• Tidak ada hasil yang ditemukan

JURNAL BIOSISTEMATIKA MARISA

N/A
N/A
Protected

Academic year: 2021

Membagikan "JURNAL BIOSISTEMATIKA MARISA"

Copied!
11
0
0

Teks penuh

(1)

JURNAL BIOSISTEMATIKA

PENYUSUNAN KLADOGRAM TERHADAP

KELOMPOK TUMBUHAN DENGAN METODE WAGNER

Dosen pembimbing : Dra. Thin Soedarti, CESA Drs. Bambang Irawan, M.Sc., Ph.D

Disusun oleh: Marisa Atmasari Putri

081014040

DEPARTEMEN BIOLOGI

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS AIRLANGGA

(2)

ANALISIS FILOGENETIK KELOMPOK TUMBUHAN DARI REGNUM PROTOCTISTA, THALLOPHYTA DAN TRACHEOPHYTA

Oleh: MARISA ATMASARI PUTRI

Program studi S1 Biologi, Departemen Biologi, Fakultas Sains Teknologi Universitas Airlangga

ABSTRAK

Salah satu mahkluk hidup di alam semesta ini adalah tumbuhan. Tumbuhan ini bermacam-macam jenisnya dan terbagi dalam beberapa kelompok. Antara kelompok yang satu dengan

kelompok yang lain sangatlah bervariasi dan beragam. Dari keaneragaman tersebut, maka diperlukan pengelompokkan beberapa individu menjadi satu kelompok atau

mengelompokkan ke dalam kelompok-kelompok yang memilki hubungan kekerabatan. Ilmu atau studi yang membahas tentang keaneragaman organisme dan hubungan kekerabatan (Filogeni) adalah Biosistematika. Di dalam Biosistematika ini terdapat dua metode yang membahas tentang hubungan kekerabatan. Metode tersebut di antaranya metode fenetik dan

metode kladistik. Metode fenetik menjelaskan hubungan kekerabatan yang berhubungan dengan kesamaan fenotip, sedangkan metode kladistik menjelaskan hubungan kekerabatan

yang memilki kesamaan dengan tetuanya (nenek moyang).

PENGANTAR

Dalam pengklasifikasian dan pengelompokkan suatu kelompok tumbuhan atau mahkluk hidup lainnya dapat ditentukan dalam berbagai macam klasifikasi. Pembagian kelompok tumbuhan ini ada yang dikelompokkan menjadi satu kelompok, namun ada juga yang dikelompokkan ke dalam kelompok yang lain. Dalam pengelompokkan tersebut dapat dilakukan berdasarkan kesamaan dan perbedaan yang dimiliki oleh masing-masing tumbuhan. Pembeda dan kesamaan antar individu ini tentu menjadi hal yang penting dalam mengelompokkan organisme.

Dalam menentukan hubungan kekerabatan suatu mahluk hidup, biasanya digunakan dua metode yaitu metode fenetik yang dilanjutkan dengan pembuatan fenogram. Fenogram dibuat berdasarkan kesamaan fenotip. Dan metode kladistik yang dilanjutkan dengan pembuatan kladogram. Kladistik dibuat berdasar kesamaan sifat-sifat apomorfi.

BAHAN DAN CARA KERJA

Bahan atau tumbuhan yang digunakan dalam uji ini adalah kelompok tumbuhan yang berasal dari tiga regnum yang berbeda. Regnum tersebut meliputi protoctista, thallophyta, dan regnum tracheophyta. Di dalam masing-masing regnum terbagi menjadi beberapa spesies. Regnum Protoctista meliputi spesies Amoeba sp. , Paramaecium sp. , Volvox sp. , Corallina

(3)

sp. (Rhodoprotista), dan Sargassum sp. (Phaeoprotista). Regnum Thallophyta meliputi Bryophyta dan Marchantia. Sedangkan regnum Tracheophyta meliputi Adiantum sp. (Pteridohyta), Pinus merkusii dan Gnetum gnemon (Gnetophyta) serta Canna hybrida.

Dalam menyusun hubungan filogeni antara tumbuhan satu dengan tumbuhan yang lain, perlu adanya cara atau langkah-langkah dalam penyusunn tersebut. Langkah-langkah tersebut ialah :

 Menyusun tabel karakter apomorfi dari semua kelompok tumbuhan yang akan dibuat filogeninya.

 Membuat tabel karakter numerik.  Membuat tabel transformasi.

 Pembuatan kladogram yang disusun berdasarkan tabel kesamaan karakter apomorfi. Berdasarkan tabel kesamaan apomorfi tersebut maka akan terlihat hubungan filogeni anatar suatu tumbuhan yang kemudian digambarkan melalui kladogram, lalu dipermudah dengan metode wagner

 Setelah penyusunan kladogram, langkah selanjutnya yaitu mengevaluasi hasil kladogram terasebut. Evaluasi dilakukan dengan menghitung CI (Consistency index) dan RI (Retention Index).

HASIL PENGAMATAN

Membuat tabel dan menyusun kladogram

1. Tabel karakter apomorfi

no Karakter Atribut Takson

A B C D E F G H I J K 1 Struktur tubuh Uniseluler √ √ Koloni √ Thallus √ √ √ √ Kormus √ √ √ √

2 Sel penyusun tubuh tidak berdiferensiasi √ √ √ √ √

ada diferensiasi √ √ √ √ √ √ 3 Alat gerak Pseudopodia √ Silia √ Flagela √ tidak ada √ √ √ √ √ √ √ √ 4 Posisi tubuh

semua di atas permukaan tanah √ √ √ √ √ √ √ ada yang di bawah permukaan

tanah √ √ √ √

5 Jaringan pengangkut tidak ada √ √ √ √ √ √ √

(4)

6 Alat penyebaran

Tidak ada bentuk khusus √ √ √

Spora √ √ √ √ √ Biji √ √ √ 7 Alat pelekat tidak ada √ √ √ Discus √ √ Rhizoid √ √ Akar serabut √ √ akar tunggang √ √ 8 Gametofit Tidak memiliki √ √ √ √ √ Bebas √ √ Bergantung √ √ √ √ 9 Jenis daun Tidak ada √ √ √ √ √ Mikrofil √ √ Megafil √ √ √ √ 10 Variasi daun Tidak ada √ √ √ √ √ Tunggal √ √ Bercabang √ √ √ √ 11 Organ reproduksi

tidak ada organ khusus √ √ √ √ √ √ √

Sporofil √

Strobilus √

Bunga sejati √ √

12 Ovum

Tidak dibentuk √ √ √ tidak dilapisi selapis sel steril √ √

diselubungi selapis sel steril √ √ √ √ √ √ 13 Zigot tidak memiliki √ √ √ Memiliki √ √ √ √ √ √ √ √ 14 Fertilisasi tidak ada √ √ √ Tunggal √ √ √ √ √ √ √ Ganda √ 15 Endosperm tidak ada √ √ √ √ √ √ √ √ 2n √ √ 3n √

2. Tabel Karakter Numerik

no Karakter Atribut Num Takson

A B C D E F G H I J K 1 Struktur tubuh Uniseluler 0 √ √ Koloni 1 √ Thallus 2 √ √ √ √ Kormus 3 √ √ √ √

(5)

2 Sel penyusun tubuh tidak berdiferensiasi 0 √ √ √ √ √ ada diferensiasi 1 √ √ √ √ √ √ 3 Alat gerak Pseudopodia 0 √ Silia 1 √ Flagela 2 √ tidak ada 3 √ √ √ √ √ √ √ √ 4 Posisi tubuh semua di atas permukaan tanah 0 √ √ √ √ √ √ √ ada yang di bawah

permukaan tanah 1 √ √ √ √ 5 Jaringan pengangkut tidak ada 0 √ √ √ √ √ √ √ Ada 1 √ √ √ √ 6 Alat penyebaran

Tidak ada bentuk khusus 0 √ √ √ Spora 1 √ √ √ √ √ Biji 2 √ √ √ 7 Alat pelekat tidak ada 0 √ √ √ Discus 1 √ √ Rhizoid 2 √ √ Akar serabut 3 √ √ akar tunggang 4 √ √ 8 Gametofit Tidak memiliki 0 √ √ √ √ √ Bebas 1 √ √ Bergantung 2 √ √ √ √ 9 Jenis daun Tidak ada 0 √ √ √ √ √ Mikrofil 1 √ √ Megafil 2 √ √ √ √ 10 Variasi daun Tidak ada 0 √ √ √ √ √ Tunggal 1 √ √ Bercabang 2 √ √ √ √ 11 Organ reproduksi

tidak ada organ khusus 0 √ √ √ √ √ √ √ Sporofil 1 √ Strobilus 2 √ Bunga sejati 3 √ √ 12 Ovum Tidak dibentuk 0 √ √ √ tidak dilapisi selapis

sel steril

1

√ √ diselubungi selapis sel

steril

2

√ √ √ √ √ √ 13 Zigot tidak memiliki 0 √ √ √ Memiliki 1 √ √ √ √ √ √ √ √ 14 Fertilisasi tidak ada 0 √ √ √

(6)

Ganda 2 √ 15 Endosperm tidak ada 0 √ √ √ √ √ √ √ √ 2n 1 √ √ 3n 2 √ 3. Tabel Transformasi

TAKSON

KARAKTER

Jumlah Apormofi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 C 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 3 D 2 0 3 0 0 1 1 0 0 0 0 1 1 1 0 10 E 2 0 3 0 0 1 1 0 1 0 0 1 1 1 0 11 F 2 0 3 0 0 1 2 1 2 1 0 2 1 1 0 16 G 2 1 3 0 0 1 2 1 2 1 0 2 1 1 0 17 H 3 1 3 1 1 1 3 2 3 2 1 2 1 1 0 25 I 3 1 3 1 1 2 4 2 3 2 2 2 1 1 1 29 J 3 1 3 1 1 2 4 2 3 2 3 2 1 1 1 30 K 3 1 3 1 1 2 3 2 3 2 3 2 1 2 2 31 JUMLAH M 3 1 3 1 1 2 4 2 3 2 3 2 1 2 2 32 Keteangan: A. Amoeba sp B. Paramaecium sp C. Volvox sp D. Corallina sp E. Sargassum sp F. Marchantia sp G. Bryophyta H. Adiantum sp I. Pinus merkusii J. Gnetum gnemon K. Canna hybrida

(7)

KLADOGRAM BELUM PARSIMONI

Keterangan :

A = Amoeba sp B = Paramecium C = Volvox D = Coralina E = Sargasum F = Marchantia G = brophyta H = Suplir I = Pinus J = Belinjo K = Kana 1. 1(2), 3(3), 6(1), 12(1), 13(1), 14(1) 2. 8(1), 9(2), 10(1), 12(2) 3. 2(1) 4. 1(3), 4(1), 5(1), 8(2), 9(3), 10(2), -1(2) 5. 6(2), 7(4), 15(1), -6(1) 6. 11(3) a = 1(1) b = 3(2) c = 7(1) d = 7(1) e = 9(1) f = 7(2) g = 7(3), 11(1) h = 15(2) i = 14(2) j = 7(3) k = 11(2) l = 7(2)

(8)

METODE WAGNER

Keterangan :

A = Amoeba sp B = Paramecium C = Volvox D = Coralina E = Sargasum F = Marchantia G = brophyta H = Suplir I = Pinus J = Belinjo K = Kana

(9)

PEMBAHASAN

Pada praktikum ini menggunakan 11 sampel uji dalam pembuatan kladogram. Sampel tersebut antara lain : : Amoeba ; Paramaecium sp. ; Volvox sp. ; Sargassum sp. ; Corallina sp. ;Hepatohyta ; Bryophyta ; Adiantum sp. ; Pinus merkusii ; Gnetum gnemon ; Canna hybrida. Dalam pembuatan atau menggambar suatu kladogram dapat menggunakan berbagai cara, salah satunya ialah mendeskripsikan kladogram secara statistik. Walaupun terdapat berbagai macam metode statistik dalam mendeskripsikan suatu kladogram, tetapi pada umumnya dan yang sering digunakan adalah deskripsi yang dapat menggambarkan tingkat homoplasi yang ada pada kladogram tersebut. Beberapa cara yang digunakan untuk mendeskripsikan suatu kladogram yang akan di bahas disini ialah Consistency Index (CI) dan Retention index (RI).

1. Consistency index (CI)

Bila hasil analisis kladistik menunjukkan homoplasi yang banyak maka datanya dapat dianggap kurang memenuhi syarat. Salah satu cara menentukan banyaknya peristiwa homoplasi secara relative dalam suatu kladogram adalah menghitung suatu index yang disebut Consistency index (CI). CI berfungsi untuk mengukur jumlah relatif homoplasy dalam sebuah cladogram. Ini menilai tingkat kesulitan dalam fitting data yang diberikan diatur ke pohon yang diberikan. CI dihitung dengan rumus berikut.

m = jumlah total minimum banyaknya perubahan yang diharapkan dari data s = banyaknya perubahan yang ada di struktur kladigram

Nilai CI berkisar antara 0 sampai1, atau ada pula yang menggunakan presentase sehingga nilainya antara 0 sampai 100. Bila nilai CI mendekati atau sama dengan 1 berarti dalam kladogram tersebut homoplasinya sangat rendah atau tidak ada sama sekali, dan bila mendekati atau sama dengan 0 berarti homoplasinya sangat banyak. Perhitungan nilai Ci dari data sampel yang diperoleh adalah sebagai berikut:

Diketauhi : m = 32 s = 33 Ditanya : CI = ....?

Jawab :

0,96

Karena didapatkan CI = 0,96 hampir mendekati 1 berarti dalam kladogram ini homoplasinya rendah

(10)

2. Ø Retention index (RI)

Ukuran terakhir yang ditinjau oleh proyek ini adalah indeks retensi. Indeks ini mengukur proporsi synapomorphy diharapkan dari suatu kumpulan data yang disimpan sebagai synapomorphy pada sebuah pohon. Dengan kata lain, indeks retensi adalah ukuran proporsi kesamaan pada sebuah pohon. Farris (1988) memperkenalkan indeks retensi sebagai pengganti CI, karena ia menganggap bahwa CI telah dibesar-besarkan oleh autapomorphies, yang tidak memberikan kontribusi pada ekstraksi pohon filogenetik dari kumpulan data (Leseure, 1998). Indeks retensi dihitung dengan menggunakan rumus berikut.

Pada Retention index atau RI perhitungan menggunakan jumlah sinapomorfi. Rumusnya adalah sebagai berikut :

n adalah jumlah maksimum perubahan pada pohon filogeni atau kladogram, sedangkan m dan s seperti pada rumus CI. Besarnya nilai n ditentukan dari banyaknya tahap setiap karakter, dapat dalam kondisi 0 ataupun 1 dipilih yang tersedikit. Perhitungan nilai RI dari data sampel yang diperoleh adalah sebagai berikut:

Diketauhi : n = 33 s = 33 m = 32 Ditanya : RI = ...? Jawab :

0

Karena didapatkan RI = 0 hampir mendekati 1 berarti dalam kladogram ini homoplasinya rendah

(11)

DAFTAR PUSTAKA

Ubaidillah dan Sutrisno, 2009. Biosistematik. LIPI Simpon, M.G. 2010. Plant Systematics, 2nd ed. Elsevier.

Mayr,E. 1982. Principles of Systematic Zoology. Tata McGraw_Hill Publishing Company, New Delhi

http://evolution.berkeley.edu/evolibrary/article/phylogenetics_01.akses 19 april 2011, (pukul 21.00 WIB)

Panchen, A.L. 1992. Classification, Evolution, and the Nature of Biology. Cambride University Press.

Referensi

Dokumen terkait

Pengaruh Kinerja Lingkungan Terhadap Kinerja Keuangan Dengan Corporate Social Responsibility (Csr) Sebagai Variabel Intervening ( Studi Empiris pada Perusahaan

Temuan dari penelitian tersebut adalah (1) persepsi mahasiswa mengenai citra program studi tidak berpengaruh positif terhadap loyalitas mahasiswa, (2) persepsi mahasiswa

Prajurit Kulon 1650 KK 2018 86.000.000 Pembangunan Saluran Sumolepen (Lanjutan), Pembangunan Plengsengan Buzem Pulorejo (Lanjutan), Pembangunan Saluran Tenggilis

Satu dari anggota Group Mesh yang sudah dibuat bisa mengizinkan anggota baru Open Mesh untuk bergabung. A

Berdasarkan uji F-Stat, uji Hausman dan uji Lagrange Multiplier maka pada penulis memilih model Fixed Effect Model (FEM) yang digunakan dalam

Hasil penelitian menunjukkan bahwa Cash Ratio berpengaruh secara signifikan terhadap variabel dividen payout ratio Growth tidak berpengaruh signifikan

- Materi pelajaran yang akan digunakan untuk penelitian, yaitu Sistem Persamaan Linear Dua Variabel (SPLDV). - Peneliti bertindak sebagai pengamat, peneliti adalah seorang

Bab pertama pendahuluan yang berisi latar belakang, rumusan masalah, tujuan penelitian, kegunaan penelitian, penelitian terdahulu, definisi operasional,