

Cost

A

Routings from A

Routings from B

Routings from C

To

Link

Cost

To

Link

Cost

To

Link

Cost

(10)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.9

Pseudo-code for RIP routing algorithm

Send:

Each

t

seconds or when

Tl

changes, send

Tl

on each non-faulty

outgoing link.

Receive:

Whenever a routing table

Tr

is received on link

n

:

for all rows

Rr

in

Tr

{

if (

Rr.link

|

n

) {

Rr.cost

=

Rr.cost

+ 1;

Rr.link

=

n

;

if (

Rr.destination

is not in

Tl

) add

Rr

to

Tl;

// add new destination to

Tl

else for all rows

Rl

in

Tl

{

if (

Rr.destination

=

Rl.destination

and

(Rr.cost

<

Rl.cost

or

Rl.link

=

n

))

Rl

=

Rr;

//

Rr.cost < Rl.cost : remote node has better route

//

Rl.link = n

: remote node is more authoritative

}

(11)

Figure 3.10

Simplified view of the QMW Computer Science network (in mid-2000)

file

desktop computers

138.37.88.xx

subnet

desktop computers

Eswitch

138.37.94

hub

hub

Student subnet

Staf subnet

other

1000 Mbps Ethernet

Eswitch: Ethernet switch

100 Mbps Ethernet

file server/

(12)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.11

Tunnelling for IPv6 migration

A

IPv6

IPv6

B

IPv6 encapsulated in IPv4 packets

(13)

Figure 3.12

TCP/IP layers

Messages (UDP) or Streams (TCP)

Application

Transport

Internet

UDP or TCP packets

IP datagrams

Network-specific frames

Message

Layers

(14)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.13

Encapsulation in a message transmitted via TCP over an Ethernet

Application message

TCP header

IP header

Ethernet header

Ethernet frame

port

TCP

(15)

Figure 3.14

The programmer's conceptual view of a TCP/IP Internet

IP

Application

Application

(16)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.15

Internet address structure, showing field sizes in bits

7

24

Class A:

0

Network ID

Host ID

14

16

Class B:

1 0

Network ID

Host ID

21

8

Class C:

1 1 0

Network ID

Host ID

28

Class D (multicast):

1 1 1 0

Multicast address

(17)

Figure 3.16

Decimal representation of Internet addresses

octet 1

octet 2

octet 3

Class A:

1 to 127

0 to 255

0 to 255

1 to 254

Class B:

128 to 191

Class C:

192 to 223

224 to 239

Class D (multicast):

Network ID

Network ID

Network ID

Host ID

Host ID

Host ID

Multicast address

0 to 255

0 to 255

1 to 254

0 to 255

0 to 255

0 to 255

0 to 255

0 to 255

0 to 255

Multicast address

0 to 255

0 to 255

1 to 254

240 to 255

Class E (reserved):

(18)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.17

IP packet layout

data

IP address of destination

IP address of source

header

(19)

Figure 3.18

A typical NAT-based home network

83.215.152.95

Ethernet switch

Modem / firewall / router (NAT enabled)

printer

DSL or Cable

connection to ISP

192.168.1.xx

subnet

PC 1

WiFi base station/

access point

192.168.1.10

192.168.1.5

192.168.1.2

192.168.1.1

192.168.1.104

PC 2

192.168.1.101

Laptop

192.168.1.105

Game box

192.168.1.106

Media hub

TV monitor

Bluetooth

adapter

Bluetooth

printer

(20)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.19

IPv6 header layout

Source address

(128 bits)

Destination address

(128 bits)

Version (4 bits)

Trafc class (8 bits)

Flow label (20 bits)

(21)

Figure 3.20

The MobileIP routing mechanism

Sender

Home

Mobile host MH

Foreign agent FA

Internet

agent

First IP packet

addressed to MH

Address of FA

returned to sender

(22)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.21

Firewall configurations

Internet

Router/

Protected intranet

a) Filtering router

Internet

b) Filtering router and bastion

filter

Internet

R/filter

c) Screened subnet for bastion

R/filter

Bastion

R/filter

Bastion

web/ftp

server

web/ftp

server

web/ftp

(23)

Figure 3.22

IEEE 802 network standards

IEEE No. Name

Title

Reference

802.3

Ethernet CSMA/CD Networks (Ethernet)

[IEEE 1985a]

802.4

Token Bus Networks

[IEEE 1985b]

802.5

Token Ring Networks

[IEEE 1985c]

802.6

Metropolitan Area Networks

[IEEE 1994]

(24)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.23

Ethernet ranges and speeds

10Base5

10BaseT

100BaseT

1000BaseT

Data rate

10 Mbps

10 Mbps

100 Mbps

1000 Mbps

Max. segment lengths:

Twisted wire (UTP) 100 m

100 m

100 m

25 m

(25)

Figure 3.24

Wireless LAN configuration

LAN

Server

Wireless

LAN

Laptops

Base station/

access point

Palmtop

radio obstruction

A

B

C

D

(26)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.25

Bluetooth frame structure

SCO packets (e.g. for voice data) have a 240-bit payload

containing 80 bits of data triplicated, flling exactly one timeslot.

bits: 72

18

18

18

0 - 2744

Access code

Header

copy 1

Header

copy 2

Header

copy 3

Data for transmission

bits: 3

1

1

1

4

8

Destination

Flow Ack

Seq

Type

Header checksum

Address within

Piconet

= ACL, SCO,

poll, null

(27)

Figure 3.26

ATM protocol layers

Physical

Application

ATM layer

Higher-layer protocols

ATM cells

ATM virtual channels

Message

Layers

(28)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Figure 3.27

ATM cell layout

Flags

Data

Virtual channel id

Virtual path id

(29)

Figure 3.28

Switching virtual paths in an ATM network

VPI in VPI out

2

3

4

5

VPI = 3

VPI = 5

VPI = 4

Virtual path

Virtual channels

VPI = 2

VPI : virtual path identifier

VP switch

VP/VC

switch

VP switch

Gambar

Figure 3.1Network performance
Figure 3.2Conceptual layering of protocol software
Figure 3.3Encapsulation as it is applied in layered protocols
Figure 3.4Protocol layers in the ISO Open Systems Interconnection (OSI) model
+7

Referensi

Dokumen terkait

Anoa (Bubalus sp) merupakan salah satu satwa endemik yang dilindungi yang menjadi ciri khas Pulau Sulawesi yang turut mendiami Kawasan Hutan Lindung Desa Sangginora Kabupaten

Arah aliran lava pijar dan piroklastik didasarkan pada 3 (tiga) aspek yaitu 1) bentuklahan dengan karakteristik morfologinya, 2) pola aliran dan 3) identifikasi bekas-bekas

Sebaiknya laporan manual BLUD Puskesmas diberikan terlebih dahulu kepada pihak Dinas Kesehatan agar tidak terjadi kesalahan ketidaksamaan data manual dengan data

• Bertanggung jawab dan menunjukkan kepemilikan karakter iman, cerdas, mandiri, jujur, peduli, dan tangguh dalam penyelesaian tugas, kuis, dan tes yang terkait

“Barangsiapa yang membacanya dalam sehari sebanyak 100 x, maka itu seperti membebaskan 10 orang budak, dicatat baginya 100 kebaikan, dihapus baginya 100 kesalahan, dirinya

Definisi pajak menurut Undang-Undang Nomor 16 Tahun 2009 tentang perubahan keempat atas Undang-Undang Nomor 6 Tahun 1983 tentang Ketentuan Umum dan Tata Cara

Penulis sadar bahwa dalam penulisan Tugas Akhir ini masih terdapat banyak kekurangan, dengan demikian segala bentuk saran yang membangun sangat penulis harapkan demi

This course aims to enhance students’ ability to understand challenging recorded sources which are derived from the interference of the oral, visual and audio information